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The removal of inconsistencies from the problem’s representation, 
which has been emphasized as a means of improving the performance 
of backhacking algorithms in solving constraint satisfaction prob- 
lems, increases the amount of redundancy in the problem. In this 
paper we argue that some solution methods might actually benefit 
from using an opposing strategy, namely, the removal of redundan- 
cies from the representation. We present various ways in which 
redundancies may be identified. In particular, we show how the 
path-consistency method, developed for removing inconsistencies can 
be reversed for the purpose of identifying redundancies, and discuss 
the ways in which redundancy removal can be beneficial in solving 
constraint satisfaction problems. 

A binary Constraint Satisfaction Problem (CSP) is concerned 
with the task of finding either one or all of the n-tuples 
allowed by a given network of binary constraints (or finding 
that no such n-tuple exists). 

A network R of binary constraints defined on a set of 
variables @I, . . . ,XJ is a set of relations Wij from every 
variable Xi to every variable Xj. A network of constraints R 
represents a unique (possibly empty) n-ax-y relation p (i.e., a 
subset of the space X = dom (Xl) x * * * x dom (X,), where 
abm(Xi) denotes the domain of Xi) such that an n-tuple t is 
allowed by p if and only if its projections on all the uni- 
dimensional and two-dimensional subspaces of X simultane- 
ously satisfy the binary constraints of the network R. 

A constraint graph corresponding to a network of con- 
straints consists of a vertex for each variable and an edge for 
each binary constraint which is not the universal constraint 
(i.e., comprising the entire subspace). 

CSPs are inherently difficult problems to solve and 
typically are solved using some sort of a backtracking search 
algorithm. The issue of improving the performance of these 
algorithms has been on the agenda of researchers in Artificial 
Intelligence for quite some time (e.g., [Gaschnigl979, Maral- 
ick1980, Bruynooghel9811 , as many AI tasks can be forrnu- 
lated as CSPs (e.g., line-drawing analysis [Waltz19751 and 
reasoning about temporal intervals [Allen19851 ). Observing 
that there are possibly many equivalent network representa- 
tions of a given n-ary relation p, attempts were made at 
finding ways for moving from some initial representation to 
one which is better suited to be solved by backtracking. A 
central tieme in the litemture on this sarbjec~ is that of the 
benefit of removing local inconsistencies from the problem’s 
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representation. Such inconsistencies may be discovd either 
prior to, QP during, 
Dechterl986b]. 

An inconsistency, in general, is a state of affairs where 
a certain action (i.e., instantiating a variable to a certain value 
during backtracking) is permitted by one piece of data (con- 
sidered in isolation), and prohibited by another. If the data 
permitting the action is consulted first, then the algorithm 
might expand much work based on the assumption that the 
particular action is globally permitted only to discover later 
that this assumption if false. An inconsistency, once 
discovered, is eliminated by recording the fact that the action 
is not permitted. 

The removal of an inconsistency results in a redun- 
dancy in the database, namely, a situation whereby the fact 
that an action is prohibited is expressed by more than one 
piece of data. Excessive redundancy in the data has its own 
potential adverse effects on our ability to solve the problem 
efficiently. First, it often increases the amount of data that has 
to be stored, and second, it tends to obscure any special struc- 
ture the problem might have, and which may be exploited by 
the solution procedure. Of particular importance is the copr- 
nective structure of the constraint graph, which strongly 
affects to the tractability of the problem. The strength of the 
relationships between the connective structure of the con- 
straint network and the complexity of it solution is most 
vividly demonstrated by Freuder’s Fpeuder1982] conditions 
for backtrack-free search. in particular, he shows that if the 
constraint graph forms a tree, then backtrack-free search can 
be guaranteed (by performing minor pre-processing). 

Thus, if the problem already has some desirable struc- 
ture, then it might be beneficial to modify the process of 
obtaining consistency so that the structure is preserved. I? 
ermore, by eliminating certain types of redundancies, while 
adding inconsistencies, it may be possible to bring about an 
improvement in the representation of the problem. 

This paper is concerned with issue manipulating the 
representation of a given CSP by identifying redundant con- 
straints, namely, constraints whose removal from the network, 
while changing the connective structure of the problem, does 
n0t affect the set of solutions p. 

works of constraints relies on a distinction that can 
between the direct co int Rig between tW0 

d~~~ernby~~~ 
can be thcbught Qf 
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relation consisting of all the instantiations of the variable-pair 
(Xi, Xi) which are consistent with some subset of the other 
constraints. The intersection of all the constraints induced on 
(Xi, Xi>, i.e., the constraint induced by all the constraints 
except the directsonstraint, is called the network-induced con- 
straint, denoted Rij. 
is the intersection 

The global constraint between Xi and Xj 
of the direct and the network-induced con- 

straints. 

An inconsistency in a constraint occurs when some 
pair of values is permitted by (i.e., is part of) the direct con- 
straint between two variables but prohibited by their network- 
induced constraint. An inconsistency can be eliminated by 
simply erasing the value-pair from the direct constraint 
between the variables. Clearly, such a change does not alter 
the set of all solutions in any way. When none of its pairs are 
inconsistent with the network-induced constraint, a direct con- 
straint is said to be explicit. 

Definition A direct constraint Rij is said to be explicit 
if the remainder of the network does not add any further res- 
triction_s on the global constraint between Xi and Xi, i.e., if 
Rij E; Rij. 

A pair of values is permitted by an explicit constraint 
if, and only if, it is part of at least one solution. Montanary 
[Montanaril974] has shown that if a relation can be 
represented by a binary network of constraints then there is a 
unique representation where all the constraints are explicit, 
called the minimal network of constraints. 

In contrast, redundancy in a constraint occurs when a 
pair of values which is prohibited by the network-induced 
constraint is also prohibited by (i.e., absent from) the direct 
constraint between two variables. A redundancy is eliminated 
by adding the pair to the direct constraint. This change, too, 
cannot have any effect on the set of all solutions. 

Of special interest is the case where all the pairs that 
are prohibited by direct constraint are already prohibited by 
the induced constraint. In this case the entire constraint is said 
to be redundant. 

JMnition: A direct constraint Rii is said to be redun- 
dant if it does not add any further Bstrrctions on the global 
constraint between Xi and Xi, i.e., if RG s Rij. 

Improving the representati0n of a CSB involves two 
types of operations: (1) Eliminating inconsistencies and mak- 
ing each constraint as explicit as possible, and (2) Eliminating 
redundancies by identifying and removing redundant con- 
straints. Although these operations represent two opposing 
objectives they are, in large part, orthogonal to each other. 
First, a constraint which is redundant will never become non- 
redundant as a result of making any other constraint more 
explicit, because this can possibly only tighten the network- 
induced constraint and thus make the constraint more redun- 
dant. Second, a constraint can never become less explicit as a 
result of the removal of another, redundant, constraint since 
this can possibly only loosen the induced constraint and make 
the constraint even more explicit. 

It is clear that in the “ideal” representation of a CSP 
the constraint between any two variables should be either 
explicit or universal (i.e., non-existing). Such networks of 
constraints are called U-minimal. 

efinition: A network of constraints for which a sub- 
set U of constraints are universal and all other constraints are 
explicit is said to be U-minimal. 

The properties of U-minimal networks are discussed in 
[Dechterl986a]. The task of obtaining a U-minimal represen- 
tation of a given network of constraints is as illusive as that of 
finding the minimal network of constraints because it requires 
the knowledge of the network-induced constraint for all pairs 
of variables. For the same reason, the task of deciding 
whether a given constraint is redundant or not is a difficult 
one. An approximate method, based on the notion of path- 
consistency is presented in the following section. 

Montanary suggested that the minimal network of constraints 
may be approximated by replacing the requirement that each 
constraint be explicit by a weaker condition, called path con- 
sistency. 

efinition: A pair of values (Xi, Xi) is said to be 
allowed by a path of length m through nodes 
(vi=vkosvkl 9 - - * 9 Vk-, 9 Vk=Vj) if there is a sequence of 
values (zr,zz; . . . ,2,-r) such that 

All redundancies associated with a redundant con- 
straint are eliminated by simply removing the entire constraint 
from the network. 

Rkokl(~irZl) mdRk,k,(zl,z2) ad* * * ~dR~,_,~(zm-l,xj) - 

efinition: A nair of values (x;. x;) which is allowed 
The defmitions of explicit and redundant constraints 

are given graphical representation in the Venn diagrams of 
Figure 1. Observe that a constraint can be explicit and redun- 
dant at the same time. In this case the direct constraint and the 
network-induced constraints coincide. 

by every path from &de Vi to node’ vj & the complete net- 
work R is called path-induced. Otherwise, it is called path- 
illegal 

Definition: A binary constraint Rij is said to be path- 
consistent if all of its pairs are path-induced. A network of 
constraints R is path-consistent if all of its constraints are path 

The requirement of a constraint being path-consistent 

cd b3 consistent. 

is weaker than that of being explicit because every explicit 
constramt must be path-consistent, but not every path- 
consistent constraint is necessarily explicit. 

(a) Explicit constnint 0 -t 
Montanary showed that a pair of values is path- 

induced if, and only if, it is allowed by all paths of length 
m=2. Path consistency algorithms repeatedly check all paths 

Figure 1: Explicit and Redundant Constraints 
of length ppl=2 and remove all path-illegal pairs until no such 
pairs remain [Montanaril974, Mackworthl977]. 
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The task of recognizing all the redundant constraints in 
a network can be approximated by replacing redundancy with 
a stronger requirement called path-redundancy. 

tion Rii by pairs that are found to be path-illegal. If this aug- 
mentatlon process results with the constraint becoming the 
universal constraint, then the original constraint is redundant. 

efinition: A constraint Rij is 
path-induced pair is already perrmtted 

path-redundant 
by it. 

if every 

The condition of a constraint being path-redundant is 
stronger than that of being redundant, since every path- 
redundant constraint must be redundant, but not every redun- 
dant constraint is necessarily path-redundant. 

The definitions of path-consistency and path- 
redundancy, and their relationships to those of consistency and 
redundancy are shown graphically in Figure 2. As the 
diagrams show, a path-consistent constraint is not necessarily 
explicit, but a path-redundant constraint must be redundant. 

(a) Path-Consistent Constraint (b) Path-Redundant Constraint 

Figure 2: Path-Consistent and Path-Redundant Constraints 

A convenient way to check whether a given constraint 
is path-redundant or not is to consider a set of value-pairs 
which is guaranteed to contain the path-induced constraint (for 
example, the Cartesian product of the domains of the two vari- 
ables involved), and to check the path-legality status of each 
pair of this set which is not in the direct constraint. The direct 
constraint is path-redundant if, and only if, all such pairs are 
path-illegal. This process is, essentially, the reverse of achiev- 
ing path-consistency, since it can be thought of as the process 
of adding path-illegal pairs to the direct constraint in an 
attempt to make it universal. If this attempt is successful, then 
the constraint is redundant. 

An algorithm for determining whether a constraint Rij 
is path-redundant is given bellow. The algorithm returns bp~ 
if the constraint is path-redundant and false otherwise. 

begin 
= dom(Xi) x dom(Xj) 

- Rii 
for each $ E Q-’ 

@I, (i, j), k) let Rij = Rij U {Pa) 
end 
if Rij 

end 
= Uij return &sue 

return false 
end 

begin 
EWMIWp, (i,j), k) 

let & be the domain of Xk 
let p be (pi, Pj> 
forallv E Dk 

if (pi, V) E Rik and (V, Pi) E Rkj return true 
end 
return false 

end 

n is the number of variables. 

all legal values of 
is found consistent 

IT is 0 (k), where k 
variable. The com- 

erefore, 0 (nk3) where 

The status of being redundant, for a given constraint, is 
dependent on the other constraints in the network, and any 
change in the network may tiect this status. In particular, the 
removal of one redundant constraint, while not the 
set of solutions, may cause other redundant c 
become non-redundant. Therefore, a set of constraints whiz 
are found to be path-redundant in a given network, may not be 
removed simultaneously, but rather in sequence, where the 
path-redundancy of the constraints in the set needs to & re- 
examined after the removal of each one them. Constraints 
that were non-redundant to start with, or that became non- 
redundant in the process, need not be checked again as they 
cannot become redundant again. The number of constraints 
that can be removed in this way is dependent on the sequence 
in which they are considered. 

To demonstrate, we considered the task of removing 
path-redundant constraints from a CSP representation of the 
Z-queen problem. The task in this problem is to place 5 
queens on a 5x5 chessboard so that no queen is on the same 
row, column, or diagonal as any other. A standard f0rmula- 
tion of this problem as a binary CSP associates a variable wi 
each r0w (e.g., variables A, B, C, D, and E), each of whit 
may be assigned one of five values (say, a, b, c, d, and 
corresponding to the columns. There is a constraint between 
every pair of variables (for a total of ten constraints), con 
ing of all pairs of values which are not in direct conflict. 
constraint graph of this formulation is the complete graph 
shown in Figure 3(a). 

We fist performed path consistency on this problem 

method with two different orderings are shown in Figures 3(b) 
and 3(c). 

The procedure PER @.A (i, j), k) (given below) 
returns true if the the pairp is permitted for the variable pair 
(Xi, X*) by the path (i-k-j), and f&e (i.e.9 the p&p is path- 
illegab otherwise. Thus, the algorithm examines all the paths 
of length 2 anchored at nodes i and j, and augments the rela- 

When the removal of any constraint in some set of 
redundant constraints does not diminish the redundancy of any 
of the other constraints in the set, we say that they are all 
independently redundant. 
path-consistency resu 
that were universal in 
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constraints are independently redundant since their simultane- 
ous removal will not affect the solution set. Notice, however, 
that while these constraints are redundant, they are not neces- 
sarily path-redundant, and thus the algorithm PATH- 

EDUNDANT is not guaranteed to recognize their redun- 
dancy. 

On the other hand it is easy to see that a set of path- 
redundant constraints which are not adjacent to one another, 
i.e., no two of them share a common variable, are indepen- 
dently path-redundant. This is so because only paths of length 

C D 
(a) 

A A 

B E B E 

(d 

Figure 3: Redundancy removal in the S-Queen Problem 

M = 2 are used to determine the path redundancy of a con- 
straint. 

The property of a set of constraints being indepen- 
dently redundant is desirable because it alleviates the need to 
search among all possible ordering of the constraints for some 
subset of them that may be removed. 

e Use of Redundancy Ellimination 
in Problem Solving 

Elimination of redundant constraints is expected to be 
beneficial for solution methods that rely on the connective 
structure of the problem as depicted by its constraint graph. 

Backtracking algorithms benefit from consulting the 
constraint graph in two ways. First, it provides a simple way 
of backjumping [Gaschnigl979, Dxhterl986b]. Backjump- 
ing is an improvement of standard backtracking whereby, at a 
deadend, the algorithm goes back to the 8rst variable which 
could be the “reason” for the deadend (rather than to previ- 
ous variable in the stack, as called for by standard backtrack- 
ing). A variable which is not connected (directly or 
indirectly) to the deadend variable cannot possibly be the 
source of the deadend, and thus it is always safe to jump back 
to the first available variable which is connected to the 
deadend variable while pruning the search tree. 

Second, consulting the constraint graph can reduce the 
amount of work required for the expansion of nodes in the 
search tree. This is so, because no consistency checks are 
re@ed between the node being expanded and nodes with 
which it is not directly connected. 

Wilizing these features has resulted in substantial 
improvements in backtracking performance. The amount of 
improvement was directly related to the sparseness of the con- 
straint graph [Dechterl986b]. Thus, the removal of redundant 
constraints, and, consequently, their corresponding edges in 
the constraint graph has a potential for improving the perfor- 
mance of backjumping. 

As an example, consider the CSP given in Figure 4(a) 
consisting of three variables, A, B, and C, all havmg the same 
domain {a, b, c). The constraint between the variables B and 
C is redundant and may be removed, resulting in the graph of 
Figure 4(b). 

(a) 

Figure 4: A Problem Exhibiting Redundancy 

The search performed by a backjumping algorithm which con- 
siders the nodes in the order A, B, C is shown in Figure S(a). 
If the redundant constraint is removed, then the search is 
reduced to that shown in Figure 5(b) because the first 
occurrence of a deadend permits jumping back to variable A. 

a 
aa t-md) 
ab ( nd) 
ac (deadend) 

b 
ba (deadend) 
bb ‘@e&end) 

C 
ca 

cab (solution) 

a 
aa (deadend) 

b 
ba (deadcnd) 

C 
ca 

cab (solution) 

00 03 

Figure 5: Backjumping Search on Figure 4 Problems 

Removal of redundant constraints, while potentially 
beneficial, generally results in increasing the search space, 
which may wipe out its benefits. What is needed, therefore, 1s 
a way to identify redundant constraints whose removal will 
not cause the search space to increase. This can be accom- 
plished by tying the notion of redundancy to the order m 
which the backtracking algorithm instantiates the variables. 
Eetd=Xi,,..., Xill be an ordering of the variables. 

Definition: A constraint Ri,i, is said to be directional- 
with respect to d-if its red 

considering only paths of len 
form (Xi,-Xi,-X4 ), fm I xnax{j, k}. 

108 Automated Reasoning 



The removal of a constraint which is directional-nath- 
redundant with respect to an ordering which is precisely the 
reverse of the order used by a backtracking algorithm, will not 
affect the search space explored by the algorithm. To 
this is so, 

see why 
consider a network whose constraint graph is given 

in Figure 6: 

x4 

X3 

x2 

Xl 

Figure 6 - An Ordered Constraint Graph 

Suppose that backtrack algorithm considers the variables in 
the order Xl, X2 X3, X4. If the constraint RB is redundant 
with respect to an ordering d =X4,X3,X2,X1 (i.e., using Xi 
alone), then its removal will not cause the algorithm to 
develop any more nodes because all the relevant information 
of this constraint must be contained in constraints R12 and 
R 13, which will be known to the algorithm by the time it gets 
to X3. By contrast, if X4 is also needed to establish the redun- 
dancy of constraint R23, then the removal of the constraint 
may cause the algorithm to consider values of X3 that would 
not be considered had it remained in the network. 

The notion of directional-path-redundancy has the 
additional advantage that all the constraints found to be 
directional-path-redundant with resuect to some direction d. 
are independently redundant and thus mav be removed simul: 
taneously. To prove this, it is enough to ihow that there is an 
order by which the constraints can be removed so that the 
removal of each constraint cannot possibly interfere with the 
directional-path-redundancy of the remaining: constraints. For 
d =Xi, 9 . . .&‘Xi-, any order-such that a const&int Ri,i, , 
checked before’.any constraint Ri,i- 

k >j, is 
111 >I’ if k <m, l& this pro- 

. m 

perty. To see this, refer back to the network of Figure 5,-and 
assume again that d =X4,X3,X2,X1. Further assume that 
both constraints RM and RB are directional path-redundant 
with respect to d. The removal of constraint R*u cannot DOS- 
sibly interfere with the redundancy of R 23 with respect to X 1. 

Directional-path-redundancy can be found by slightly 
modifying algorithm PATH-WEDUN Am. Applying it 
before backjumping may improve its performance and is 
guaranteed not to cause it to deteriorate. 

Another method that could benefit from removing 
redundancy is the cycle-cutset approach mechter 19871. 
This method is using the fact that tree-structured CSPs can be 
solved in linear time by switching to a specialized tree- 
algorithm whenever the set of variables instantiated by a back- 
tracking (or a backjumping) algorithm forms a cutset of the 
constraint graph. The efficiency of this approach depends of 
the sparseness of the constraint graph, and therefore this 
method too should perform better if redundant constraints are 
removed. For example, consider again the equivalent net- 
works of Figure 3. In order to cut all the cycles in the network 
of Figure 3(a), a minimum of three variables must be instan- 
tiated, but it takes the instantiation of only two variables to cut 
all the cycles in the network of Figure 3(b), and only one vari- 
able (A or B) to cut all the cycles in Figure 3(c). 

Researchers in the area of solving constraint satisfaction prob- 
lems have emphasized the advantages of increasing the 
amount of redundancy in the network representation of prob- 
lems. In this paper we point out that some benefits can be 
obtained by removing redundancies. We extend the idea of 
path-consistency to enable identifying redundancies and 
present some ways in which redundancy elimination is useful. 
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