
ARTIFICIAL INTELLIGENCE 353 

RESEARCH NOTE 

Tree Clustering for 
Constraint Networks* 

Rina Dechter and Judea Pearl 
4731 Boelter Hall,  Cognitive System Laboratory,  
Computer  Science Department ,  University o f  California, 
Los  Angeles ,  C A  90024, U . S . A .  

ABSTRACT 

The paper offers a systematic way of regrouping constraints into hierarchical structures capable of 
supporting search without backtracking. The method involves the formation and preprocessing of an 
acyclic database that permits a large variety of queries and local perturbations to be processed 
swiftly, either by sequential backtrack-free procedures, or by distributed constraint propagation 
processes. 

I. Introduction 

Solving constraint satisfaction problems (CSPs) usually involves two phases: a 
preprocessing phase that establishes local consistencies, followed by a back- 
tracking procedure that actually produces the solution desired. While the 
preprocessing phase normally is accomplished by local, constraint propagation 
mechanisms, the answer producing phase occasionally runs into difficulties due 
to excessive backtracking. If a given set of constraints is to be maintained over 
a long stream of queries, it may be advisable to invest more effort and memory 
space in restructuring the problem so as to facilitate more efficient answer 
producing routines. This paper proposes such a restructuring technique, based 
on clique-tree clustering. The technique guarantees that a large variety of 
queries could be answered swiftly either by sequential backtrack-free proce- 
dures, or by distributed constraint propagation methods. 

The technique proposed exploits the fact that the tractability of CSPs is 
intimately connected to the topological structure of their underlying constraint 

* This work was supported in part by the National Science Foundation, grant 4~DCR 85-01234 
and by the Airforce Office of Scientific Research grant #AFOSR-88-0177. 

Artificial Intelligence 38 (1989) 353-366 
0004-3702/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland) 

TECHNICAL REPORT 
R-92

April 1989



354 R. DECHTER AND J. PEARL 

graphs (Freuder [14], Dechter  [7]). The simplest result in this regard asserts 
that if the constraint graph is a tree then the corresponding CSP can be solved 
efficiently, in O(nk 2) steps, where n is the number of variables and k is the 
number of values. This result is also applicable to processing CSPs of arbitrary 
topologies; approximations based on trees can be used as heuristics to guide 
choices in backtracking (Dechter  [7]) and tree-solving algorithms can be 
invoked when subproblems are recognized to be tree-structured (Dechter  [8]). 

Another  important feature of tree topology lies in facilitating unsupervised, 
constraint propagation mechanisms, often called "relaxation".  Distributed 
relaxation algorithms applied to constraint trees reach equilibrium in time 
proportional to the tree's diameter and, more significantly, the local con- 
sistencies established by such algorithms also guarantee global consistency, 
namely, any choice of value to any variable in the resultant network is 
guaranteed to be extendable to a full solution of the CSP. Consequently, the 
desired solutions can be assembled incrementally, using either backtrack-free 
search, or a parallel propagation algorithm initiated at some designated center. 
In networks of a general structure, relaxation algorithms do not yield a globally 
consistent network, hence, there is no guarantee that a final solution can 
tractably be assembled thereafter.  

A general strategy of utilizing the merits of tree topologies in non-tree CSPs 
is to form clusters of variables such that the interactions between the clusters 
are tree-structured, then solve the problem by efficient tree algorithms. This 
amounts to first, deciding which variables should be grouped together,  finding 
the internally consistent values in each cluster and, finally, processing these sets 
of values as singleton variables in a tree. Clustering ideas were implemented in 
specialized constrained-based languages. The notions of "multiple views" in 
CONSTRAINTS (Sussman [24]) and that of "merging" in THINGLAB (Borning 
[5]) can be viewed as variants of a clustering strategy. 

In this paper we present a general and systematic method of accomplishing 
this strategy, applicable to both binary and nonbinary CSPs. The method is 
based on a combination of the theory of acyclic databases (Beeri [3]), Freuder 's  
conditions for backtrack-free search [14] and the notion of directional con- 
sistency (Dechter  [7]). Related methods were also used for structuring statisti- 
cal databases (Malvestuto [18]), inferences in Bayesian networks (Lauritzen 
[5], Pearl [21]), and the analysis of belief functions (Shafer I23]). 

2. CSPs and Their Graph Representations 

A constraint satisfaction problem involves a set of n variables X 1 . . . . .  X , ,  
each represented by its domain values, R~ . . . . .  R n and a set of constraints. A 
constraint Ci(Xi, . . . . .  Xi) is a subset of the Cartesian product Ri, x - - .  x R~ 

which specifies which values of the variables are compatible with each other. A 
solution is an assignment of values to all the variables which satisfy all the 
constraints and the task is to find one or all solutions. A binary CSP is one in 



TREE CLUSTERING FOR CONSTRAINT NETWORKS 355 

which all the constraints involve only pairs of variables. A binary CSP can be 
associated with a constraint graph in which nodes represent variables and arcs 
connect pairs of constrained variables. Graph representations for CSPs con- 
taining high-order constraints can be constructed in two ways, as a primal 
constraint graph or a dual constraint graph. A primal constraint graph repre- 
sents variables by nodes and associates an arc with any two nodes residing in 
the same constraint. A dual constraint graph (called "intersection graph" in 
database theory (Maier [17]) and being equivalent to a hypergraph representa- 
tion) represents each constraint by a node (called a c-variable) and associates a 
labeled arc with any two nodes that share variables. The arcs are labeled by the 
shared variables. 

For example, Figs. l(a) and l (b)  depict the primal and dual constraint graph 
respectively, of a CSP with variables A, B, C, D, E, F and constraints on the 
subsets (ABC), (AEF), (CDE), and (ACE) (the constraints themselves are 
not shown in the figures). 

The dual constraint graph representation transforms any nonbinary CSP to a 
special type of binary CSP: The domain of the c-variables ranges over all 
possible value-combinations permitted by the corresponding constraints, and 
any two adjacent c-variables must obey the restriction that their shared 
variables should have the same values (i.e., the c-variables are bounded by 
"equal i ty" constraints). Using this representation and exploiting the structure 
of the dual constraint graph, we can solve a nonbinary CSP using methods 
developed for binary CSPs. In particular, if the dual constraint graph is a tree, 
the problem can be solved in time linear in the number of c-variables, using the 
tree algorithm described by Dechter  [7]. 

Since trees are desirable structures, we want to transform any constraint 
graph into a tree. One way of doing it is to form larger clusters of c-variables, 
another is to identify and remove redundant arcs. A constraint is considered 
redundant  if its elimination from the problem does not change the set of 
solutions [6]. Since all constraints in the dual graph are equalities, an arc can 
be deleted if its variables are shared by every arc along an alternative path 
between the two end points. The subgraph resulting from the removal of 
redundant arcs is called a join graph, and it has the following property: for 

E E 

a b 

Fig. 1. Primal and dual constraint graphs of a CSP. 



356 R. DECHTER AND J. PEARL 

each two nodes that share a variable there is at least one path of labeled arcs, 
each containing the shared variable. A join graph is an equivalent representa- 
tion to the original dual graph though it may contain fewer arcs. 

For example, in Fig. l (b) ,  the arc between (AEF) and (ABC) can be 
eliminated because the variable A is common along the cycle (AEF)--A--  
(ABC)--AC--(ACE)--AE--(AEF) and, so, a consistent assignment t o  A is 
ensured by the remaining arcs. By a similar argument we can remove the arcs 
labeled C and E, thus turning the join graph into a tree, called join tree. 

A CSP organized as a join tree can be solved efficiently. If there are p 
constraints in the join tree, each with at most l subtuples, then, a straight 
application of the algorithm developed for a tree of singletons (i.e., O(nk2)) 
would yield a solution in O(pl2) .  However,  by ordering the tuples of each 
constraint lexicographically, the task of matching two tuples can be reduced to 
O(log l) steps (instead of O(k 2) for binary constraints), thus reducing the 
overall complexity to O ( p . / . l o g  l). CSPs that possess a join tree are called 
acyclic databases (called acyclic CSPs here), and their desirable properties are 
discussed at length by Beeri [3]. Efficient procedures for identifying a join tree 
of an acyclic database are described by Maier [17]. 

3. The Tree-Clustering Scheme 

Our aim is to transform any CSP into an acyclic representation, even when the 
dual constraint graph of the original representation of the problem cannot be 
reduced to a join tree. We do it by systematically forming larger clusters than 
those given in the dual constraint graphs. 

A CSP is acyclic iff its primal graph is both chordal and conformal [3]. A 
graph G is chordal if every cycle of length at least four has a chord, i.e., an 
edge joining two nonconsecutive vertices along the cycle. A primal graph is 
conformal if each of its maximal cliques corresponds to a constraint in the 
original CSP. 

The clustering scheme is based on an efficient triangulation algorithm 
(Tarjan [25]) which transforms any graph into a chordal graph by adding edges 
to it. The maximal cliques of the resulting chordal graph are the clusters 
necessary for forming an acyclic CSP. 

The triangulation algorithm consists of two steps: 

Step 1. Compute an ordering for the nodes, using a maximum cardinality 
search. 

Step 2. Fill in edges (recursively) between any two nonadjacent nodes that 
are connected via nodes higher up in the ordering. 

The maximum cardinality search numbers vertices from 1 to n, in increasing I 

The order here is the reverse of that used by Tarjan et al. and was changed to simplify the 
presentation. Such ordering will be called m-ordering. 



TREE CLUSTERING FOR CONSTRAINT NETWORKS 357 

order, always assigning the next number to the vertex having the largest set of 
previously numbered neighbors (breaking ties arbitrarily). Such ordering will 
be called m-ordering. If no edges are added in Step 2 the original graph is 
chordal, otherwise the new filled graph is chordal. Tarjan et al. give a 
maximum cardinality search algorithm that can be implemented in O(n + deg), 
where n is the number of variables and deg is the maximum degree. The fill-in 
step of the algorithm runs in O(n + m') where m' is the number of arcs in the 
resultant graph. There is no guarantee that the number of edges added by this 
process is minimal, however, since for chordal graphs the m-ordering requires 
no fill-in, the fill-in required for nonchordal graphs is usually close to optimal. 
The preceding discussion suggests the following clustering procedure for CSPs: 

Tree-Clustering (T-C) 
Begin 
(1) Given a CSP and its primal graph, use the triangulation al- 

gorithm to generate a chordal primal graph (if the primal graph 
is chordal no arc will be added). 

(2) Identify all the maximal cliques in the primal chordal graph. 
Let C l , . . . ,  C, be all such cliques indexed by the rank of their 
highest nodes. 

(3) Form the dual graph corresponding to the new clusters and 
identify one of its join trees by connecting each C i to an 
ancestor Cj. ( j < i )  with whom it shares the largest set of 
variables [17]. 

(4) Solve the subproblems defined by the clusters C 1 . . . .  , C, (this 
amounts to generating a higher-arity constraint from the lower- 
arity constraints internal to each cluster, i.e., listing the consis- 
tent subtuples for the variables in each cluster). 

(5) Solve the tree problem with treating the clusters as singleton 
variables. 
(a) Perform directional arc-consistency (DAC) on the join tree 

[71. 
(b) Solve the join tree in a backtrack-free manner. 

End. 

For example, consider a CSP on variables {A, B, C, D, E}, defined by the 
constraints: ( A,  C), ( A,  D ), ( B, D ), ( C, E ), ( D, E ). The primal graph is given 
in Fig. 2(a). The ordering d = E, D, C, A, B is one possible m-ordering (Fig. 
2(b)). The fill-in required by this ordering adds the arc (C, D) and results in 
the chordal graph of Fig. 2(c). The maximal cliques associated with this graph 
are: (A, D, C), (D, C, E),  and (D, B) (Fig. 2(c)). The dual graph associated 
with these constraints and one of its associated join trees are shown in Fig. 3(a) 
and Fig. 3(b) respectively. To solve the problem shown in Fig. 3(b), we first 



358 R. D E C H T E R  AND J. P E A R L  

C C 

A 
A B 

E 

a b e 

Fig. 2. 

solve the three subproblems associated with the sets of variables (A, D, C), 
(D, C, E) and (D, B), then, using these local solutions as domains for the 
c-variables, the tree is solved in the usual manner (step (5)). For example, 
solving subproblem (A, D, C) means finding all assignments to A, D, C which 
are consistent with the input constraints (A, C) and (A, D). 

We can estimate the running time of the algorithm as follows. Given a CSP 
having n variables, its primal graph may be of O(n 2) of the original problem 
size (since any two nodes may be connected). Triangulating the primal graph is 
also bounded by O(n 2) since both the fill-in and the maximal cardinality search 
are bounded by the size of the resultant graph (number of edges + number of 
vertices). For the second step (i.e. identifying all maximal cliques) observe that 
in the filled-in graph, any vertex V and its parent set C(V) (those which are 
connected to it and precede it in the m-ordering) form a clique. The reason 
being that any two parent vertices which were not connected in the original 
graph will be "filled" by the fill-in step of the chordality algorithm. Therefore, 
to enumerate all maximal cliques we can determine the cliques C(V) in 
decreasing order of V, discarding a newly generated clique that is contained in 
a previous clique. In Fig. 2(b), the clique (BD), associated with B, is identified 
first, next the clique (ACD) (indexed by A), then (CDE). Since the last clique, 
(DE), is contained in (CDE) it is discarded. In this process each arc will be 
tested once to determine adjacency and, therefore, the complexity of this step 
is O(IE'I) when E' is the set of edges in the filled graph. Notice that the 
maximum number of cliques is n. 

a b 

Fig. 3. 



TREE CLUSTERING FOR CONSTRAINT NETWORKS 359 

The third step, determining the join tree, is linear in the size of the 
triangulated primal graph. The fourth step requires solving the subproblems 
defined by each clique. If r is the size of the largest clique and k is the number 
of values for each variable, this step is O(U)  and may dominate the overall 
computation. Finally, the last step of solving the join tree is O(n • t log t) where 
t is the maximum number of solutions in each clique. This step is performed by 
executing directional arc-consistency (in the specialized manner mentioned 
earlier) from leaves to root [7] (step (5a)), and then finding a solution in a 
backtrack-free manner (step (5b)). Thus, the overall complexity of the cluster- 
ing scheme is bounded by: 

O(n z) + O ( U )  + O(n . t log t ) .  (1) 

Since t ~< U, the third summand is bounded by O(n • k r- r log k), which yields 
the bound 

O(n 2) + O(k  r) -~- O(n . k r . r log k) = O(k  r) : O(nr .  kr) . (2) 

The space complexity is O ( n - k  r) since there are at most n cliques whose 
explicated solution set may be exponential in the size of the clique. 

The question is whether some computation can be saved in steps (4) and (5), 
by executing the clustering steps in a coordinated way. For example, it appears 
wasteful to independently solve two adjacent cliques, only to find out later that 
many of the solutions found are incompatible with each other. A more 
economical way would be to consult the solutions found in one clique for 
pruning the set of solutions assembled in adjacent cliques. Such possibilities are 
offered by enforcing local consistency as shown in the next subsection. 

4. Adaptive-Consistency 

Freuder [14] has studied the level of local consistency required to guarantee 
that solutions can be retrieved in a "backtrack-free" manner. We show how 
this theory, coupled with the notion of directional consistency (Dechter [7]), 
leads to a clustering scheme similar to that of Section 3. 

The width o f  a node in an ordered graph is the number of links connecting it 
to nodes lower in the ordering. The width o f  an ordering is the maximum width 
of nodes in that ordering, and the width o f  a graph is the minimal width of all 
its orderings. 

A CSP is i-consistent if for any set of i - 1 variables along with values for 
each that satisfy all the constraints among them, there exists a value for any ith 
variable, such that the i values together satisfy all the constraints among the i 
variables. Strong i-consistency holds when the problem is j-consistent for ] ~< i. 
Given an ordering d, directional i-consistency (d-i-consistency for short) re- 



360 R. DECHTER AND J. PEARL 

quires only that any consistent instantiation of i - 1 variables can be consistent- 
ly extended by any variable that succeed all of them in the ordering d. Strong 
d-i-consistency can be defined accordingly. The following theorem summarizes 
the conditions for backtrack-free search: 

T h e o r e m  (Freuder [14], Dechter [7]). An ordered constraint graph is backtrack- 
free if the level of  directional strong consistency along this order is greater than 
the width of  the ordered graph. 

When a problem is not /-consistent, algorithms enforcing /-consistency can 
be applied to it (Freuder [13]), e.g., the algorithms known as arc-consistency 
and path-consistency enforce 2-consistency and 3-consistency respectively 
(Montanari [20], Mackworth [16], Dechter [7], Mohr [19]). It may seem that 
the above theorem can be used as follows. Given a CSP, find the width of its 
graph (Freuder presents a linear-time algorithm for finding the width, W, of a 
graph), perform a (W + 1)-consistency algorithm, then solve the problem in a 
backtrack-free manner. Unfortunately, achieving /-consistency (i > 2 )  often 
requires the addition of constraints which amounts to adding arcs to the 
constraint graph and increasing its width, thus violating the conditions for 
backtrack-free search. The following procedure, first presented in [7] takes this 
issue into consideration. A similar algorithm, suggested by Seidel [22] em- 
bodies, essentially, the same idea. 

Given an ordering, d, we establish d-i-consistency recursively, letting i 
change dynamically from node to node to match its width at the time of 
processing. Nodes are processed in decreasing order, so that by the time a 
node is processed, its final width is determined and the required level of 
consistency can be achieved. For each variable, X, let PARENTS(X) be the set 
of all variables connected to it and preceding it in the graph. The parents of 
each variable are computed only when it needs to be processed. 

A d a p t i v e - C o n s i s t e n c y ( X 1 ,  . . . , X n )  

Begin 
(1) for i =  n to 1 by - 1 do steps (2)-(4) 
(2) compute PARENTS(X/) 
(3) connect all elements in PARENTS(X/) (if they are not yet 

connected) 
(4) perform consistency(X/, PARENTS(X/)) 
(5) find a solution using backtrack in the ordering ( X I , . . . ,  An) 
End 

The procedure consistency(V, SET) generates and records those tuples of 
variables in SET that can be consistent with at least one value of V. The 
procedure may impose new constraints over clusters of variables as well as 



TREE CLUSTERING FOR CONSTRAINT NETWORKS 361 

tighten existing constraints. Note that the procedure can generate constraints 
that contain other constraints. When the procedure terminates, backtrack can 
solve the problem, in the order prescribed without encountering any dead end. 
The topology of the induced graph (identical to the one generated by direction- 
al path-consistency) can be found prior to executing the procedure, by 
recursively connecting any two parents sharing a common successor. 

Consider our example of Fig. 2 in an ordering (E, D, C, A, B) shown in Fig. 
4(a). The Adaptive-Consistency algorithm proceeds from B to E and imposes 
consistency constraints on the parents of each processed variable. B is chosen 
first and the algorithm enforces a 2-consistency on D (namely an arc-consisten- 
cy on (D, B)), since the width of B is 1. A is selected next and, having width 2, 
the algorithm enforces a 3-consistency on its parents {C, D}. This operation 
may require that a constraint between C and D be added, and in that case an 
arc (C, D) is added. When the algorithm reaches node C its width is 2 and, 
therefore, a 3-consistency is enforced on C's parents {E, D}. The arc (E, D) 
already exists so this operation may merely tighten the corresponding con- 
straint. The resulting graph is given in Fig. 4(b), and its dual constraint graph 
consisting of all recorded constraints, is shown in Fig. 4(c). 

Let W(d) be the width of the ordering d and W*(d) the width of the induced 
graph. The complexity of solving a problem using the Adaptive-Consistency 
preprocessing phase (steps (1)-(4)) and then backtracking (freely) along the 
order d (step (5)) is dominated by the former. The worst-case complexity of 
the "consistency(V, PARENT(V)) step" is exponential in the cardinality of 
variable V and its parents. Since the maximal size of the parent sets is equal to 
the width of the induced graph we see that solving the CSP along the ordering 
d is O(n.  exp(W*(d) + 1)). 

5. Relationships between Adaptive-Consistency (A-C) and 
Tree-Clustering (T-C) 

The two schemes presented, although unrelated at first glance, share many 
interesting features. First, for any given ordering d, the set of fill-in arcs added 
by triangulation, is equal to the set of arcs added by the Adaptive-Consistency 

B B 

a b c 

Fig. 4. 



362 R. DECHTER AND J. PEARL 

scheme. Both methods recursively connect sets of nodes that share a common 
successor in the ordering, so the two will induce the same final graph if 
initiated on the same ordered graph (see Figs. 2(b) and 4(b)). In particular, the 
induced graph is always chordal and, if the original graph is chordal and 
ordered by a maximum cardinality search, its width will not change (no arcs are 
added in this case). 

In addition, a strong structural resemblance exists between the clusters 
chosen by T-C and the constraints (new or old) recorded by A-C. In each 
maximal clique C of size r (in the induced graph) A-C will record or tighten at 
least one constraint of size r - 1. If C contains another clique C' of size r' then 
this, too, is associated with A-C recording one constraint of size r ' - 1 .  
Namely, every cluster in T-C (i.e., a maximal clique) is represented in A-C by 
the constraints originally contained in that cluster (some of which may be 
tightened), and at most one additional constraint for each size less than the 
cluster's cardinality. In Figs. 5(a) and 5(b), we present once again the clusters 
generated by T-C and the constraints recorded by A-C. 

Rough asymptotic bounds on the time and space complexity of both schemes 
reveal that they are about the same. If W*(d) is the width of the induced 
graph, then W*(d) + 1 is the size of the largest clique and, therefore, both 
A-C and T-C are space-bounded by O(n.k w'(d)) and time-bounded by 
O(n. k w*(d)) and O(nr. k w*¢d)) respectively, k being the number of values. In 
practice, however, we may find cases favoring either one of the two schemes 
space-wise, because the explicit representation of T-C may sometimes be more 
economical. 

Asymptotically, the worse-case bounds of both schemes, dominated by the 
exponent of both expressions, is roughly the same, and the magnitude of these 
exponents is determined by the ordering, d, used (note that T-C is not 
compelled to use the maximum cardinality ordering which only provides a 
useful ordering heuristic applicable for both schemes). The algorithms' bound 
can be further tightened to yield O(exp(W* + 1)) where W* = min d {W*(d)}. 
However, computing an optimal d was shown to be an NP-complete task 
(Arnborg [1]), and among the various heuristic orderings studied in the 

a b 

Fig. 5. 



TREE CLUSTERING FOR CONSTRAINT NETWORKS 363 

literature (Bertel6 [4]), the most popular are the minimal width and the 
m-orderings. The ease of finding these orderings enables us to calculate W*(d) 
under both orderings, and take the lowest value as a better upper bound 
estimate of W*. Moreover, any minimum width ordering, denoted dmw , can be 
used for generating both a lower and an upper bound for W* since 

W(dmw ) ~ W *  ~ W*(dmw ) . 

In terms of actual time complexity we argue that A-C outperforms T-C, and 
in effect can be considered an efficient approach to tree clustering. The reason 
is that clusters are not assembled independently, but are pruned during 
construction. Consider the binary CSP presented by the constraint graph of 
Fig. 6(a); the graph is chordal and doesn't change by either scheme. Assume 
the m-ordering of Fig. 6(b) and the join tree of Fig. 6(c). When T-C solves the 
problem, the two subproblems (ABC) and (BCD) must first be solved 
independently. (ABC) may be solved by computing the constraint that A 
induces on (BC), then listing all consistent triplets. The same can be done for 
(BCD) but, since the two subproblems are solved independently, the solution 
found for (BCD) conforms only to the original constraint on (BC) not the one 
tightened by solving subproblem (ABC). Thus, several triplets in (BCD) 
would be generated and listed redundantly, only to be discarded, once the 
solutions of the two subproblems interact via the directional arc-consistency of 
step (5a). 

Adaptive-Consistency eliminates this redundancy. Proceeding along the 
order D, C, B, A, variable A tightens the constraint on (B, C), then B tightens 
the constraint on (C, D) and, finally, C induces a unary constraint on D. The 
problem can now be solved in a backtrack-free manner along the original 
ordering. Thus, A-C constructs, in effect, a join tree that is already directional 
arc-consistent and, so, renders step (5a) of T-C unnecessary. The only differ- 
ence between the join tree produced by A-C and that resulting from step (4) of 
T-C is that A-C does not explicitly enumerate the domains of the c-variables 
but, instead, represents them as conjunctions of lower-arity constraints. If 

A A 

D 

a b c 

Fig. 6. 



364 R. D E C H T E R  AND J. P E A R L  

desired, these domains can easily be enumerated using backtrack search (step 
(5) of A-C) and, due to the additional constraints induced by A-C, this search 
is backtrack-free. Such enumeration will result in a join tree that is fully 
arc-consistent, because the backtrack search ensures that each solution found 
for a c-variable has a matching solution at its parent c-variable. 

The question arises whether there is ever a need to fully explicate the 
domain of each clique in the join tree. Obviously, if the ultimate task is merely 
finding one (or all) solution to the given CSP, then the representation 
constructed by the A-C algorithm is sufficient; solutions can be produced 
without backtracking in the ordering prescribed by A-C. However, not all 
applications are suitably handled by processes committed to a fixed ordering. 
For example, consider the query: "Is there a solution in which variable Xj 
attains the value x?".  The representation generated by T-C enables us to 
answer this query by just scanning the domain of one clique that contains the 
variable X/. The representation generated by A-C, on the other hand, requires 
that a global search be initiated from the first variable (step (5) of A-C), and 
this will often require explicating the domains of more than one clique. In 
general, if the ultimate task is to maintain an effective database for answering a 
variety of queries, a balanced, undirectional representation is preferred. Since 
Tree-Clustering provides a more explicit representation, it will facilitate more 
efficient query-answering routines, at the expense of the additional space 
required for storing the explicit domains. 

6. Conclusions 

Tree clustering offers a systematic way of regrouping elements into hierarchical 
structures capable of supporting information retrieval without backtracking. 
The basic Tree-Clustering scheme involves triangulating the constraint graph, 
identifying the maximal cliques of the triangulated graph, solving the con- 
straints associated with each clique and organizing the solutions obtained in a 
tree structure. A routine called Adaptive-Consistency has been identified as an 
effective method of assembling the desired tree. 

Once the clusters are formed and their join tree established and processed, 
the resulting structure offers an effective database, to be amortized over many 
problem instances. A large variety of queries could be answered swiftly either 
by sequential backtrack-free procedures, or by distributed constraint propaga- 
tion processes. A typical application for this strategy is the management of 
dynamically changing environments, where it is often required to make new 
assumptions so as to keep the knowledge base consistent with incoming 
observations. A common task under such conditions is to determine whether a 
specific proposition X =  x is entailed by the constraint network and a set of 
default assumptions, modelled as temporary instantiations of a select set of 
variables. Truth maintenance systems (also known as reason maintenance 



TREE CLUSTERING FOR CONSTRAINT NETWORKS 365 

systems and belief maintenance systems) which were developed to handle such 
tasks (Doyle [12], de Kleer  [11]) compromise  completeness for efficiency. In 
other words, they confirm only those propositions that can be proven by 
efficient constraint propagat ion algorithms, leaving others unconfirmed. Tree  
clustering methods should enable us to bridge this completeness gap by first 
organizing the knowledge into a join tree, then verifying entai lment in con- 
straint propagat ion fashion (Dechter  [9]). 

Clearly, this method is useful only when environmental  conditions undergo 
local changes, i.e., those that do not alter the structure of the join tree. These 
include changes in the domains of individual variables or adjustments  of 
constraints which reside within a single clique. Such changes are indeed the 
ones encountered in reasoning about  physical or biological systems; the 
majori ty of changes result f rom observations made on the states of individual 
variables, while the bulk of knowledge remains intact. 

The Tree-Clustering scheme can facilitate efficient computat ion of many 
functions which are easily solvable on a tree of binary relationships. Such 
applications include belief propagat ion in Bayesian networks (Lauritzen [15], 
Pearl [21]), belief functions computat ions (Shafer [23]) and constraint optimi- 
zation (Dechter  [10]). A recent paper  (Arnborg [2]) describes a language 
which states propert ies and problems which are easy for t ree-decomposable  
graphs. Future experimental  work is required to compare  Tree-Clustering and 
backtrack algorithms in order to determine when the advantages of these 
schemes (as manifested by their worse-case bounds) are translated into an 
actual improvement  in performance.  

ACKNOWLEDGMENT 

We thank Johan de Kleer for reading and commenting on this paper. 

REFERENCES 

1. Arnborg, S., Corneil, D.G. and Proskurowski, A., Complexity of finding embeddings in a 
k-tree, SIAM J. Algebraic Discrete Methods 8 (2) (1987) 277-284. 

2. Arnborg, S., Lagergren, J. and Seese, D., Problems easy for tree-decomposable graphs, in: 
Proceedings 15th International Colloquium on Automata Languages and Programming, Tam- 
pere, Finland (1988). 

3. Beeri, C., Fagin, R., Maier, D. and Yannakakis, M., On the desirability of acyclic database 
schemes, J. ACM 30 (3) (1983) 479-513. 

4. Bertel6, U. and Brioschi, F., Nonserial Dynamic Programming (Academic Press, New York, 
1972). 

5. Borning, A., The programming language aspects of Thinglab, a constraint-oriented simulation 
laboratory, ACM Trans. Program. Lang. Syst. 3 (4) (1981) 353-387. 

6. Dechter, A. and Dechter, R., Removing redundancies in constraint networks, in: Proceedings 
AAAI-87, Seattle, WA (1987) 105-109. 

7. Dechter, R. and Pearl, J., Network-based heuristics for constraint-satisfaction problems, 
Artificial Intelligence 34 (1) (1988) 1-38. 



366 R. DECHTER AND J. PEARL 

8. Dechter, R. and Pearl, J., The cycle-cutset method for improving search performance in AI 
applications, in: Proceedings 3rd IEEE Conference on AI  Applications, Orlando, FL (1987) 
224-230. 

9. Dechter, R. and Dechter, A., Belief maintenance in dynamic constraint networks, in: 
Proceedings AAA1-88, St. Paul, MN (1988) 37-42. 

10. Dechter, R., Dechter, A. and Pearl, J., Optimization in constraint-networks, in: Proceedings 
Berkeley Conference on Influence Diagrams (Wiley, New York, 1988). 

11. de Kleer, J., An assumption-based TMS, Artificial Intelligence 28 (1986) 127-162. 
12. Doyle, J., A truth maintenance system, Artificial Intelligence 12 (3) (1979) 231-272. 
13. Freuder, E.C., Synthesizing constraint expressions, Commun. ACM 21 (11) (1978) 958-965. 
14. Freuder, E.C., A sufficient condition of backtrack-free search, J. ACM 29 (1) (lW982) 24-32. 
15. Lauritzen, S.L. and Spiegelhalter, D.J., Local computations with probabilities on graphical 

structures and their applications to expert systems, J. R. Stat. Soc. B. 50 (1988) 127-224. 
16. Mackworth, A.K. and Freuder, E.C., The complexity of some polynomial network consistency 

algorithms for constraint satisfaction problems, Artificial Intelligence 25 (1) (1985) 65-74. 
17. Maier, D., The Theory of Relational Databases" (Computer Science Press, Rockville, MD, 

1983). 
18. Malvestuto, F.M., Answering queries in categorical databases, in: Proceedings Sixth Confer- 

ence on the Principles of Database Systems, San Diego, CA (1987) 87-96. 
19. Mohr, R. and Henderson, T.C., Arc and path consistency revisited, Artificial Intelligence 28 

(2) (1986) 225-233. 
20. Montanari, U., Networks of constraints: Fundamental properties and applications to picture 

processing, Inf. Sci. 7 (1974) 95-132. 
21. Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference 

(Morgan Kaufmann, Los Altos, CA, 1988). 
22. Seidel, R., A new method for solving constraint-satisfaction problems, in: Proceedings" 

IJCA1-81, Vancouver, BC (1981) 338 342. 
23. Shafer G., and Shenoy, P.P., Bayesian and belief-function propagation, Tech. Rept. ~-192 

University of Kansas School of Business, Lawrence, KS (1988). 
24. Sussman, G.J. and Steele Jr, G.L., CONSTRAINTS: A language for expressing almost- 

hierarchical descriptions, Artificial Intelligence 14 (1) (1980) 1-39. 
25. Tarjan, R.E. and Yannakakis, M., Simple linear-time algorithms to test chordality of graphs, 

test acyclicity of hypergraphs and selectively reduce acyclic hypergraphs, SlAM J. Comput. 13 
(3) (1984) 566-579. 

Rece ived  A u g u s t  1987; revised version received Oc tober  1988 




