
edundancies i s’

Avi Dechter
Department of Management Science

California State University, Northridge, CA 9 1330
and

Cognitive Systems Laboratory
Computer Science Department

University of California, Los Angeles, CA 90024

The removal of inconsistencies from the problem’s representation,
which has been emphasized as a means of improving the performance
of backhacking algorithms in solving constraint satisfaction prob-
lems, increases the amount of redundancy in the problem. In this
paper we argue that some solution methods might actually benefit
from using an opposing strategy, namely, the removal of redundan-
cies from the representation. We present various ways in which
redundancies may be identified. In particular, we show how the
path-consistency method, developed for removing inconsistencies can
be reversed for the purpose of identifying redundancies, and discuss
the ways in which redundancy removal can be beneficial in solving
constraint satisfaction problems.

A binary Constraint Satisfaction Problem (CSP) is concerned
with the task of finding either one or all of the n-tuples
allowed by a given network of binary constraints (or finding
that no such n-tuple exists).

A network R of binary constraints defined on a set of
variables @I, . . . ,XJ is a set of relations Wij from every
variable Xi to every variable Xj. A network of constraints R
represents a unique (possibly empty) n-ax-y relation p (i.e., a
subset of the space X = dom (Xl) x * * * x dom (X,), where
abm(Xi) denotes the domain of Xi) such that an n-tuple t is
allowed by p if and only if its projections on all the uni-
dimensional and two-dimensional subspaces of X simultane-
ously satisfy the binary constraints of the network R.

A constraint graph corresponding to a network of con-
straints consists of a vertex for each variable and an edge for
each binary constraint which is not the universal constraint
(i.e., comprising the entire subspace).

CSPs are inherently difficult problems to solve and
typically are solved using some sort of a backtracking search
algorithm. The issue of improving the performance of these
algorithms has been on the agenda of researchers in Artificial
Intelligence for quite some time (e.g., [Gaschnigl979, Maral-
ick1980, Bruynooghel9811 , as many AI tasks can be forrnu-
lated as CSPs (e.g., line-drawing analysis [Waltz19751 and
reasoning about temporal intervals [Allen19851). Observing
that there are possibly many equivalent network representa-
tions of a given n-ary relation p, attempts were made at
finding ways for moving from some initial representation to
one which is better suited to be solved by backtracking. A
central tieme in the litemture on this sarbjec~ is that of the
benefit of removing local inconsistencies from the problem’s

1 This work was supported in part by the National Science l%urdati.
Grant #lXR 8501234, and by the Cdifomia State University, Northridge.

Artificial Intelligence Center
Hughes Research Laboratories, Calabasas, CA 91302

and
Cognitive Systems Laboratory
Computer Science Department

University of California, Los Angeles, CA 90024

representation. Such inconsistencies may be discovd either
prior to, QP during,
Dechterl986b].

An inconsistency, in general, is a state of affairs where
a certain action (i.e., instantiating a variable to a certain value
during backtracking) is permitted by one piece of data (con-
sidered in isolation), and prohibited by another. If the data
permitting the action is consulted first, then the algorithm
might expand much work based on the assumption that the
particular action is globally permitted only to discover later
that this assumption if false. An inconsistency, once
discovered, is eliminated by recording the fact that the action
is not permitted.

The removal of an inconsistency results in a redun-
dancy in the database, namely, a situation whereby the fact
that an action is prohibited is expressed by more than one
piece of data. Excessive redundancy in the data has its own
potential adverse effects on our ability to solve the problem
efficiently. First, it often increases the amount of data that has
to be stored, and second, it tends to obscure any special struc-
ture the problem might have, and which may be exploited by
the solution procedure. Of particular importance is the copr-
nective structure of the constraint graph, which strongly
affects to the tractability of the problem. The strength of the
relationships between the connective structure of the con-
straint network and the complexity of it solution is most
vividly demonstrated by Freuder’s Fpeuder1982] conditions
for backtrack-free search. in particular, he shows that if the
constraint graph forms a tree, then backtrack-free search can
be guaranteed (by performing minor pre-processing).

Thus, if the problem already has some desirable struc-
ture, then it might be beneficial to modify the process of
obtaining consistency so that the structure is preserved. I?
ermore, by eliminating certain types of redundancies, while
adding inconsistencies, it may be possible to bring about an
improvement in the representation of the problem.

This paper is concerned with issue manipulating the
representation of a given CSP by identifying redundant con-
straints, namely, constraints whose removal from the network,
while changing the connective structure of the problem, does
n0t affect the set of solutions p.

works of constraints relies on a distinction that can
between the direct co int Rig between tW0

d~~~ernby~~~
can be thcbught Qf

Dechter and Decker 105

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.
TECHNICAL REPORT

R-81

relation consisting of all the instantiations of the variable-pair
(Xi, Xi) which are consistent with some subset of the other
constraints. The intersection of all the constraints induced on
(Xi, Xi>, i.e., the constraint induced by all the constraints
except the directsonstraint, is called the network-induced con-
straint, denoted Rij.
is the intersection

The global constraint between Xi and Xj
of the direct and the network-induced con-

straints.

An inconsistency in a constraint occurs when some
pair of values is permitted by (i.e., is part of) the direct con-
straint between two variables but prohibited by their network-
induced constraint. An inconsistency can be eliminated by
simply erasing the value-pair from the direct constraint
between the variables. Clearly, such a change does not alter
the set of all solutions in any way. When none of its pairs are
inconsistent with the network-induced constraint, a direct con-
straint is said to be explicit.

Definition A direct constraint Rij is said to be explicit
if the remainder of the network does not add any further res-
triction_s on the global constraint between Xi and Xi, i.e., if
Rij E; Rij.

A pair of values is permitted by an explicit constraint
if, and only if, it is part of at least one solution. Montanary
[Montanaril974] has shown that if a relation can be
represented by a binary network of constraints then there is a
unique representation where all the constraints are explicit,
called the minimal network of constraints.

In contrast, redundancy in a constraint occurs when a
pair of values which is prohibited by the network-induced
constraint is also prohibited by (i.e., absent from) the direct
constraint between two variables. A redundancy is eliminated
by adding the pair to the direct constraint. This change, too,
cannot have any effect on the set of all solutions.

Of special interest is the case where all the pairs that
are prohibited by direct constraint are already prohibited by
the induced constraint. In this case the entire constraint is said
to be redundant.

JMnition: A direct constraint Rii is said to be redun-
dant if it does not add any further Bstrrctions on the global
constraint between Xi and Xi, i.e., if RG s Rij.

Improving the representati0n of a CSB involves two
types of operations: (1) Eliminating inconsistencies and mak-
ing each constraint as explicit as possible, and (2) Eliminating
redundancies by identifying and removing redundant con-
straints. Although these operations represent two opposing
objectives they are, in large part, orthogonal to each other.
First, a constraint which is redundant will never become non-
redundant as a result of making any other constraint more
explicit, because this can possibly only tighten the network-
induced constraint and thus make the constraint more redun-
dant. Second, a constraint can never become less explicit as a
result of the removal of another, redundant, constraint since
this can possibly only loosen the induced constraint and make
the constraint even more explicit.

It is clear that in the “ideal” representation of a CSP
the constraint between any two variables should be either
explicit or universal (i.e., non-existing). Such networks of
constraints are called U-minimal.

efinition: A network of constraints for which a sub-
set U of constraints are universal and all other constraints are
explicit is said to be U-minimal.

The properties of U-minimal networks are discussed in
[Dechterl986a]. The task of obtaining a U-minimal represen-
tation of a given network of constraints is as illusive as that of
finding the minimal network of constraints because it requires
the knowledge of the network-induced constraint for all pairs
of variables. For the same reason, the task of deciding
whether a given constraint is redundant or not is a difficult
one. An approximate method, based on the notion of path-
consistency is presented in the following section.

Montanary suggested that the minimal network of constraints
may be approximated by replacing the requirement that each
constraint be explicit by a weaker condition, called path con-
sistency.

efinition: A pair of values (Xi, Xi) is said to be
allowed by a path of length m through nodes
(vi=vkosvkl 9 - - * 9 Vk-, 9 Vk=Vj) if there is a sequence of
values (zr,zz; . . . ,2,-r) such that

All redundancies associated with a redundant con-
straint are eliminated by simply removing the entire constraint
from the network.

Rkokl(~irZl) mdRk,k,(zl,z2) ad* * * ~dR~,_,~(zm-l,xj) -

efinition: A nair of values (x;. x;) which is allowed
The defmitions of explicit and redundant constraints

are given graphical representation in the Venn diagrams of
Figure 1. Observe that a constraint can be explicit and redun-
dant at the same time. In this case the direct constraint and the
network-induced constraints coincide.

by every path from &de Vi to node’ vj & the complete net-
work R is called path-induced. Otherwise, it is called path-
illegal

Definition: A binary constraint Rij is said to be path-
consistent if all of its pairs are path-induced. A network of
constraints R is path-consistent if all of its constraints are path

The requirement of a constraint being path-consistent

cd b3 consistent.

is weaker than that of being explicit because every explicit
constramt must be path-consistent, but not every path-
consistent constraint is necessarily explicit.

(a) Explicit constnint 0 -t
Montanary showed that a pair of values is path-

induced if, and only if, it is allowed by all paths of length
m=2. Path consistency algorithms repeatedly check all paths

Figure 1: Explicit and Redundant Constraints
of length ppl=2 and remove all path-illegal pairs until no such
pairs remain [Montanaril974, Mackworthl977].

106 Automated Reasoning

The task of recognizing all the redundant constraints in
a network can be approximated by replacing redundancy with
a stronger requirement called path-redundancy.

tion Rii by pairs that are found to be path-illegal. If this aug-
mentatlon process results with the constraint becoming the
universal constraint, then the original constraint is redundant.

efinition: A constraint Rij is
path-induced pair is already perrmtted

path-redundant
by it.

if every

The condition of a constraint being path-redundant is
stronger than that of being redundant, since every path-
redundant constraint must be redundant, but not every redun-
dant constraint is necessarily path-redundant.

The definitions of path-consistency and path-
redundancy, and their relationships to those of consistency and
redundancy are shown graphically in Figure 2. As the
diagrams show, a path-consistent constraint is not necessarily
explicit, but a path-redundant constraint must be redundant.

(a) Path-Consistent Constraint (b) Path-Redundant Constraint

Figure 2: Path-Consistent and Path-Redundant Constraints

A convenient way to check whether a given constraint
is path-redundant or not is to consider a set of value-pairs
which is guaranteed to contain the path-induced constraint (for
example, the Cartesian product of the domains of the two vari-
ables involved), and to check the path-legality status of each
pair of this set which is not in the direct constraint. The direct
constraint is path-redundant if, and only if, all such pairs are
path-illegal. This process is, essentially, the reverse of achiev-
ing path-consistency, since it can be thought of as the process
of adding path-illegal pairs to the direct constraint in an
attempt to make it universal. If this attempt is successful, then
the constraint is redundant.

An algorithm for determining whether a constraint Rij
is path-redundant is given bellow. The algorithm returns bp~
if the constraint is path-redundant and false otherwise.

begin
= dom(Xi) x dom(Xj)

- Rii
for each $ E Q-’

@I, (i, j), k) let Rij = Rij U {Pa)
end
if Rij

end
= Uij return &sue

return false
end

begin
EWMIWp, (i,j), k)

let & be the domain of Xk
let p be (pi, Pj>
forallv E Dk

if (pi, V) E Rik and (V, Pi) E Rkj return true
end
return false

end

n is the number of variables.

all legal values of
is found consistent

IT is 0 (k), where k
variable. The com-

erefore, 0 (nk3) where

The status of being redundant, for a given constraint, is
dependent on the other constraints in the network, and any
change in the network may tiect this status. In particular, the
removal of one redundant constraint, while not the
set of solutions, may cause other redundant c
become non-redundant. Therefore, a set of constraints whiz
are found to be path-redundant in a given network, may not be
removed simultaneously, but rather in sequence, where the
path-redundancy of the constraints in the set needs to & re-
examined after the removal of each one them. Constraints
that were non-redundant to start with, or that became non-
redundant in the process, need not be checked again as they
cannot become redundant again. The number of constraints
that can be removed in this way is dependent on the sequence
in which they are considered.

To demonstrate, we considered the task of removing
path-redundant constraints from a CSP representation of the
Z-queen problem. The task in this problem is to place 5
queens on a 5x5 chessboard so that no queen is on the same
row, column, or diagonal as any other. A standard f0rmula-
tion of this problem as a binary CSP associates a variable wi
each r0w (e.g., variables A, B, C, D, and E), each of whit
may be assigned one of five values (say, a, b, c, d, and
corresponding to the columns. There is a constraint between
every pair of variables (for a total of ten constraints), con
ing of all pairs of values which are not in direct conflict.
constraint graph of this formulation is the complete graph
shown in Figure 3(a).

We fist performed path consistency on this problem

method with two different orderings are shown in Figures 3(b)
and 3(c).

The procedure PER @.A (i, j), k) (given below)
returns true if the the pairp is permitted for the variable pair
(Xi, X*) by the path (i-k-j), and f&e (i.e.9 the p&p is path-
illegab otherwise. Thus, the algorithm examines all the paths
of length 2 anchored at nodes i and j, and augments the rela-

When the removal of any constraint in some set of
redundant constraints does not diminish the redundancy of any
of the other constraints in the set, we say that they are all
independently redundant.
path-consistency resu
that were universal in

Dechter and Dechter 107

constraints are independently redundant since their simultane-
ous removal will not affect the solution set. Notice, however,
that while these constraints are redundant, they are not neces-
sarily path-redundant, and thus the algorithm PATH-

EDUNDANT is not guaranteed to recognize their redun-
dancy.

On the other hand it is easy to see that a set of path-
redundant constraints which are not adjacent to one another,
i.e., no two of them share a common variable, are indepen-
dently path-redundant. This is so because only paths of length

C D
(a)

A A

B E B E

(d

Figure 3: Redundancy removal in the S-Queen Problem

M = 2 are used to determine the path redundancy of a con-
straint.

The property of a set of constraints being indepen-
dently redundant is desirable because it alleviates the need to
search among all possible ordering of the constraints for some
subset of them that may be removed.

e Use of Redundancy Ellimination
in Problem Solving

Elimination of redundant constraints is expected to be
beneficial for solution methods that rely on the connective
structure of the problem as depicted by its constraint graph.

Backtracking algorithms benefit from consulting the
constraint graph in two ways. First, it provides a simple way
of backjumping [Gaschnigl979, Dxhterl986b]. Backjump-
ing is an improvement of standard backtracking whereby, at a
deadend, the algorithm goes back to the 8rst variable which
could be the “reason” for the deadend (rather than to previ-
ous variable in the stack, as called for by standard backtrack-
ing). A variable which is not connected (directly or
indirectly) to the deadend variable cannot possibly be the
source of the deadend, and thus it is always safe to jump back
to the first available variable which is connected to the
deadend variable while pruning the search tree.

Second, consulting the constraint graph can reduce the
amount of work required for the expansion of nodes in the
search tree. This is so, because no consistency checks are
re@ed between the node being expanded and nodes with
which it is not directly connected.

Wilizing these features has resulted in substantial
improvements in backtracking performance. The amount of
improvement was directly related to the sparseness of the con-
straint graph [Dechterl986b]. Thus, the removal of redundant
constraints, and, consequently, their corresponding edges in
the constraint graph has a potential for improving the perfor-
mance of backjumping.

As an example, consider the CSP given in Figure 4(a)
consisting of three variables, A, B, and C, all havmg the same
domain {a, b, c). The constraint between the variables B and
C is redundant and may be removed, resulting in the graph of
Figure 4(b).

(a)

Figure 4: A Problem Exhibiting Redundancy

The search performed by a backjumping algorithm which con-
siders the nodes in the order A, B, C is shown in Figure S(a).
If the redundant constraint is removed, then the search is
reduced to that shown in Figure 5(b) because the first
occurrence of a deadend permits jumping back to variable A.

a
aa t-md)
ab (nd)
ac (deadend)

b
ba (deadend)
bb ‘@e&end)

C
ca

cab (solution)

a
aa (deadend)

b
ba (deadcnd)

C
ca

cab (solution)

00 03

Figure 5: Backjumping Search on Figure 4 Problems

Removal of redundant constraints, while potentially
beneficial, generally results in increasing the search space,
which may wipe out its benefits. What is needed, therefore, 1s
a way to identify redundant constraints whose removal will
not cause the search space to increase. This can be accom-
plished by tying the notion of redundancy to the order m
which the backtracking algorithm instantiates the variables.
Eetd=Xi,,..., Xill be an ordering of the variables.

Definition: A constraint Ri,i, is said to be directional-
with respect to d-if its red

considering only paths of len
form (Xi,-Xi,-X4), fm I xnax{j, k}.

108 Automated Reasoning

The removal of a constraint which is directional-nath-
redundant with respect to an ordering which is precisely the
reverse of the order used by a backtracking algorithm, will not
affect the search space explored by the algorithm. To
this is so,

see why
consider a network whose constraint graph is given

in Figure 6:

x4

X3

x2

Xl

Figure 6 - An Ordered Constraint Graph

Suppose that backtrack algorithm considers the variables in
the order Xl, X2 X3, X4. If the constraint RB is redundant
with respect to an ordering d =X4,X3,X2,X1 (i.e., using Xi
alone), then its removal will not cause the algorithm to
develop any more nodes because all the relevant information
of this constraint must be contained in constraints R12 and
R 13, which will be known to the algorithm by the time it gets
to X3. By contrast, if X4 is also needed to establish the redun-
dancy of constraint R23, then the removal of the constraint
may cause the algorithm to consider values of X3 that would
not be considered had it remained in the network.

The notion of directional-path-redundancy has the
additional advantage that all the constraints found to be
directional-path-redundant with resuect to some direction d.
are independently redundant and thus mav be removed simul:
taneously. To prove this, it is enough to ihow that there is an
order by which the constraints can be removed so that the
removal of each constraint cannot possibly interfere with the
directional-path-redundancy of the remaining: constraints. For
d =Xi, 9 . . .&‘Xi-, any order-such that a const&int Ri,i, ,
checked before’.any constraint Ri,i-

k >j, is
111 >I’ if k <m, l& this pro-

. m

perty. To see this, refer back to the network of Figure 5,-and
assume again that d =X4,X3,X2,X1. Further assume that
both constraints RM and RB are directional path-redundant
with respect to d. The removal of constraint R*u cannot DOS-
sibly interfere with the redundancy of R 23 with respect to X 1.

Directional-path-redundancy can be found by slightly
modifying algorithm PATH-WEDUN Am. Applying it
before backjumping may improve its performance and is
guaranteed not to cause it to deteriorate.

Another method that could benefit from removing
redundancy is the cycle-cutset approach mechter 19871.
This method is using the fact that tree-structured CSPs can be
solved in linear time by switching to a specialized tree-
algorithm whenever the set of variables instantiated by a back-
tracking (or a backjumping) algorithm forms a cutset of the
constraint graph. The efficiency of this approach depends of
the sparseness of the constraint graph, and therefore this
method too should perform better if redundant constraints are
removed. For example, consider again the equivalent net-
works of Figure 3. In order to cut all the cycles in the network
of Figure 3(a), a minimum of three variables must be instan-
tiated, but it takes the instantiation of only two variables to cut
all the cycles in the network of Figure 3(b), and only one vari-
able (A or B) to cut all the cycles in Figure 3(c).

Researchers in the area of solving constraint satisfaction prob-
lems have emphasized the advantages of increasing the
amount of redundancy in the network representation of prob-
lems. In this paper we point out that some benefits can be
obtained by removing redundancies. We extend the idea of
path-consistency to enable identifying redundancies and
present some ways in which redundancy elimination is useful.

The authors would like to
earlier version of this paper

thank Judea Pearl for reading an
and for his thoughtful comments.

[Allen1985]Allen, J. F.,
poral Intervals,”

‘ ‘Maintaining Knowledge about Tem-
in Readings in Knowledge Representation,

R. J. Brachman H.J. Levesque, Ed. Los Altos, CA: Morgan
Kaufman Publishers, Inc., 1985, pp. 509-521.

[Bruynooghel981]Bruynooghe, Maurice, “Solving Combina-
torial Search Problems by Intelligent Backtracking,” Infoma-
don Processing Letters, Vol. 12, No. 1, February 1981.

erl986a]Dechter, A. and R. Dechter, “Mnimal Con-
Graphs,” UCLA, Computer Science Departme

nitive Systams Laboratory, Los Angeles, CA, Tech.
74, December, 1986.

pechterl986b]Dechter, R., “Learning While Searching in
Constraint Satisfaction Problems,” in Proceedings
Philadelphia, PA: August, 1986.

-86,

IP>echterl987]Dechter, R. and J. Pearl, “The Cycle-cutset
Method for Improving Search Performance in AI Applica-
tions,” in Proceedings ,the 3rd IEEE Conference on AI Appli-
cations, Orlando, FL: February, 1987, pp. 224-230.

[Freuderl982]Freuder, E.C., ‘“A Suf8cient Condition of
Backtrack-free Search.,” Journal of the ACM, Vol. 29, No. 1,
January 1982, pp. 24-32.

[Gaschnig 1979]Gaschnig, J., ‘ ‘Performance Measurement and
Analysis of Certain Search Algorithms,” Department of Com-
puter Science, Carnegie-Mellon University, Pittsburgh, PA’
Tech. Rep. CMU-CS-79-124,1979.

~aralick1980]Haralick, R. WI. and G.L. Elliot,
Tree Search Efficiency for Constraint Satisfaction
AI Journal, Vol. 14, 1980, pp. 263-313.

“Increasing
Problems,”

[lvlackworthl977]Mackworth, AK., ‘Consistency in Net-
works of Relations,”
1977, pp. 99-118.

Artificial intelligence, Vol. 8, No. 1’

74]IMontanari, U., “Networks of nstraints:
Properties and Applications to Pie: Process-

ing,” Information Science, Vol. 7, 1974, pp. 95-132.

~altzll975]Waltz, D., “Understanding Line
Scenes with Shadows,” in 7%~ &ychology
Vi5ion, P. I-I. Winston, Ed. New York, NY:
Book Company, 1975.

Dechter and Dechter 109

