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We note too that this represents a fragment of reasoning and 
do not claim it to be the definition of intelligent human or 
machine reasoning. There remain many interesting problems 
yet to be solved completely implementing this fragment and 
there are undoubtedly many more interesting ways to combine 
logic and probability. 
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Cheeseman has made a valuable contribution by compiling 
and articulating so forcefully the merits of probabilistic reason- 
ing vis-8-vis deductive logic. The exposition is, in fact, so 
complete that I suddenly find myself in a strange desire to 
defend logic, a task I have not been trained to do, being myself 
an ardent student of probabilities. 

There are several issues, though. which may help clarify the 
relationship between probabilistic and logical reasoning and 
which, I feel, may have not received full treatment in Cheese- 
man’s paper. I will start.with Cheeseman’s astute observation 
that one of the basic differences between the two modes of rea- 
soning is “the explicit inclusion of conditioning in probability 
assertions” contrasted with the apparent inability of standard 
logic to express context-dependent information, often referred 
to as “monotonicity.” However, despite the obvious perils of 
monotonic logic one should not loose sight of its unique com- 
putational merits, lest one is tempted to irradicate the former 
without preserving the latter. 

The computational merits of monotonic logic can be demon- 
strated by examining the operational difference between the 
logical statement A - B and its probabilistic counterpart 
P(B I A )  = p .  Forgetting for the moment their denotational 
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semantics, the logical statement A - B happened to constitute 
a very attractive, modular unit of computation while the proba- 
bilistic statement P(B I A )  = p is computationally sterile. The 
former grants a permanent license to initiate an action (i.e., 
asserting B )  whenever and wherever the premise A is found 
true in a knowledge base K ,  regardless of other information 
that K might contain and regardless of other actions pending 
execution. The probabilistic statement, on the other hand, is 
procedurally speaking totally impotent; even if we find the 
truth of A firmly established, we still cannot initiate any mean- 
ingful action (e.g., asserting that B deserves a probability p )  
unless we first verify either that K contains only A or that K 
contains no other fact relevant to B .  The first eventuality is rare 
and uninteresting while the second must await verification of 
relevancies over the entire database. 

Thus, unlike Cheeseman, I do not believe that logicians’ 
preoccupation with truth functionals is motivated by blind 
adherence to the notion of absolute truth as opposed to subjec- 
tive or context-dependent truth. Rather, I submit that it is these 
computational merits that have enticed logicians, from Aris- 
totle to Boole and Turing, knowingly or unknowingly, to pro- 
pose logic as a mechanism capturing human thought. It is the 
hopes of realizing these same merits, while equipping logic 
with context-sensitive features, that keep the logicist school of 
AI reluctant to accept probabilities. 
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Admittedly, probability theory does offer a powerful lan- 
guage for expressing context-dependent beliefs. For example, 
it can easily express the fact that the belief in “Tweety can 
fly” should go way down upon hearing that, beside being a 
bird, Tweety is also broiled. We simply make sure that P(fly I 
bird, broiled) ends up much lower than P(fly 1 bird). But this 
enhanced expressiveness has a price tag to it: It behooves us to 
first search the database for all facts known about Tweety 
before we can begin to guess whether Tweety can fly. More 
seriously, it essentially behooves us to examine every fact in 
the database, regardless of its relation to Tweety’s flying, for 
example, “Tweety is white” and “the year is 1987,” etc. For, 
how can we tell in advance that the year count is irfelevant to 
Tweety’s flying before actually computing P(fly I bird, 1987) 
and finding it equal to P(fly I bird)? And once we verify the 
irrelevancy of the date 1987, can we remain sure that it stays 
irrelevant even after observing Tweety’s color? Relevancies 
are often created and destroyed by new facts. True, probability 
theory does allow us to express all these conditions, but it does 
not exempt us from having to test them again and again, each 
time new data amves, because the theory does not teach us 
how to compute P(A I B, C) from P(A I B )  and P(A I C); the 
three quantities can have arbitrary values. Thus, unless we 
learn to efficiently encode knowledge about context, relevan- 
cies and dependencies, merely replacing logic with probabil- 
ities would only tax US with the burden of having to enumerate 
all conceivable contexts. This brings me to the central issue of 
my comment, the encoding of information about context, since 
the current dispute among logicists centers around this same 
issue. 

The need to encode relevance information has been recog- 
nized even by pure logicians. Even though knowledge in logic 
is expressed as a set of unordered, unconnected sentences, 
researchers have found it advantages to group related facts into 
structures, such as frames and networks. These structures lead 
to efficient inference algorithms, because all the information 
required to perform an inference task generally lies in the 
vicinity of the propositions involved in the task, and is readily 
reachable from a common place. However, as long as we deal 
with monotonic logic, these organizational structures can be 
viewed as merely efficient indexing schemes for retrieval of 
logical formulas, with no semantic significance of their own. 

Things change as soon as nonmonotonic features are intro- 
duced. Here, it becomes an essential part of the semantics to 
delineate or circumscribe the scope of relevance of facts and 
predicates, because different scopes yield different conclu- 
sions. While some logicians insist that these circumscriptions, 
too, should be expressed symbolically as logical sentences, 
others resign to indexing schemes which are embedded in pro- 
cedural codes. Typical examples are truth-maintenance sys- 
tems; they work synergetically with logic-based reasoners but 
are outside the logic itself. McDermott’s critique of pure logic 
expresses disappointment with the former approach and advo- 
cates, instead, the latter. It is far from dooming AI to proce- 
dural ad hocery. On the contrary, the formalist and procedural- 
ist schools of logic will eventually converge. The formalists 
will explicate the semantics behind powerful procedures devel- 
oped by the proceduralists (e.g., see Reiter and de Kleer 
(1987)) and the latter, in turn, will learn to embed promising 
logical formalisms (e.g., default, circumscription) in efficient 
structures and programs. 

Where does this leave the probabilists? While the logicist 
camp is running frenzy with fancy procedures and clumsy 

semantics, the probabilists are advertizing powerful semantics 
void of procedures. Moreover, many probabilists seem preoc- 
cupied with fine semantic elaborations, while ignoring proce- 
dural fitness. To be more specific, I submit that the potentials 
latent in probability theory will not be realized by quibling 
over issues such as maximum-entropy , confidence intervals, 
probabilities of probabilities, fuzziness vs. uncertainty, etc. 
These are worthwhile refinements but they aim at further 
increasing the expressive power of probabilistic statements at 
the time when such statements already are too expressive, con- 
sidering the proceduml tools available. For example, we don’t 
even have efficient schemes for indexing and manipulating the 
rich spectrum of contexts that can be circumscribed by straight 
Bayesian conditioning, let alone non-Bayesian elaborations. 

I believe Cheeseman is mistaken in assuming that McDer- 
mott’s critique would move logicists to embrace probability 
theory. I would certainly urge logicists to examine whether 
probabilistic semantics could resolve some of the predicaments 
created by nonmonotonicity , namely, examine if the reasons 
such predicaments do not appear in probability theory can be 
translated into useful refinements of existing logical formal- 
isms. The Yale Shooting problem discussed in the Appendix 
can provide a test-bed for such examination. However, I would 
be surprised if they take my suggestion seriously before proba- 
bilists learn to backup the expressive power of their language 
with useful procedural facilities. 

Positive steps in this directions involve the development of 
probabilistically sound nonmonotonic logics (Pearl 1987~;  
Geffner and Pearl 1987), the studies of Bayesian networks 
(Pearl 1986), qualitative Markov trees (Shenoy and Shafer 
1986), Markov fields (Geman and Geman 1984), and their 
axiomatic characterization-the theory of graphoids (Pearl and 
Paz 1986; Pearl 19876). The basic assumption is that, not only 
can one assign probabilistic semantics to context dependencies 
such as those found in plausible reasoning, but it is also pos- 
sible to organize this intricate fabric of contexts in graphical 
forms, thus facilitating efficient indexing and inferencing. 

After all, the manipulation of context information is not 
entirely foreign to probability theory-the “mother tongue” of 
context-dependent languages. In fact, the very essence of the 
multiplication axiom 

is to assert that beliefs established under the context { e }  and 
those adopted under an enriched context { Q, e }  are not arbi- 
trary but must obey reasonable rules of coherence. These rules 
translate into axioms defining what it means to say: “context Z 
tells me all I need to know about x” and how Z can expand and 
contract in light of new facts. These axioms also define when 
the set of relevant contexts can be indexed in graphical forms 
so that, when we need to ascertain beliefs about x ,  we should 
examine only the graph neighborhood Z of x .  The net result is 
that probabilistic statements such as P(x 12) = p suddenly 
acquire operational meaning as well; if Z is the graph neigh- 
borhood of x ,  then truth values found in Z (and, to a certain 
degree, also probability measures on 2) do provide the license 
needed to make definite assertions about the belief in x (see 
Appendix). 

Unlike parallel developments in the logicist camp, imple- 
mentations of these graphical indexing schemes have so far not 
reached a level of complexity to seriously challenge the endur- 
ance of their semantic coherence. Bayesian networks, although 
they provide an effective tool for handling diagnosis problems 
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(Andreasen et al. 1987), have only been used in tasks where 
the nodes represent preestablished propositional variables and 
the arcs represent either causal or frame-slots relationships. 

At the same time, the theory of graphoids has been sprouting 
results reaching beyond probabilistic reasoning, toward the 
logical approach. It turns out that logical notions of depen- 
dence and relevance can also be given graphical representa- 
tions that faithfully preserve their semantics (Pearl and Verma 
1987). Simultaneously, new logics are being developed which 
embody the probabilistic notions of “almost all” and context 
dependence in qualitative terms and deductive inference rules 
(Pearl 1 9 8 7 ~ ;  Geffner and Pearl 1987). It will be ironic if this 
work-originally inspired to manage probabilistic informa- 
tion-helps mend the schism within the logicist camp before 
facilitating the proceduralization of probabilities. 

Appendix. A probabilistic treatment of the Yale Shooting 
problem 

The so-called “Yale Shooting” problem (Hanks and 
McDermott 1986) is regarded as the fuse that triggered 
McDermott’s recent disenchantment with the logicist program. 
The purpose of including a Probabilistic treatment of the prob- 
lem in this arena is three-fold: 

1. To focus the logicists -probabilists debate on a concrete 
example. 

2. To convince logicists that probability theory has more to it 
than number crunching. Taken as a logic for manipulating con- 
texts, probability theory provides a powerful methodology for 
constructing sound qualitative arguments. 

3. To convince probabilists that probability theory is insuffi- 
cient for handling commonsense reasoning. It can overcome 
some of the hurdles faced by the logicist approach only upon 
invoking the auxiliary notions of causation and relevance, in 
their appropriate probabilistic interpretations. 

A simplified version of the Yale Shooting episode goes like 
this: suppose you load a gun at time t , ,  wait for a while, then 
shoot someone at time t2 .  The shooting is supposed to make the 
victim dead at time t3, despite the normal tendency of “alive at 
t2” to persist over long time periods. Yet, surprisingly, the 
logical formulation of the episode relveals an alternative, per- 
fectly symmetrical version of reality, whereby the persistence 
of “alive” is retained while the persistence of “loaded” is 
interrupted, yielding the unintended conclusion that the victim 
is alive at time 4. The question is what information people 
extract from the story that makes them prefer the persistence of 
“loaded” over the persistence of “alive.” 

The analysis of the shooting episode will be facilitated by the 
following definitions: LD, = the gun is loaded at time t,; 
LD, = the gun is loaded at time t,; AL, = the victim is alive 
at time t,; AL, = the victim is alive at time t3 ;  and SH, = you 
shoot the gun (i.e., pull the trigger) at time t2. 

The story contains three known facts LD,, AL,, and SH,, 
and the problem is to infer the truth of i A L ,  (and LD,). 
Domain knowledge is give by four default rules: 

d,: LD, - LD2 
d2: AL, - AL3 
d3: AL, A SH2 A LD2 - l A L 3  
d4: AL2 A SH, A i L D 2  - AL3 

rule d,, for example, states that under normal circumstances a 
gun is expected to remain loaded, while dz asserts the natural 

tendency of life to persist over time. These rules can be given 
the following probabilistic interpretation: 

d:: P(LD, I LD,) = high = 1 - e l  
d;: P(AL, I AL,) = high = 1 - E ,  

d:: P(AL3 I AL2, SH2, LD,) = low = E,  
di: P(AL3 I AL2, SH2, LD,) = high = 1 - c4 

where the E ’ S  are small positive quantities whose exact values 
turn out to be insignificant. 

Our task i s t o  use these inputs to derive the conclusion that, 
given the stated facts {LD,, AL,, SH,}, the victim is unlikely 
to remain alive at 4, namely, 

[l] P(AL3 1 LD,, AL,, SHJ = low 

Unlike their logicist colltpgues, probabilists can discover 
immediately that the information given does not specify a com- 
plete probabilistic model and, so, is insufficient for deriving 
the intended conclusion [ 11 nor its negation. Moreover, the 
assumptions needed for completing the model can be identified 
and given precise formulation within the language of condi- 
tional probabilities. 

Since the context of [l] differs from that of d l ,  the natural 
step is to refine the former by conditioning over the two pos- 
sible states of LD2: 

[2] P(AL3 I LDI, AL2, SH2) 
= P(AL3 1 LD2, LD,, AL2, SH2) 

+ P(AL3 I 1 L D 2 ,  LD,, AL,, SH,) 
x P( i L D ,  I LD,, AL,, SH,) 

X P(LD2 I LDi, AL2, SH2) 

Clearly, to be able to use the given default rules, the first and 
last term in [2] must undergo the following two transforma- 
tions of context: 

[3] P(AL3 I LD2, LDi, AL2, SH2) 

= P(AL3 I LD,, AL,, SH,) = e3 

[4] P ( i L D 2  I LDI, AL2, SH,) = P(-1LD2 I LD,) = E ,  

The first states that the effect of the shooting depends only on 
the state of the gun at the time t2 ,  not on its previous history. 
The second asserts that the truths of AL, and SH, do not dimin- 
ish the likelihood of the gun to remain loaded at t,, given that it 
is loaded at t , .  

Assuming that [3] and [4] are permissible (justification will 
follow), the desired conclusion [I]  is obtained immediately. 
Substituting [3] and [4] in [2] yields 

P(AL3 I LDI, AL2, SH2) 
= €3 (1 - E , )  + P(AL3 I 1 L D 2 ,  LD1, AL2, SH2)€1 
I €3 + € 1  

= low 
which confirms [l]. 

One can easily imagine situations where [3] or [4] are vio- 
lated, e.g., that the gun user is known to be an extra cautious 
individual and would not pull the trigger (SH,) before making 
sure that the gun is unloaded at f,. However, the main point is 
not to invent fanciful violations of expectation but rather to for- 
mulate the general principles which govern our normal expec- 
tation. In other words, what general principles allow us to posit 
the validity of [3] and [4], while rejecting the alternative yet 
symmetrical assumption: 

[5] P(AL3 I LD,, AL2, SHJ = P(AL3 I AL,) = 1 - €2 
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reflecting the persistence of life under all conditions. Such 
principles have not been explicated in the probabilistic litera- 
ture, where it is often assumed that all conditional probabilities 
are either available or derivable from a complete distribution 
function. 

Cast in probabilistic terms, three such principles can be iden- 
tified: 

*P-1: Propositions not mentioned explicitly in the default 
rules represent possibilities which are summarized in the 
numerical values of the probabilities involved; e.g., the possi- 
bility that someone has emptied the gun between r, and I, is 
summarized by el.  

.P-2: Dependencies not mentioned explicitly are presumed 
to be independencies (provided they are consistent with men- 
tioned dependencies); e.g., AL, is presumed to be condition- 
ally independent of LDI, given LD2, AL, and SH, (thus 
justifying [ 3 ] ) ,  because no direct influence between LD, and 
AL, is given explicitly. However, the two cannot be assumed 
to be unconditionally independent; that will violate the 
dependencies embodied in d, and d,. 

.P-3: The directionality of the default rules is presumed to 
represent a causal srructure. Probabilistically interpreted, this 
means that there exists some total order-of the propositions in 
the system, consistent with the orientation of the default rules, 
such that propositions mentioned as direct justifications (ante- 
cedents) of an event E render E conditionally independent of 
all its predecessors in 0. 0 can be thought of as a temporal pre- 
cedence, along which the present is presumed to be sufficiently 
detailed to render the future independent of the past. However, 
an identical interpretation also applies to nontemporal hier- 
archies of property inheritance. 

This latter pinciple has far reaching ramifications, stemming 
from the logic of conditional independence (Pearl and Verma 
1987). One of its corollaries is that the existence of one order- 
ing 6’ satisfying the independence conditions of P-3 guarantees 
that the conditions are satisfied in every ordering consistent 
with the orientation of the rules. In other words, we do not 
have to know the actual chronological order of events in the 
system; given the truth of all propositions mentioned as antece- 
dents of event E, the probability that E will materialize is not 
affected by any other proposition in the system except, of 
course, by E‘s own consequences. For example, LD, is pre- 
sumed to be independent of AL, and SH2, given LDI, because 
LD, is mentioned as the only cause (justification) of LD, while 
AL, and SH, are not mentioned as consequences of LD,. On 
the other hand, AL, is not independent of SH, given AL,, 
because SH, is explicitly mentioned as a direct cause of 
i A L ,  in rule d3. Thus, the transformations 131 and [4] are 
licensed by principles P-1 to P-3 while [5] is rejected. 

Concluding dialogue 
Logicist: I am quite intrigued by the P ( .  I . ) notation you 

employ to keep track of varying contexts, it reminds me of 
how TMS’s keep track of justifications. But, going down 
to the bottom of things, what really makes your system 
prefer the persistence of “loaded” over the persistence of 
“alive”? 

Probabilist: My system hates to interrupt the persistence of life 
in much the same way that it tries to minimize all abnor- 
mal events. But, as YOU well know, simply minimizing the 
number of abnormal events is a bad policy; what needs to 
be minimized is conditional abnormality, namely, abnor- 

mality in the context of all known facts. Under normal 
circumstances, clipping one’s life is indeed abnormal. But 
we are not dealing here with normal circumstances 
because two input facts are known to have occurred 
“shoot” and “gun loaded at fl,” and there is no rule 
stating that life tends to persist in this, more refined 
context. 

Logicist: But circumstances are hardly ever “normal”; in the 
course of any reasoning activity we are always going to 
have new facts floating around that were not explicitly 
spelled out by the rules. How do you ever get to use any of 
the rules if its specified context does not match exactly the 
context created by all the new facts. 

Probabilist: I have the logic of probilistic independence here to 
help me. It permits me to identify and prune away irrele- 
vant facts from the current context so as to match it with 
the context specified by the rules. This is how I managed 
to show that “shoot” is irrelevant to the persistence of 
“loaded” ([4]). I could not show, though, that “shoot” 
is irrelevant to the persistence of “alive” because the rules 
(e.g., d,) tell me that “shoot” is capable (together with 
“loaded”) of interfering with “alive.” 

Logicist: I meant to ask you about this biased treatment. The 
rules also tell you that “shoot” is capable (together with 
other facts) of interfering with “loaded”; if we find the 
victim alive at t3 then, by virtue of knowing “shoot,” we 
can conclude “unloaded.” Thus, it seems to me that, con- 
trary to [4], “shoot” and “loaded” are not entirely inde- 
pendent. Now, since we have no rule stating that guns 
tend to remain loaded under contexts involving “shoot,” 
shouldn’t the persistence of “loaded” be questioned by 
the way the persistence of “alive” was? 

Probabilist: Here is where causality comes in as yet another 
information source about relevancies. Writing rule d3 with 
“shoot” and “loaded” as antecedents makes me assume 
that the two are causally affecting “alive.” Now, we have 
strict laws of how to interpret causal information in terms 
of independence relations. One of these laws tells us that 
an event with no antecedents is independent of all other 
events except its own consequences. This means that 
“shoot” and “loaded” are independent events while 
“shoot” and “alive” are not. (It would be worthwhile if 
you could spend a few minutes examining the logic of 
causal-dependencies (Pearl and Verma 1987); it is really 
quite simple.) 

Logicist: You mean to tell me that you draw all causal infor- 
mation from the directions of the rules? This means that 
they must be acyclic and that I have to be very careful 
about using contraposition. 

Probabilist: I would much rather extract causal information 
directly from temporal precedence, like you folks are 
doing; it would make things much easier for me. But if 
temporal information is not available, I rely on the direc- 
tionality of the rules, as most people would do, and then, 
yes, one must be careful. For example, had you written 
mle d, in its contrapositive form 

without warning me that the new rule now conveys diag- 
nostic rather than causal information, I would be led to 
believe that “shoot” has some causal influence over 
“loaded.” Moreover, finding no arrows from “shoot”’ to 
“alive,” I would also conclude that “shoot” and “alive” 
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are independent events, i.e., “shoot” being incapable of 
clipping “alive. ” 

Logicist: When you come down to it, the reason you ruled out 
“shoot” as a potential interference with “loaded” is 
because the two interact only if the victim was seen alive 
at r, and one of your independence laws says that interac- 
tions mediated via unconfirmed future events can be dis- 
counted. Isn’t this equivalent to Shoham’s scheme of 
“chronological ignorance” (Shoham 1986) whereby one 
sweeps forward in time and minimizes the number of 
abnormal events while ignoring, as much as possible, the 
effect of future events. 

Probabilist: Yes. The right to ignore unconfirmed future 
events is definitely a common feature of both schemes, but 
I am not sure at this point whether “chronological ignor- 
ance” captures all the context transformations licensed by 
the probabilistic interpretation of causality; the latter also 
teaches us how to manage facts that can’t be ignored by 
chronological considerations. Nevertheless, the logic of 
probabilistic independence does give Shoham’s scheme its 
operational and probabilistic legitimacy. 
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I find Peter Cheeseman’s analysis interesting and accurate, 
although perhaps incomplete. In this short response to his 
essay I would like to reiterate some points and raise some new 
ones, and to focus on some problems of induction that need 
more than probability updating. 

Artificial intelligence needs belief gradation. While com- 
plete knowledge of an AI domain might obviate gradation, 
most interesting problems are inherently unsure. Even when all 
the information is theoretically available (e.g., in chess), 
resource constraints and exponential complexity demand 
approximation. Real-world environments are typically so com- 
plex that programs must compress data and, unfortunately, 
some of the lost information may be unpredictably relevant. 
Numerous stages of compressed data, summary descriptions, 
and approximate algorithms all add to the uncertainty of 
derived hypotheses. 

Uncertainty implies gradation in hypothesis credibility or 
belief (see, e.g., Zadeh 1965; Watanabe 1969). As Peter 
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states, desirable properties of a belief measure lead to the 
axioms of probability. If we want to optimize performance, 
any other approach either is equivalent to probability or else is 
inferior to it (Horvitz et al. 1986). Since real-world environ- 
ments are inherently complex, uncertain, and dynamic, and 
since AI workers are striving for real-world capability, proba- 
bility has become more prominent (e.g., see Gale et al. 1986; 
Proceedings 1987). 

Representing and updating probability are particularly 
important in machine learning. Inductive systems that ignore 
probability have been limited and ad hoc; systems that exploit 
probability tend to be fast, accurate, and extensible (e.g., see 
Quinlan 1983; Breiman et al. 1984; Rendell 1986). 

Probability is relevant in concept learning. While concept 
have been expressed as logical descriptions of classes, a con- 
cept can be considered as a function over some feature space. 
When learning involves dynamic and uncertain environments, 
the function should not be Boolean but rather graded (see 




