
ARTIFICIAL INTELLIGENCE 273

Enhancement Schemes for Constraint
Processing: Backjumping, Learning,
and Cutset Decomposition*

R i n a D e c h t e r * *
Cognitive System Laboratory, Computer Science Department,
Universtty of Californta, Los Angeles, CA 90024, USA

ABSTRACT

Researchers m the areas o f constramt sattsfactton problems, logtc programmmg, and truth mamte-
nance systems have suggested vartous schemes for enhancmg the performance o f the backtracking
algorithm Thts paper defines and compares the performance o f three such schemes "backlumpmg,"
"learmng," and "cycle-cutset " The backlumpmg and the cycle-cutset methods work best when the
constramt graph is sparse, whde the learnmg scheme mostly benefits problem mstances wtth dense
constramt graphs An integrated strategy ts described whwh utdtzes the dzstmct advantages o f each
scheme Expertments show that, m hard problems, the average tmprovement reahzed by the
mtegrated scheme ts 20-25% higher than any o f the mdtvtdual schemes

I. Introduction

Backtracking search is a prominent processing technique in Artificial Intellig-
ence, in particular due to its use in PROLOG [2, 4, 20, 35], truth maintenance
systems (TMSs) [9, 21, 26, 29, 32], and constraint satisfaction problems (CSPs)
[5, 12-14, 17, 24, 25, 28]. In recent years there has been great emphasis in all
of these areas on developing methods for improvmg backtrackmg efficiency.
The terms "intelligent backtracking," "selective backtracking," and "depen-
dency-directed backtracking" denote such ~mprovements. The main trust of
these efforts is to enhance the chronological nature of the textbook backtrack-
lng algorithm with mechamsms that faclhtate more informed decisions at
various stages of the search.

The standard backtracking search algorithm attempts to assign values to a set

*This work is supported m part by the National Science Foundation, Grant #IRI-8501234 A
substantml part of th~s work was performed whde the author was at the Art~ficlal-Intelhgence
Center at Hughes, Calabassass

** Current address Computer Science Department, Techmon--Israel Institute of Technology,
Techmon City, Halfa 32000, Israel

Arttfictal lntelhgence 41 (1989/90) 273-312
0004-3702/90/$3 50 © 1990, Elsevier Science Pubhshers B V (North-Holland)

TECHNICAL REPORT
R-77-II

274 R DECHTER

of variables so that all the given constraints among the variables are satisfied.
The algorithm typically considers the variables in some order and, starting with
the f rs t , assigns a value, taken from a set of possible values, to each successive
variable in turn as long as the assigned value is consistent with the values
assigned to the preceding variables. When, in the process, a variable is
encountered such that none of its possible values is consistent with previous
assignments (a situation referred to as a dead-end), backtracking takes place.
That is, the value assigned to the immediately preceding variable is replaced,
and the search continues in a systematic way until either a solution (1.e,
assignment ot values to all variables) is found or until it may be concluded that
no such solution exists

Improving backtracking efficiency amounts to reducing the size of the search
space expanded by the algorithm. The size of the search space is greatly
dependent on the way the constraints are represented. General ly speaking, the
algorithm will benefit from representat ions which are more exphctt, that is,
when constraints are spelled out exphcltly, even if they are implied by other
constraints. The size of the search space is also heavily influenced by user-
specific choices such as the variable ordering and, when one solution suffices,
the order in which values are assigned to each variable.

In trying to use these factors to improve the performance of backtracking
algorithms, researchers have developed procedures of two types: those that are
employed m advance of performing the search, and those that are used
dynamically during search Techniques designed to be applied in advance
Include a variety of consistency enforcing algorithms [18, 24]. These algorithms
transform a given constraint network into an equivalent, but more exphclt
network by using the given constraints to deduce new constraints which are
then added to the network There are also several heuristics that have been
proposed for the purpose of deciding the ordering of the variables prior to
performing backtracking search [7, 12].

Strategies for dynamically improving the pruning power of backtracking can
be conveniently classified as lookahead schemes and lookback schemes.

Lookahead schemes are invoked whenever the algorithm is preparing to
assign a value to the next variable. Some of the functions that such schemes
perform are '

(1) Calculate and record the way in which the current instantlations restrict
future variables. This process has been referred to as constraint propagation.
Examples include Waltz's algorithm [36] and forward checking [14].

(2) Decide which variable to instantiate next (when the order is not pre-
determined). Generally, it is advantageous to first lnstantlate variables which
maximally constrain the rest of the search space. Therefore , the variable par-
tlclpatlng in the highest number of constraints is usually selected [12, 28, 33, 37].

(3) Decide which value to assign to the next variable (when there is more
than one candidate) Generally, for finding one solution, an at tempt is made to

ENHANCEMENT SCHEMES FOR CONSTRAINT PROCESSING 275

assign a value that maximizes the number of options available for future
assignments [5, 14].

Lookback schemes are invoked when the algorithm encounters a dead-end
and prepares for the backtracking step. These schemes perform two functions:

(1) Decide how far to backtrack. By analyzing the reasons for the dead-end
it is often possible to go back directly to the source of failure instead of to the
previous variable in the ordering. This idea is often referred to as dependency-
dtrected backtracking [32] or backjumping [13].

(2) Recordmg the reasons for the dead-end in the form of new constraints so
that the same conflicts will not arise again later in the search (terms used to
describe this idea are constraint recording and nogood constraints).

This paper reports the results of theoretical and empirical investigations of
three enhancement schemes for the backtracking algorithm using the model of
constraint satisfaction problems. The advantage of using the CSP model is that,
unlike models based on PROLOG and TMSs, it permits an implementation-free
definition of the techniques involved and simple criteria for their evaluation
At the same time, the CSP model is rich enough to exhibit the basic problem
areas, so that the conclusions of this study are likely to apply to other domains
where backtracking is used. The choice of enhancement schemes for this study
was largely motivated by insight gained through the graphical representation of
CSPs, called the constraint graphs. The three schemes are:

(1) Graph-based backjumpmg. An implementation of the idea of going back
to the source of the failure by using only knowledge extracted from the
constraint graph.

(2) Learning while searching. An adaptation of the constraint recording idea
to CSPs We view this process as that of learning, since it results in modified
data structure and improved performance. We consider the effects of learning
on the structure of the problem and identify several levels of learning,
characterized by the degree to which the structural properties of the problems
are affected, and the amount of computational resources required.

(3) Cycle-cutset decomposmon. A new method [6] which exploits algorithms
for solving tree-structured CSPs in linear time. Variable instantmtlon by the
backtracking algorithm reduces the effective connectivity of the constraint
graph, possibly until such point that the remaining constraint graph is a tree.
At this pomt, rather than continue the search blindly, a special-purpose
algorithm is invoked that completes the rest of the search in linear time.

We have simplified the presentation of the methods discussed in this paper
by considering only binary constraint satisfaction problems, namely problems
whose constraints involve no more than two variables. However, these
methods are easily extendible to the general CSPs using a hypergraph generah-
zation of the constraint graph [7].

276 R DECHTER

The paper is organized as follows. Section 2 introduces the CSP model and
its search space, the backtracking algorithm, and the way it is modified by the
graph-based backlumping Section 3 discusses the method of learning, dis-
cusses the computat ional aspects of several dialects of th~s method, and reports
the results of a computat ional evaluation of these dialects. The cycle-cutset
decomposit ion is discussed in Section 4. Bounds on its performance are
calculated, and the results of experimental evaluation are provided. Section 5
reports on the results of experiments where all three methods are integrated in
one algorithm. A summary and conclusions are given in Section 6.

2. Constraint Satisfaction, Backtracking, and Backjumping

2.1. The CSP and its search space

A constraint sattsfactton prob lem (CSP) is represented by a constramt network ,
consisting of a set of n variables, X ~ , . . . , X,,; their respective value domains,
R 1, . . , Rn; and a set of constraints. A constramt C, (Xq X ,) is a subset
of the Cartesian product R,~ x . . . × R , , consisting of all tuples o~values for a

subset (X,1 X,,) of the variables which are compatible with each other. A
soluuon of the network is an assignment of values to all the variables such that
all the constraints are satisfied. Solving the CSP requires finding either one
solution or all the solutions of the network. A binary CSP is one in which each
of the constraints involves at most two variables. A binary CSP is associated
with a constraint graph consisting of a node for each variable and an arc
connecting each pair of variables which has a constraint in the network.

Consider, for example, a constraint satisfaction problem involving three
variables, X, Y, and Z, whose domains are X = { 5 , 2 } Y = { 2 , 4 } and Z =
{5, 2}. The problem is to assign a value for each variable, taken out of the
domain of that variable, so that the value of Z divides the values of both X and
Y. This restriction can be expressed in terms of two binary constraints, one
between X and Z represented by the set of tuples (X Z) = ((55)(22)), and the
other between Y and Z consisting of the set of tuples (Y Z) = ((22)(42)). The
constraint graph of this problem is shown in Fig. l(a).

z{5, 21

A ;22 2', Z, 2,, ; '
X{5,2} Y{2,4} 5 2 5 2 5 2 5 2 5 2 5 2

(a) (b) (c)

Fig 1 A CSP and its state space representation

ENHANCEMENT SCHEMES FOR CONSTRAINT PROCESSING 277

The state space explored by the backtracking algori thm depends on the
order ing of the variables. For instance, Figs. l (b) and 1(c) display two state
spaces associated with two different order ings for the CSP of Fig. l(a). The
states of this space are consistent assignments of values to a prefix of the
variables m the order ing, and the opera tors are all consistent value assignments
to the next variable in the order ing For example, given an order ing d =
(X~ X n), a state at depth i would consist of the assignment (X~ = x l,
. . . , X , _ 1 = x ,_~) and the opera tors are the consistent extensions X, = x, of
such a state. A n assignment of values to a subset of the variables ~s consis tent ff

it satisfies all the constraints applicable to this subset. A constraint is appl icable

to a set S of variables if it is defined over any subset of S. The consistent states
m depth n represent all the solutions to the problem.

2.2. Backtracking

In its s tandard version, the backtracking algori thm traverses the variables m a
p rede te rmined order , provisionally assigning consistent values to a sub-
sequence (X 1 X,) of variables and a t tempt ing to append to it a new
mstant ia t ion of X,+ 1 such that the whole set is consistent. If no consistent
assignment can be found for the next variable X,+~, a dead-end situaUon
o c c u r s - - t h e algori thm "back t racks" to the most recent variable, changes its
assignment and cont inues f rom there. A backtracking algori thm for finding one
solution is given below. It is defined by two recursive procedures , Fo rward and
Go-back. The first extends a current partial assignment if possible, and the
second handles dead-end situations. The procedures maintain lists of candidate
values (C,) for each variable X,.

Forward(x1, . . . , xt)

begin

1. if t = n exit with the current assignment.

2. Ct + 1 <-- Compute-candidates(x1, - • • , x~,)it + 1)

3. if C,+~ is not empty then

4. x, + 1 <--- first e lement in C, + 1, and

5. r emove x,+~ f rom C,+~, and

6. Forward(x1 , . . . , x,, xz+l)

7. else

8. Go-back(x 1, . . . , x,)
end.

278 R DECHTER

Go-back(x 1 x~)

begin

1 if t = 0, exit. No soluton exists.

2. if C, is not empty then

3. x, <--first in C,, and

4. remove x, f rom C,, and

5 Forward(x1, . . , x ,)

6. else

7. Go-back(x, x ,_.)
end.

Backtracking search is initiated by calling Forward with t = 0, namely, the
instantiated list is empty. The procedure Compute-candidates(x 1 , , x,, X, + 1)
selects all values in the domain of X,+I which are consistent with the previous
assignments.

2.3. Graph-based backjumping

The idea of going back several levels m a dead-end situauon, rather than going
back to the chronologically most recent decision was exploited independently
in [13], where the term "back jumping" is introduced, and in [32] as a part of
the well known dependency-dtrected backtracking. The idea has been used
since in truth maintenance systems [9], and in intelligent backtracktng m
PROLOG [2]. Gaschnlg's [13] algorithm uses a marking technique that main-
tains, for each variable, a pointer to the highest level variable with which any
value of this variable was found to be incompatible. In case of a dead-end the
algorithm can safely jump directly to the variable pointed to by the dead-end
variable. Although this scheme retains only one bit of information w~th each
variable, it requires an additional (constant) computat ion with each consistency
check.

Graph-based backlumpmg extracts knowledge about dependencies from the
constraint graph alone. Whenever a dead-end occurs at a particular variable X,
the algorithm backs up to the most recent variable connected to X in the graph
The additional computat ion at each consistency check is eliminated, at the cost
of less refined information about the potential cause of the dead-end.

Consider, for instance, a CSP represented by the graph in Fig. 2(a). Each
node represents a variable that can take on any of the values indicated, and the
constraint between connected variables ~s a strict lexicographic order along the
arrows (the allowed pairs are specified along the arcs). If the search on this
problem is performed in the order X 3, X 4, X1, X2, X 5 (see Fig. 2(b)), then
when a dead-end occurs at X 5 the algorithm will jump back to variable X 4 since

ENHANCEMENT SCHEMES FOR CONSTRAINT PROCESSING 279

X1 X2

X3 X2

X3
(a,b)

X 4 X 5

(a) (b)

Fig 2 An example CSP

X 5 is not connected to either X 2 or X 1. If the variable to which the algorithm
retreated has no more values it should back up more to the most recent
variable among those connected both to the original variable and to the new
dead-end variable, and so on. In short, the backjumpmg algorithm backs up to
the most recent variable among those that are both connected to it by a path of
preceding variables, and from which it can continue forward.

The implementation of graph-based backjumping requires that both the
F o r w a r d a n d G o - b a c k procedures must be modified. They should carry a global
variable P, indicating the parent set of variables that need to be consulted upon
the next dead-end. The parent set is updated only when going back. Procedure
Forward has P as an additional parameter. Its hnes 6 and 8 are changed as
follows:

6. Forward(x 1 x,, x,+ 1, P)

8. Jump-back(x~ x,, X,+~, P)

G o - b a c k is replaced by J u m p - b a c k which has the partial mstantiatlon, the
dead-end variable, and the set P as parameters. Procedure Jump-back is given
below. It uses a procedure Parents(X) that computes the variables connected
to X that precede it in the ordering (e.g., in the ordering of Fig. 2(b),
Parents(Xs) = {X3, X4}).

J u m p - b a c k (x I , . . . , x,, X, + 1, P)

begin

1. if i = 0, exit. No solution exists.

2 . PARENTS ~-- Parents(X, + 1)

3. P <-- P U PARENTS

4. Let 1 be the largest indexed variable in P,

5. P ~ - - P - Xj

6. if Cj ~ 0 then

280 R DECHTER

7 xj = first in Cj, and

8 remove xj from Cj, and

9 Forward(x t xl, P)

10. else

11. Jump-back(x 1 xl i, Xj, P)
end.

In the next section we describe the learning scheme which, although it is not
based on structural properties of the CSP m the way graph-based backjumping
does, its ~mplementat~on can exploit graph-based information.

3. Learning While Searching

3.1. Introduction

By the term learning we mean the task of usefully recording information which
becomes known to the problem solver while solving the problem. This informa-
tion can be used later either in the same problem instance or m solving other
instances of the same problem. One of the first apphcatlons of this idea
involved the creation of macro-operators. These are sequences and sub-
sequences of atomic operators that have proven useful as solutions to earlier
problem instances from the domain. This ~dea was exploited m STRIPS with
MACROPS (Fikes and Nilsson [11], and by Korf [15]). Other examples of
learning m problem solving are the work on analogical problem solving
(Carbonell [3]), learning heuristic problem solving strategies through ex-
perience as described in the program LEX (Mitchell et al. [23]), and developing
a general problem solver (SOAR) that learns about aspects of its behavior usmg
chunking (Laird et al [16]). Recently, a set of methods, commonly referred to
as explanation-based learmng (EBL), has captured the attention of the machine
learning community. These methods identify, during search or theorem prov-
ing process, the most general description of a set of conditions (a concept) that
can be learned from one example [22].

In the context of CSPs, the process of making zmphcit constraints into
explicit constraints can be viewed as a form of explanation-based learning. This
process can be performed independently of backtracking search (e.g., con-
sistency algorithms), but its potential as a means of improving search efficiency
may be even greater when it is incorporated into the backtracking algorithm
~tself

3.2. Controlled learning

An opportunity to learn new constraints is presented whenever the algorithm
encounters a dead-end, i.e., when the current state S = (X 1 = x~ , X, ~ =

E N H A N C E M E N T S C HE M E S F O R C O N S T R A I N T P R O C E S S I N G 281

X,_l) cannot be extended by any value of the next variable X,. In such a case
we say that S is in conflict with X, or, in short, that S is a conflict set. Had the
problem included an explicit constraint prohibiting the set S, the current
dead-end would have been avoided. However , there is no point recording such
a constraint at this stage, because under the backtracking control strategy this
state will not reoccur. (Recording this constraint may still be useful for
answering future queries on the same initial set of constraints.) If, on the other
hand, the set S contains one or more subsets which are also in conflict with X,,
then recording this information in the form of new explicit constraints might
prove useful in the continued exploration of the search space because future
states may contain these subsets. I

When a conflict set has at least one subset which is also a conflict set, then
recording the smaller conflict set as a constraint is sufficient for preventing the
larger one from occurring. The target of this learning scheme is to identify
subsets of the original conflict set S which are as small as possible because small
conflict sets will occur earlier in the search than larger sets. A mintmal conflict
set [1] is one which does not have any subset which is a conflict set. Minimal
conflict sets can be thought of as the sets of lnstantiations that "caused" the
conflict.

A first step in discovering a subset of S which is in conflict with X, consists of
removing from S variable-value pairs which are trrelevant to X,. A pair
consisting of a variable and its value, (X, x), is said to be irrelevant to X, if it is
consistent with all values of X,. Irrelevant pairs can be safely removed from S
because they cannot belong to any minimal conflict set.

The process of recording constraints generated by the removal of irrelevant
pairs from S will be called shallow learning. We say that full shallow learning is
performed when all irrelevant pairs are removed, and denote by conf(S, X,),
or, in short, conf-set, the resulting conflict set. The constraint graph provides
an easy way for identifying irrelevant pairs, namely those whose variables are
not connected to the dead-end variable. Using the constraint graph as the sole
source for detecting irrelevant pairs is called graph-based shallow learning
Graph-based shallow learning may fail to detect all irrelevant variable pairs,
because a variable connected with the dead-end variable may still be irrelevant.
Consequently, the resulting conflict set, called graph-based conf-set, contains
the conf-set.

Consider the CSP presented in Fig 2(a). Suppose that a backtracking
algorithm, using the ordering (X1, X2, X3, X4, X5) is currently at state (X 1 ~- b,
X 2 = b, X 3 = a, X 4 = b). This state cannot be extended by any value of Xs

1The type of learning discussed here can be viewed as explanatton-based learnmg, m which
learning can be done by recording an explana tmn or a proof to some concept of interest. Here the
target concept is a dead-end s l tuatmn, ~ts proof is the conflict set and we record a summary of th~s
proof which could be useful later [31]

282 R DECHTER

since none of its values is consistent with all the previous lnstantlations
Obviously, the tuple (X~ = b, X 2 =- b, X3 = a, X 4 = b) should not have been
allowed in this problem, but as we pointed out above, there is no point in
recording this fact as a constraint among the four variables involved. A closer
look reveals that the lnstantiatlons X l = b and X 2 = b are both irrelevant to
this conflict because there is no explicit constraint between X~ and X 5 or
between X 2 and Xs. Neither X 3 = a nor X~ = b can be shown to be irrelevant
and, therefore, the conf-set is (X 3 = a, X 4 = b), which could be recorded by
eliminating the pair (a, b) from the set of pairs permitted by constraint
C(X 3, X4). The conf-set is not minimal, however, since the instantlation X 4 = b
is, by itself, in conflict with X~ Therefore, it would be sufficient to record only
this information, by eliminating the value b from the domain of X 4.

Identifying and recording only conflict sets which are known to be minimal
constitutes deep learnmg Discovering all minimal conflict sets amounts to
acquiring all the possible information out of a dead-end and is called full deep
learning. However, instead of improving the overall work in searching, full
deep learning may result in a substantial addition of time and space overhead
which may outweight its benefits

If r is the cardinality of the conf-set, we can envision a worst case where all
subsets of conf(S, X,) having ½r elements are in conflict with X, The number
of minimal conflict sets should then satisfy

tr) r #rain-conflict-sets i r

which amounts to exponential time and space complexity at each dead-end
Even if performed efficiently, learning from each dead-end is too space-
expensive, since it is equivalent to recording almost the entire search space
explored

In addition, it is not clear that adding constraints necessarily reduces the
work of the backtracking algorithm. The presence of more constraints, while
potentially pruning the search space, increases the cost of generating states in
the search space because more constraints need to be tested with each new
instantiation. Thus backtracking may be slowed down considerably.

For these reasons, it is imperative to focus the learning process on those
constraints having good pruning capability. This can be accomplished by
recording only constraints with a small number of variables, thus limiting both
the number of constraints recorded, their size, and the time needed for their
detection. In addition, the pruning power of lower-arity constraints is higher
than the pruning power of constraints involving more varmbles, as they stand a
higher chance of reoccurring. 2 We may decide, for example, to record only

-~ In hght of thts d~scusslon, it as somewhat surprising that most researchers m the area of truth
maintenance systems have adopted the approach to learn from each dead-end (recordmg nogood
sets, e g Doyle [9], de Kleer [8], Martins and Shapiro [19]) Indeed some of these systems suffer
from space problems

ENHANCEMENT SCHEMES FOR CONSTRAINT PROCESSING 283

conflict sets consisting of a single variable. This can be implemented by
eliminating the value from the domain of its variable, and is referred to as
first-order learnmg. 3

Second-order learning is per formed by recording only conflict sets involving
e~ther one or two variables. 4 In a similar vein we can define and execute an
t th-order learning algorithm, recording every constraint involving i or less
variables. Obviously, as i increases t ime and space complexities increase.
Moreover , since not all subsets of variables are directly constrained m the
initial representation, learning of second order and higher may also change the
topology of the constraint graph. This can be avoided, however, by further
restricting the algorithm to modtfy only existing constraints without creating
new ones. This restriction leaves the structure of the constraint graph un-
changed; a desirable property, particularly in the presence of graph-based
techniques which benefit f rom the graphs ' sparseness (see Section 4).

Controlling the size of the constraints recorded is applicable to both shallow
and deep learning. For example, shallow second-order learning means record-
ing the conf-set as a constraint only if it has no more than two variables. Deep
second-order learning means identifying and recording as constraints all mini-
mal conflict sets of either one or two variables.

3.3. Computational aspects of controlled learning

The complexity of graph-based shallow learning is just O(l) , where l is the
number of variables in the initial conflict set, S, that are connected to the
dead-end variable. Full shallow learning (i.e., identifying all irrelevant vari-
ables) requires the examination of each of the I connected variables and testing
whether each of its values is consistent with each of the values of the dead-end
variable. Therefore , the complexity is O(kl) , where k is the number of values
for X~. The computat ion of the conf-set can be enhanced by remember ing
some information already explicated during the Forward phase of the back-
track procedure. For instance, a marking procedure similar to the one sugges-
ted by Gaschnig [13] can be worked out with only a small amount of additional
cost.

A detailed trace of the performance of shallow second-order learning on the
example of Fig. 2 is given in Appendix C. Figure 3 gives the search space
explicated by naive backtracking vis h vis that generated by incorporating

3 First-order learmng amounts to making a subset of the arcs arc-conszstent An arc (X, Y) is
arc-consistent if for any value x m the domain of X, there ~s a value y xn the domain of Y s t
(x, y) E C(X, Y) [17] In first-order learning only those arcs that are encountered during the search
are made arc-consistent

4 Second-order learning performs partial path consistency [24] since it only adds and modifies
constraints from paths &scovered during the search A pair (X, Y) is path-consistent w r t. Z if for
any pair of values (x, y) E C(X, Y) there is a value z of Z st (x, z) @ C(X, Z) and (y,z)E
c(v, z)

284 R DECHTER

root

X ~ ---~

X 2-.... ~

X 3 ---~

a ~ ~ b ~ a

X 4 - - . ~.

X S .-.. ~

~ bb bc ca cc

bbaa / cca bb

bbaba bbabb bcaba bcabb ccaba ccabb

Fig 3 Exphcated search space with naive backtrackmg with and without shallow learning

shallow second-order learning; all marked branches in Fig. 3 are not generated
by the latter.

Restricting the level of shallow learning does not affect its time complexity
but does affect the storage required. For example, first-order learning does not
require any additional space beyond that of naive backtracking. Second-order
learning may increase the size of the problem and changes its constraint graph.
Since there are at most ½n(n - 1) binary constraints, each having at most k 2
pairs of values, the increase in storage is still reasonably bounded and may be
compensated by savings gained in search. Of course, when the algorithm is
restricted to modifying existing constraints, the constraint graph does not
change.

Full deep learning, l . e , discovering all minimal conflict subsets of the
conf-set, can be implemented enumeratively: it first recognizes all conflict sets
of one element, then all those with two elements, and in general, given that all
minimal conflict sets of size 1, . . , t - 1 are recognized, it finds all the size-t
conflict sets which do not contain any smaller conflict sets. The time and space
complexity of this mode of learning is exponential In the size of the conf-set.

Restricting the level of deep learning affects both space and time The effect
on space is similar to the case of shallow learning, as discussed above The time
complexity of deep first-order learnmg IS O(kr), where r 1s the size of the
conf-set, since each of the r value-assignments in the conf-set is tested against
all values of X,. For deep second-order learning the complexity can rise to
O(½r(r- 1)k) since each pair of instantmtions should be checked against each
value of X,. We will replace r with an upper bound w, defined as follows.
Given an ordered constraint graph, the width o f a node is the number of its
adlacent predecessors (parents) in the ordering. The wtdth of the ordering, w,
is the maximum width of all nodes in that ordering. Since the size of the
conf-set cannot exceed w (i.e., any dead-end variable is connected to at most w
variables), w can be used to bound r (i.e., r ~< w). The width, w, also bounds

ENHANCEMENT SCHEMES FOR CONSTRAINT PROCESSING

Table 1

285

Shallow learning Deep learning

Complexities 1st-order 2nd-order all lst-order 2nd-order all

time/dead-end O(w) O(w) O(w) O(wk) O(kw z) O(kw2 ~)
space/dead-end O(1) O(1) O(w) O(1) O(w z) O(w2 ~)
#added-constraints O(1) O(n 2) 0(2") O(1) O(n z) 0(2")

Prunmgfactor (1 - 1) (l-~52) (1 - ~ ,) (1 - 1) (1-~52) (1 - ~)

the number of constraints needed to be checked when determining a smaller
conflict subset of the conf-set (i.e., l ~< w). (For an additional analysis of the
effects of recording nogoods, see [27].)

Table 1 summarizes the time and space bounds for controlled learning in
each dead-end situation (lines 1 and 2). The expressions for shallow learning
are based on computing the graph-based conf-set. Line 3 of the table gives
bounds on the total number of contralnts that may be recorded during the
whole search, and line 4 gives a rough in&cation on the pruning power of
different sizes of conflict sets. The expressions in line 4 describe the utmost
pruning potential, assuming that the overall search space is O(k n) and that the
conflict set recorded is the only constraint used for pruning the search space.
For instance, ehminating a tuple of size i (i.e., recording an t-ary constraint)
results m a worse-case number of solutions of kn-~(k' - 1) = k n - k n-~. Thus,
the search space is reduced by a factor of (1 - 1/k')

3.4. Experimental evaluation

3.4.1. Classes of problems

The learning scheme, implemented with a graph-based backjumping algorithm,
was tested on several classes of problems with varying degrees of difficulty. The
first is the class-assignment problem, a database type problem adapted 5 from
[2]. The problem statement and the associated constraint graph are given m
Appendix A. The second is a more difficult problem known as the zebra
problem. The problem can be represented as a binary CSP by defining 25
variables each wxth 5 values (a detaded statement of the problem and its
formulation as a binary CSP is given in Appendix B). Several instances of each
problem have been generated by randomly varying the order of variables. As
explained m Section 2, each ordering results in a different search space for the
problem and, therefore, is considered as a different instance.

s Our problem is an approxlmat~on of the original problem where only binary constraints are
used

286 R DECHTER

Two other classes of problems, random CSPs and random planar CSPs were
tested. The random CSPs were generated using two parameters p~ and P2- The
first IS the probability that any pair of variables is directly constrained, and the
second is the probability that pairs of values belonging to constrained pairs of
variables are compatible. Planar problems are CSPs whose constraint graph is
planar. Problems that arise in vision have this property. These problems were
generated from an lmtlal max~mally connected planar constraint graph with 16
variables, as shown in F~g. 4. The parameter p~ in this case determines the
probability that an arc will be deleted from this graph, while P2 controls the
generation of each constraint as in the case of random CSPs. We tested the
algorithms on random CSPs with 10 and 15 variables, having 5 or 9 values. The
planar problems were tested with 16 variables and 9 values. The planar and the
landom problems were solved in a fixed order, nonlncreaslng with the vari-
able's degree This is a reasonable heuristic since it estimates the norton of
width of the graph as described by Freuder [12]

3 4 2. The algorithms

The modes of learning used in the experiments were controlled by three
parameters: the depth of learning (i.e., shallow or deep), the level of learning
(l.e , first-order or second-order), and either adding constraints or only modify-
mg existing ones. This results in six types of learning: shallow first-order (SF),
shallow second-order modify (SSM), shallow second-order add (SSA), deep
first-order (DF), deep second-order modify (DSM), and deep second-order
add (DSA). For shallow learning we computed the graph-based conf-set All
learning modes were implemented on top of a graph-based backjumping
algorithm Thus, each problem instance was solved by eight search strategies:
naive backtracking, graph-based backlumping (no learning), and graph-based
backjumplng enhanced with each of the six possible modes of learning.

3.4 3. Performance measures

Two measures were recorded" the number of backtrackmgs during search and
the number of conststency checks performed A consistency check is performed

a b

h ,c
' J m

d

F~g 4 A 16-node, fully triangular planar graph

ENHANCEMENT SCHEMES FOR CONSTRAINT PROCESSING 287

each time the algorithm checks if two values of a variable are consistent w.r.t.
the direct constraint between them. (Notice that had we implemented our
algorithms on constraints with more than two variables, the time for testing the
consistency of a tuple could not have been regarded as constant.) The number
of backtracklngs measures the size of the search space which was explicated
(every dead-end is a leaf in this space), while the amount of consistency checks
measures the overall work invested in generating this search space.

3.4.4. Results

Tables 2 and 3 present the results for six problem instances of the class-
assignment problem, and for six problem instances of the zebra problem,
respectively. For these problems we omitted the distinction between adding or
modifying constraints since there was only negligible difference between these

Table 2
The class-assignment problem

NB BJ SF SS DF DS

1 (25,219) (25,219) (25,218) (25,221) (25,218) (22,194)
(0,44) (0,44) (0,44) (0,44)

2 (12,123) (12,123) (12,123) (12,133) (12,137) (12,137)
(0,43) (0,43) (0,42) (0,42)

3 (24,266) (24,266) (24,266) (24,267) (20,260) (7,125)
(10,140) (10,140) (10,140) (0,51)

4 (42,407) (42,407) (42,406) (42,409) (40,423) (39,509)
(8,108) (&10S) (4,91) (0,50)

5 (42,433) (42,433) (42,433) (42,435) (40,445) (39,527)
(8,116) (8,116) (4,91) (0,50)

6 (85,559) (85,559) (85,559) (53,391) (85,692) (57,619)
(68,441) (2,55) (54,461) (0,49)

Table 3
The zebra problem

NB BJ SF SS DF DS

1 (180,2066) (57,1241) (56, 1234) (56,1234) (56,1272)
(53,1214) (53,1214) (53,1252)

2 (5378,37541) (1315,20542) (1279,19498) (12799,19498) (1279,21371)
(1276, 19416) (1276, 19416) (1276, 19945)

3 (31097, 241204 a) (2848, 46771) (2723, 44719) (2721,44716) (2512, 41911)
(2719, 44693) (2719, 44693) (2300, 38421)

4 (23778,237152) (738,21946) (738,21946) (655,21205) (738,22117)
(738,21946) (301,10591) (738,22117)

5 (5378, 37541) (4159, 30100) (4158, 30091) (1621, 11777) (4158, 30091)
(4155, 30009) (1566, 11180) (4155, 30009)

6 (105215, 11533666 a) (6362, 91026) (6362,91026) (6362, 93610) (6362, 93610)
(1975,33071) (1975,33126) (1975,33126)

37,884)
11,322)

(302,4523)
(97,1584)

(530,10670)
(113,1861)
(190, 5521)
(16,572)

(414,4604)
(117,1579)
(961,17367)
(626,9535)

a Count recorded at the time the run was stopped

288 R DECHTER

two types of learning. Each entry records the number of backtrackmgs and the
number of consistency checks respectively.

Each of the problem instances was solved twice by the same strategy; the
second run using a new representation that included all the constraints
recorded in the first run. This was done in order to check the effectiveness of
these strategies in finding a better problem representaUon. The results of these
runs are shown in a second pair of numbers m the corresponding entries in
Tables 2 and 3 Figures 5 and 6 provide a graphic display of these results
depicting only the number of consistency checks performed for the two
problems.

The third and fourth classes of problems are similar m their behavior for the
various learning algorithms. Figures 7 and 8 present these results for the
random and planar problems respectwely, after grouping similar instances into
clusters and averaging on each cluster.

Our experiments (implemented in LISP on a Symbolics LISP Machine) show
that the behavior of the algorithms is different for different problems. From
these results we see that the class-assignment problem turned out to be very
easy, and is solved efficiently even by naive backtracking (see Fig. 5 and Table
2). The effects of backlumping and learning are, therefore, minimal, except for

o3

uJ
"l"

>-

z
LLI
I'-"
O3
G
z
O
t~
u.
O

6
z

800

700

600

500

6

5

400 "
4

300 3

1
20O

2
100 -

I

NB
L I L I I

BJ SF SS DF DS

S T R E N G T H OF L E A R N I N G

Fig 5 Performance of learning schemes on the class-assignment problem

ENHANCEMENT SCHEMES FOR CONSTRAINT PROCESSING 289

o Lu

8
>-
¢J
Z
gJ

L~

d
Z

250,000

200,000

150,000

100,000

50,000

25,000

NB = naive backtrack
BJ = backjump
SF = shallow hrst
SS = shallow second
DF = deep hrst

NB BJ SF SS DF DS

STRENGTH OF LEARNING

Fig 6 Performance of learning schemes on the zebra problem

deep second-order learning where some gains are evident. In all these cases,
the second run gave a backtrack-free performance.

The zebra problem, on the other hand, is apparently much more difficult,
and in some cases could not be solved by naive backtracking in a reasonable
amount of time (in these cases the numbers reported in Table 2 are the counts
recorded at time the run was stopped). The enhanced backtrack schemes show
dramatic improvements in two stages (see Fig. 6). First, the introduction of
backjumping by itself improved the performance substantially, with only
moderate additional improvements due to the introduction of first-order or
shallow second-order learning. Deep second-order learning caused a second
leap in performance, with gains over no learning backjump by a factor of 5 to
10.

For the planar and random problems which appear to be of moderate
difficulty the behavior pattern is different (see Figs. 7 and 8). In almost all
cases we see a big improvement in the performance going from naive back-
tracking to backjumping. Additional, more moderate improvement continues
for shallow first- and shallow second-order learning when constraints are
modified only, then the performance deteriorates when deeper forms of

290 R DECHTER

r.,d

Z
I -
N

O

r~
O

Z

100,000
~ n = 6

50,000

- - n = 7

10,000 n = 10

5,000

4,000 ! ~ , . . _ ~
j n = 11

3,000

2,000

1,000

BACKTRACK BJ

PLANAR PROBLEMS

BJ = BACK JUMP

SF = SHALLOW-FIRST

S S M = SHALLOW-SECOND-MODIFY

SSA = SHALLOW-SECOND-ADD

DF = DEEP-FIRST
DSM = DEEP-SECOND-MODIFY

DSA = DEEP-SECOND-ADD

SF SSM SSA DF

STRENGTH OF LEARNING

DSM DSA

Fig 7 Performance of learning schemes on the planar problems

learning are used. The amount of work invested in these deeper learning
schemes outweighs the savings in the search.

The experiments demonstrate that learning might be beneficial in solving
CSPs. For difficult and moderately difficult problems (e.g. the zebra problem,
planar and random problems) backjumping, coupled with shallow (first- or
second-order) learning, largely outperformed naive backtracking. In contrast,
for easy problems (e.g. the class-assignment problem) their performance is
roughly similar. These results strongly support the work on intelligent back-
tracking in PROLOG which is centered on various backlumping schemes. In
recent work Rosiers and Bruynooghe [30] also demonstrated that these
schemes compare favorably with some known lookahead schemes.

Deeper forms of learning perform well on difficult problems, like the zebra
problem, on which the greatest improvement was achieved by the strongest
form of learning tested: deep second-order learning. It still remains to be seen

ENHANCEMENT SCHEMES FOR CONSTRAINT PROCESSING 291

100,000

50,000

10,000 m

5,000

4,000 - -

3,000 I~
2 000
1,000

BACKTRACK BJ

R A N D O M P R O B L E M S

BJ : B A C K J U M P

SF = S H A L L O W - F I R S T

SSM : S H A L L O W - S E C O N D - M O D I F Y

SSA - S H A I L O W - S E C O N D - A D D

DF = D E E P - F I R S T

n = 9 I

n= 8
i a

SF SSM SSA DF DSM DSA

STRENGTH OF LEARNING

F i g 8 Performance of learning schemes on the random problems

whether higher degrees of learning are worth pursuing in view of the additional
bookkeeping storage space they require. For easier problems, however, (e.g.
planar problems, random problems and the class-assignment problem), their
performance was generally worse in comparison to backjumplng.

We showed that with the use of learning the "knowledgeable" representation
achieved upon termination is significantly better than the original one, when
answering exactly the same query. This could be used when a CSP is
representing a knowledge base on which many different queries can be posed.
Each query assumes a world that satisfies all the domain constraints plus some
additional query constramts. In such an environment It may be worthwhile to
keep the knowledge in the form of a set of constraints enriched by those
learned during past searches. It is in such environments that the benefits of
learning across instances could be best demonstrated. However, such a study is
beyond the scope of this paper.

292 R DECHTER

Addinonal expertmental results are required for establishing how first- and
second-order learnmg compare with the pre-processing approaches of arc and
path consistency. However, theoretical considerations by themselves reveal
that pre-processmg may be too costly and may perform unnecessary work. For
instance, the path consistency algorithm is known to have a lower-bound
worse-case complexity of O(n3k3), and the best performance is O(n3k 2) [18] ~'
For the zebra problem these consistency checks range between 388625 and
1953125, which is far greater than those encountered in deep second-order
learning on all problem instances presented. Finally, we conjecture that the
effect of learning would be higher ff all solunons were generated.

In the next secnon we present another graph-based technique, called the
cycle-cutset scheme, and subsequently demonstrate its effect on backjumping
and learning.

4. The Cycle-Cutset Decomposition

4.1. The cycle-cutset method

Whereas learning methods attempt to prune the search space by exphcatmg
deducible constraints, decomposition methods keep the problem representa-
tion mtact and attempt, instead, to exploit special features of the constraint
graph which admit simple solutions. The decomposmon method investigated in
this section utilizes the stmphcity of tree-structured problems We call it the
cycle-cutset method since tt ts based on identifying a set of nodes that, once
removed, would render the constraint graph cycle-free.

The cycle-cutset method ts based on two facts: one is that tree-structured
CSPs can be solved very efficiently [5, 12, 18], and the other is that vartable
instantiation changes the effecuve connectivity of the constraint graph In Fig.
2(a), for example, mstantiating X 3 to some value, say a, renders the choices of
X I and X 2 independent of each other as if the pathway X1--X~--X 2 was
"blocked" at X~ Similarly, this instantiation "blocks" the pathways X~--X~--

X 1 X2
/ X1 X 2 X 1 X 2

X3 X3

X4 X5 X4 X5

(a) (b) (c)
F~g 9 An mstantmted variable cuts ~ts own cycles

6 Recent experimental results are also available m R Dechter and I Meln, Experimental
evaluation of preprocesslng techmques in constraint sansfactlon problems, m Proceedings IJCAI-
89, Detroit, MI (1989)

E N H A N C E M E N T SCHEMES FOR CONSTRAINT PROCESSING 293

S5, S2--S3--X4, S4--S3--S5 and others, leaving only one path between any
two variables. The constraint graph for the rest of the variables is shown in Fig.
9(a), where the instantiated variable, X 3, is duplicated for each of its neigh-
bors. The method of cutting loops in the "CONSTRAINTS" language [34] is a
variant of the same idea.

When the group of instantiated variables constitute a cycle-cutset, the
remaining network is cycle-free, and the efficient algorithm for solving tree-
constrained problems is applicable. In the example above, X3, cuts the single
cycle X3--X4--X 5 in the graph, and the graph in Fig. 9(a) is cycle-free. Of
course, the same effect would be achieved by instantiatmg either X 4 or Xs,
resulting in the constraint trees shown m Figs. 9(b) and 9(c). In most practical
cases ~t would take more than a single variable to cut all the cycles in the graph
(see Fig. 10).

Therefore, a general way of solving a problem whose constraint graph
contains cycles is to mstantiate the variables in a cycle-cutset in a consistent
way and solve the remaining tree-structured problem by a tree algorithm. If a
solution to the restricted problem is found, then a solution to the entire
problem is at hand. If not, another instantiat,on of the cycle-cutset variables
should be considered until a solution is found. Thus, if we wish to solve the
problem in Fig. 2, we first assume X 3 = a and solve the remaining problem. If
no solunon is found, then assume X 3 = b and try again.

Since the complexity of this scheme is dominated by the exponential
complexity of mstantiating the cutset variables, and since finding a minimal size
cycle-cutset is an NP-complete problem, it will be more practical to incorporate
it within a general problem solver like backtracking. This could be done by
keeping the ordering in which backtracking mstantiates variables unchanged
and enhancing its performance once a tree-structured problem is encountered.

Since all backtracking algorithms work by progressively instantiating sets of
variables, all we need to do is keep track of the connectivity status of the
constraint graph. As soon as the set of mstantiated variables constitutes a
cycle-cutset, the search algorithm is switched to a specialized tree-solving
algorithm on the remaining problem, i.e., either finding a consistent instantla-
tion for the remaining variables (thus, findmg a solution to the entire problem)

A A

E
C

C D D C

(a) (b)

Fig 10 A constraint graph and a constraint tree generated by the cutset {C, D}

294 R DECHTER

B

C

(a)

D C D

Tree-part
C

A

Cutset-part
D

(b)

Fig II The constraint graph of backtracking with cutset

or concluding that no consistent instantlauon for the remammg variables exists
(m which case backtracking must take place) For instance, assume that
backtracking instanUates the variables of the CSP represented in Fig. 10(a) m
the order D, C, E, A, B (Fig. l l(a)). Backtracking with the cutset provision
wdl mstantiate varmbles C and D, and then, realizing that these variables cut
all cycles, will revoke a tree-solving routme on the rest of the problem (Fig.
l l(b)) . If no solution is found, control returns to backtracking which will go
back to variable C

Observe that the applicabihty of this idea is independent of the particular
type of backtracking algorithm used (e.g., naive backtracking, backlumping,
backtracking with learning, etc., see Fig. 12). When the origmai problem has a
tree constraint graph, the enhanced backtracking scheme coincides with a tree
algorithm, and when the constraint graph is complete, the algorithm reverts to
nawe backtracking.

4.2. Bounds on the performance of the cutset method

In [5] it is shown that tree CSPs can be solved in O(nk 2) and that no algorithm
can do better m the worst case. It seems reasonable, therefore, that any
backtracking algorithm should improve its worst case bound if it cooperates
with a tree algorithm via the cycle-cutset method. This, however, may only be

Cutset leaf

BaCklxackmg's search
n cutset

Tree's search

Fig 12 The search space of algortthm backtracking with cutset

ENHANCEMENT SCHEMES FOR CONSTRAINT PROCESSING 295

true for naive backtracking. Let M(A) denote the worst-case complexity of an
algorithm A, where complexity is measured by the number of consistency
checks performed.

Theorem 4.1. Let B be the naive backtrackmg for solving a CSP, and let B c be
the algortthm resulting from incorporating a tree algorithm m B vta the
cycle-cutset approach Then

M(B¢) <~ M(B) .

Proof. Let Scu t s e t be the search space explored by B, truncated at the depth
corresponding to the cutset states, and let M(Scutset) be the number of
consistency checks used by B to explore this search space. Each leaf node in
Scutset corresponds either to a leaf state in the full search space, one which
cannot be extended by any consistent assignment, or to an instantiated
cycle-cutset. Denote the latter type leaves by CUTSET-LEAVES, and let M,(B)
stand for the effort spent by B in exploring the subtree rooted at the ith state
of the CUTSET-LEAVES. The overall complexity of B is given by

M(B) = M(Scutset) + Z M,(B).
t E C U T S E T - L E A V E S

Algorithm B, being naive backtracking, does not acquire any information from
searching the subtree rooted at i. Namely, if an oracle were to inform
backtracking that a certain state in the CUTSET-LEAVES leads to a dead-end, the
rest of the search would be the same, had B discovered this information on its
own. Therefore, the truncated search space and the set of CUTSET-LEAVES are
the same for both B and B c. Let TREE be the tree-solving algorithm. The
complexity of B c is given, therefore, by:

M(Bc) = M(Scutset) + Z M,(TREE) .
t E C U T S E T - L E A V E S

Each state in the CUTSET-LEAVES induces a new CSP problem, which, as
explained, has a tree-structured graph and therefore can be solved efficiently
by a tree algorithm. Moreover , since for naive backtracking M,(B) is depen-
dent only on state i, we get

M,(TREE) ~< M,(B)

yielding

M(B) >! M(B¢). []

296 R DECHTER

The performance of any backtracking algorithm, Bc, that incorporates the
cutset approach can be bounded as follows. Let d = X 1 X,,, be an
ordering of the variables, and let C - - X 1 X~ be a cycle-cutset in the
g r aph] For a state in the CUTSET-LEAVES, only n - c variables remain to be
instantiated. Therefore , all tree-structured CSPs induced by these states have
n - c variables and they can be solved by a tree algorithm in O((n - c)k 2) (k is
the number of values) Switching to a representat ion required by the tree
algorithm may take O ((n - c)ck)) consistency checks, since each cutset vari-
able must propagate its value to all its neighbors which are not in the cutset.
The complexity (i.e., the number of consistency checks) of the TREE algorithm
at state i including the transition work is therefore O((n - c)k 2 + (n - c)ck) .
The number of consistency checks required for generating all CUTSET-LEAVES
and the cardlnality of this set are bounded by k c since the CUTSET-LEAVES are
the solutions of a CSP restricted to the cutset variables whose cardinality is c.
We get:

M(Bc) = O(k ') + O(kC{(n - c)k 2 + (n -- c)ck })

and, therefore,

M(Bc) : O(k ' {(nk 2) + (n2k)}) .

Obviously, as the s~ze of the cycle-cutset diminishes the exponential term m the
above expression is reduced and we get bet ter upper bounds for the perfor-
mance of the algorithm. We see that using the cutset method, the exponential
term in the upper bound on the performance of any algorithm can be reduced
from O(k n) to O(kC).

Practically, however, the algorithms rarely exhibit their worst-case perfor-
mance, and their average-case performance is of greater interest. We do not
expect to see the superiority of the cycle-cutset method in every problem
instance. This is so because there is no tree algorithm which is superior to all
other algorithms for all trees; so, the tree algorithm used in the cycle-cutset
method may occasionally perform worse than the original backtracking al-
gorithm

4.3. Experimental evaluation

We compared the performance of backtracking enhanced by the cycle-cutset
approach to that of naive backtracking, on the random and planar problems
and on one instance of the zebra problem. As before, variables were in-
stantlated in a decreasing order of their degrees.

v Observe that, when the ordering of variables is not fixed, each state should be tested for the
cycle-cutset property which would render the cycle-cutset method computanonally unattractive

ENHANCEMENT SCHEMES FOR CONSTRAINT PROCESSING 297

The tree algorithm which was used in the cutset method is the one presented
in [5], which is optimal for tree CSPs. The algorithm performs directional arc
consistency (DAC) from leaves to root, i.e., a child always precedes its parent.
If, in the course of the DAC algorithm a variable becomes empty of values, the
algorithm concludes immediately that no solution exists. When a solution
exists, the tree algorithm assigns values to the variables in a backtrack-free
manner, going from the root to the leaves. Many total ordering will satisfy the
partial order dictated by the DAC algorithm (e.g., child precedes its parent) and
the choice may have a substantial effect on its average performance. The
ordering we implemented is the reverse of "in-order" traversal of trees [10].
This ordering compared favorably with other orderings tried. It realizes
empty-valued variables early in the DAC algorithm, thus concludes that no
solution exists as soon as possible. For completeness we present the tree
algorithm:

Tree-backtraek(d = X 1 , . . . , X n)
1. begin

2. call Dac(d)
3. if completed then Find-solution(d)
4. else (return, no solution exists)

5. end

Dac-d-arc-consistency
(the order d is assumed)

1. begin

2. F o r i = n t o l b y - l d o

3. For each arc (Xj, X,); j < i do

4. Revise(Xj, X,)

5. if Xj is empty, return (no solution exists)

5. end

6. end

7. end

The procedure Find-solution is a simple backtracking algorithm on the order
d which, in this case, is expected to find a solution with no backtrackings and
therefore its complexity is O(nk). The algorithm Revise(Xj, X,) [17] deletes
values from the domain of Xj until the directed arc (X,, X,) is arc-consistent.
The complexity of Revise is O(k2).

In Fig. 13 and Fig. 15 we compare the two algorithms graphically on random
CSPs, and in Fig. 14 and Fig. 16 the comparison is on planar CSPs. In Figs. 13
and 14 the x-axis displays the number of consistency checks (on a log-log

2 9 8 R. DECHTER

7

/

f

/

R A N D O M PROBLEMS
;oo,ooo

10 00o

2 000 " "

I 000 . . "

100 1 000 2 000 10 000 100,000

NO OF C O N S I S T E N C Y C I I E C K S IN B A C K T R A C K I N G

Fig 13 Performance of the cutset method on random problems

100,000

7

<

z
• -r 10,000

q

7
1,000

Fig 14

P L A N A R P R O B L E M S

i
100 1 000 2 000 10,000 100,000

NO OF C O N S I S T E N C Y C H E C K S IN B A C K T R A C K I N G

Performance of the cutset method on planar problems

ENHANCEMENT SCHEMES FOR CONSTRAINT PROCESSING

R A N D O M PROBLEMS

299

z

r j

[.-,

r...)

==

18

17

16

15

14

13

12

11

10

09

0 8

07

06

0 5

04

0 3

0 2

01

O
O

O
Q •

• !

L I I I I I I I
0 1 0 2 0 3 0 4 0 5 0.6 07 0 8

CUTSET/n

Fig 15 Evaluat ing the cutset m e t h o d r e la twe to cutset stze on r a n d o m p r o b l e m s

paper) performed by backtracking (denoted by B) and the y-axis displays the
same information for backtracking with cutset (denoted by Bc). Each point in
the graph corresponds to one problem instance. The 45-degree line represents
equal performance for both algorithms; above this line backtracking did better;
and below this line backtracking with cutset did better. We see that most
problem instances lie underneath this line.

In Figs. 15 and 16 the graph displays the relationship between the perfor-
mance of B e and the size of the cycle-cutset. The x-axis gives the ratio of the
cutset size to the number of variables, and the y-axis gives the ratio between
the performances of B c and B. When the ratio of the cutset size to n is less than
0.3, almost all problems lie underneath the line y = 1, for which Bc out-
performed B. Unlike backjumping, the cycle-outset method does not always
improve naive backtracking's peformance. This indicates that for some prob-
lem instances the tree algorithm was less efficient than naive backtracking on
the tree part of the search space (although its worst-case performance is
better). Indeed, while no algorithm for trees can do better than O(nk 2) in the

300 R DECHTER

Z

,<
, v

E-

E,,-

19

18

17

16

15

14

13

12

11

10

0 9

0 8

0 7

0 6

0 5

0 4

0 3

0 2

01

P L A N A R PROBLEMS

II

Ct L I ° . J ,~1 J t 't , I

01 0 2 0 3 0 4 0 5 0 6

CUTSET /n

Fig 16 Evaluating the cutset method relatwe to cutset size on planar problems

worst case, the performance of such algorithms ranges between O(nk) and
O(nk 2) when there is a solution, and it can be as good as O(k 2) when no
solution exists. It depends mainly on the order of visiting variables, either for
establishing arc consistency or for instantmtion. Backtracking may unintention-
ally step in the right order and, since it avoids the preparation work required
for switching to a tree representation (which may cost as much as O(n2k)), it
may outperform backtracking with cutset. On the average, however, the cutset
method improved backtracking by 25% on the planar problems, and by 20%
on the random CSPs. Observe that when the size of the cutset is small B c
outperformed B more often.

On the zebra problem the performance of backtracking w~th and without the
cutset method was almost the same (we tested only one instance of the zebra
problem). This can be explained by the fact that the constraint graph of this

ENHANCEMENT SCHEMES FOR CONSTRAINT PROCESSING 301

problem is very dense and 20 out of the 25 variables were required to cut all
cycles. Since most of the search is performed by nawe backtracking anyway,
the impact of the tree algorithm was quite negligible.

As we see, the cycle-cutset method provides a promising approach for
~mproving backtracking algorithms. The experiments demonstrate that the
effectiveness of this method depends on the size of the cutset, which provides
an a priori criterion for deciding whether or not the method should be utilized
in any specific instance.

The effectiveness of this method also depends on the efficiency of the tree
algorithm employed and on the amount of adjustment reqmred while switching
to a tree representation. The development of an algorithm that exploits the
topology of tree-structured problems without intentional pre-processing would
be very beneficial.

Since the applicability of the cycle-cutset method seems independent of the
particular version of backtracking used, it is interesting to see whether it has a
similar effect when it is incorporated with nonnaive versions of backtracking.
In the next section we answer this question by combining the enhancement
schemes presented in this paper: backjumping and learning, with the cutset
method.

5. Integrating the Three Schemes

5.I. Integration principles

In principle the cycle-cutset method can be used with any backtracking scheme,
not necessarily naive backtracking. The version of backtracking used will
instantiate variables in a fixed order, until a cutset is reahzed and then it will
switch to a tree-solving algorithm. This suggests that the cutset method may
improve any backtracking scheme and thus provide a universal improvement.
This conclusion, however, is only valid when there is no flow of information
which is used by the specific backtracking scheme when it is between the first
part of the search (called the cutset part) and that corresponding to the tree
search (the tree part) (see Fig. 12). This assumption is true for naive backtrack-
ing but not for all its enhancements. For instance, when backjumping alone
searches the tree part of the search space, it gathers some valuable information
that helps it prune the search in the cutset part by jumping back efficiently. If
the integrated scheme backs up naively from the tree part to the cutset part, no
such information will be available.

Consider again the constraint graph of Fig. 10(a) and suppose that back-
jumping works on this problem in the order (D--~ C---~E---~A---~B) (Fig.
17(a)). If, for instance, there is a dead-end at E, backjumping will back up to
node D. If the cutset method is integrated "naively" into backjumping, it will
instantiate D and C (the cutset variables) and give control to the tree algorithm

302 R DECHTER

Backup

D C D

E•@ Tree-part
C

) . i 'ac'-u
Cutset-part

D

(a) (b)

Fig 17 Incorporating backjumpmg with cutset

(see Fig. 17(b)). When the dead-end at E is encountered the tree algorithm will
indifferently switch back to backjumpmg, providing it no information for
skipping C. This difficulty may be corrected if we equip the tree-solving
algorithm with the ability to gather the same information needed by backjump-
lng, namely identifying the subset of variables which may be responsible for a
failure.

Therefore, the tree algorithm which we integrated with backjumping wdl
return a subset of responsible variables, given a "no solution" situation. If the
domain values of variable X, become empty during DAC (as a result of Revise)
it implies that only the variables which are located within the processed part of
the subtree rooted at X, may be relevant to this situation The cutset variables
of this subtree can be regarded, therefore, as the parent set (also as the
conf-set) of this dead-end. These variables will be returned to backlumping
which will back up to the most recent among them. If, for instance, the tree
part of the problem in the example of Fig. 17 is solved in left to right order and
if the algorithm finds that the domain values of E are empty after performing
Revise on (E, D) it will return D as its only parent (D is the only cutset leaf in
the subtree rooted at E) and backjumping will back up to it and not to C as in
the naive integration The difference between naive integration and the one
suggested here were profound in our experiments and only by this kind of
integration would the combined scheme improve w.r.t its individual compo-
nents.

As to the integration with learning, the same kind of information gathering
process, as with backjumpng alone, was used. Namely, upon a "no solution"
situation identified at node X, of the tree, the conf-set is identified (same as the
parent sets for backjumpmg) and returned back for analysis. Shallow learning
can be performed on this set. For deep learning an additional analysis of the
conf-set should be performed when X, is considered the dead-end variable

ENHANCEMENT SCHEMES FOR CONSTRAINT PROCESSING 303

5.2. Experimental evaluation

Figures 18 and 19 compare the performance of backjumping against the
performance of backjumping with cutset on random and planar problems. For
most hard instances (i.e. those requiring more than 1000 consistency checks for
backlumping) the integration improved the performance and in some cases
quite significantly (the comparison is displayed on a log-log paper as in Fig.
13). On the average backjumping was improved by 25% on these two classes.
For the easiest problems, when backjumping performed 1000 consistency
checks or less, the integration didn't pay off. The deterioration, however, is
not severe: 50% for planar problems and 10% for random problems.

Figure 20 compares the integrated learning and backjumpmg schemes with
their unintegrated counterparts on planar problems. On the right-hand side of
the y-axis we repeat the results appearing in Fig. 7 while on the left-hand side
we added the corresponding results of the integrated strategy. The actual
numbers (without the deep learning results) are given in Table 4. The name of
each integrated learning scheme is preceded by "C" to indicate the cutset
method which is embedded into it (e.g. CSF stands for cycle-cutset method
integrated with shallow first-order learning), "ratio" gives the ratio between

P L A N A R I)ROBLEMS

5 000

10000

I I I t
100 1,000 10,000 50 000

NO OF CONSISTENCY CHECKS WITH BACK JUMP

Fig. 18 Comparing backjumpmg to cutset backlumpmg on planar problems

304 R DECHTER

10 0 0 o

5 ooo

x

>

1 ooo

I A

1 o o o lO ooo

I t,
50 o o o

Fig 19 Comparing backlumpmg to cutset backlumpmg on random problems

the average cutset size and the number of variables. Thus, we compared the
performances of naive backtracking, the cutset method, backjumping, shallow
first-order, shallow second-order modify, shallow second-order add, deep
first-order, deep second-order modify and deep second-order add, averaged
over clusters of instances, with and without the cutset method. We see that the
curves to the left of the y-axis are generally below those to the right, indicating
an improvement in performance. In two clusters one corresponding to easy
problems and one corresponding to 5000-10000 consistency checks (comprised
of only two instances) a small deterioration is detected.

We tested the integrated scheme on one instance of the zebra problem, the
one on which naive backtracking showed the best performance, and the results
are tabulated in Table 5. Backjumping alone improves performance by 50%
and combining It with the cutset method produced an additional improvement
of 40% desDte the large size of the cutset (20 out of the 25 variables are in the
cutset). The class-assignment problem was tested on few instances as well,
however, due to the inherent easiness of this problem the cutset approach
caused a deterioration in performance.

E N H A N C E M E N T SCHEMES FO R C O N S T R A I N T PROCESSING 305

100,000

/
50 O00 /
10,000

PLANAR PROBLEMS

n = 6

BJ = BACK JUMP

SF = SHALLOW-F IRST

SSM = SHALLOW SECOND-MODIFY

SSA = SHALLOW SECOND-ADD

DF = DEEP F IRST
- DSM = DEEP-SECOND MODIFY

DSA = DEEP-SECOND-ADD

n =7

- =

~ n = 1 1
, ; ~ ~ I t ~

CDSA COSM CDF CSSA CSSM CSF CBJ NB CS BJ SF SSM SSA DF DSM DSA

STRENGTH OF LEARNING

Fig 20 Performance of learning with and without cutset

Table 4

Average number of consistency checks for different backtracks

Number of
Range instances Ratio NB Cutset BJ SF SSM SSA CBJ CSF CSSM CSSA

0-1000
1000-5000
5000-10000

10000-20000
20000-50000
50000-100000

7 0 19 454 404 261 248 252 263 285 270 267 267
11 0 29 2702 2 3 6 0 1 2 2 9 1 1 5 2 1 1 2 5 1 4 2 3 1023 996 985 1201
2 0 23 5782 4 3 3 5 1 9 6 6 1 7 6 9 1 7 7 8 1 8 7 2 2 2 5 6 1 9 8 8 1 7 3 7 1601
10 0 17 15423 8 6 8 3 2 7 4 0 2 5 0 8 2 6 6 8 2 5 4 5 1 7 3 0 1 4 3 7 1 3 9 9 2235
7 0 39 35157 39188 5225 5 0 5 0 4 6 8 3 4 6 7 2 3 8 5 7 3 6 1 1 3 4 3 7 3974
7 0 28 104730 33150 6655 6 5 0 0 5 2 6 0 5 5 7 4 5 8 0 9 4 2 2 9 3 5 2 5 6065

Table 5

The zebra problem

NB BJ SF SS DF DS CBJ CSF CSS CDF CDS

2066 1241 1234 1234 1272 884 782 759 759 813 1189

306 R DECHTER

We see that the integrated strategy provides an improvement on each of its
individual constituents; backjumpmg, learning, and the cycle-cutset method.
Each of the individual schemes shows its strength m different classes of
problem instances and the integrated scheme takes advantage of each scheme's
power when appropriate. For instance, when the constraint graph is sparse,
backjumping and the cutset method are most effective When it is highly
densed, backjumping and the cutset method lose their effectiveness and the
learning schemes take over. For intermediate cases both the cutset method and
backjumpIng cooperate and, on the average, they do better than each one
alone.

6. Conclusions

This paper presents and evaluates three schemes for improving the perfor-
mance of backtracking: backjumping, learning, and cycle-cutset decomposi-
tion. Variants of these schemes can be found in various disguises in the
literature and this paper presents a unifying formal framework within which
such schemes can be defined, evaluated and integrated.

Our experiments and analyses conclude that backjumping defeats naive
backtracking on an instance-by-instance basis and, when the constraint graph is
sparse, the improvement ~s significant Since this scheme doesn't trade off
anything for its virtues we recommend it should always replace naive back-
tracking

Learning does revolve trade-off consideration. We showed that the amount
of learning effects the overall performance. Difficult problems (e.g, the zebra
problem) benefited from deeper forms of learning even though it required
more time and space, while other problems improved their performance with
shallow learning but the additional work required by deep learning was not
justified. We conclude, therefore, that learning should be used selectively--
recording all constraints can cause serious deterioration of performance.
Therefore, when no prior knowledge is available regarding the nature of the
problem, only shallow forms of learning should be attempted. When the
problem ~s expected to be difficult, deeper, though level-restricted learning
should be performed. This advice IS particularly relevant for the current
versions of TMSs which mdiscriminantly record all constraints.

Recording all constraints may be justified m frequently queried knowledge
bases, since the cost of learning is amortized over many queries. Our experi-
ment provide a hmited evidence to such behavior, showing that the representa-
tion resulting from any amount of learning improved the efficiency of answer°
ing the same queries again.

The cycle-cutset too improves the worse-case performance of naive back-
tracking, and integrating it with learning and backjumping revealed its poten-
tial for improving any backtracking algorithm. Although this improvement is

ENHANCEMENT SCHEMES FOR CONSTRAINT PROCESSING 307

not on a case-by-case basis, the average improvements justify incorporating
this idea in any algorithm especially if a way can be found to minimize the
overhead of integrating the tree algorithm with the hosting algorithm.

A constraint

1.

2.

3.
4.

5.

6.

7.

Appendix A. The Class-Assignment Problem

between a student and a class

Student(Robert, Prolog)

Student(John, Music)

Student(John, Prolog)
Student(John, Surf)

Student(Mary, Science)
Student(Mary, Art)

Student(Mary, Physics)

A constraint between a Professor and a class

1. Professor(Luis, Prolog)
2. Professor(Luis, Surf)

3. Professor(Maurice, Prolog)
4. Professor(Eureka, Music)
5. Professor(Eureka, Art)

6. Professor(Eureka, Science)

7. Professor(Eureka, Physics)

A trinary constraint among a class, a day, and a place

1. Course(Prolog, Monday, Room1)
2. Course(Prolog, Friday, Rooml)
3. Course(Surf, Sunday, Beach)

4. Course(Math, Tuesday, Rooml)

5. Course(Math, Friday, Room2)

6. Course(Science, Thursday, Room1)
7. Course(Science, Friday, Room2)
8. Course(Art, Tuesday, Rooml)

9. Course(Physics, Thursday, Room3)
10. Course(Physics, Saturday, Room2)

308

I stud ~ com'sel ~ prof

Fig 21 The constraint graph of the class-assignment problem

R DECHTER

I

The query is: find Student(stud, coursel) and Course(coursel , dayl , room)
and Professor(prof, coursel) and Student(stud, course2) and Course(course2,
day2, room) and noteq(coursel , course2)

The constraint graph corresponding to the problem's representation as a
binary CSP is shown in Fig. 21.

Appendix B. The Zebra Problem

1. There are five houses, each of a different color and inhabited by
men of different nationahties, with different pets, drinks, and
cigarettes.

2. The Enghshman lives in the red house.

3. The Spamard owns a dog

4. Coffee is drunk in the green house.

5. The Ukranian drinks tea.

6. The green house is immediately to the right of the ivory house

7 The Old-Gold smoker owns snails.

8. Kools are being smoked m the yellow house.

9 Milk is drunk m the middle house.

10. The Norwegian lives m the first house on the left.

11. The Chesterfield smoker lives next to the fox owner.

12 Kools are smoked m the house next to the house where the
horse is kept.

13. The Lucky-Strike smoker drinks orange juice.

14. The Japanese smokes Parhament.

15. The Norwegian lives next to the blue house.

The query is: Who drinks water and who owns the zebra?

ENHANCEMENT SCHEMES FOR CONSTRAINT PROCESSING 309

[[parli~ent

zebr 7

Japanese

ivory

water

kools chesierfield o l d - ~ lucky ~

h!rse f6x ?og ~ snads, [~

Ukrmnmn Enghshman Spaniard Norwegian[}

I I j// yellow red ¢ ~ ~een .-- blue .

tea coffee milk orange /1

Fig. 22 The constraint graph of the zebra problem

The problem can be represented as a binary CSP using 25 variables divided
into 5 clusters as follows:

1. red; blue; yellow; green; ivory.

2. norwegian; ukrainian; englishman; spaniard; japanese.

3. coffee; tea; water; milk; orange.

4. zebra; dog; horse; fox; snails.

5. old-gold; parliament; kools; lucky; chesterfield.

Each of the variables has the domain values {1, 2, 3, 4, 5} associating a house
number with the characterisnc represented by the variable (e.g., assigning the
value 2 to the variable red mean that the second house is red, etc.)

The constraints of the puzzle are translated into binary constraints among
the variables. For instance, the sentence "The Spaniard owns a dog" describes
a constraint between the variable spamard and the variable dog that allows
only the pairs: {(1, 1)(2, 2)(3, 3)(4, 4)(5, 5)}. In addinon, there is a constraint
between any pair of variables of the same "cluster" ensuring that they are not
assigned the same value. The constraint graph for this problem is given in Fig.
22 (the constraints among the variables of each cluster are omitted for clarity).

Appendix C. A Detailed Example

This appendix illustrates the operation of backtracking with learning on the
CSP in Fig. 2, assuming that the search is conducted in the order
(X1,)(2, X3, X4,)(5). In Fig. 23 we follow step by step the performance of
backtracking with shallow second-order learning. The steps in Fig. 23 corre-
spond to consistent states generated by backtracking and each string of values
corresponds to an instantiation according to the above order. C,. I denotes the
constraint between variables X, and Xj and the arrows represent backtrack

310 R DECHTER

1 a

2 aa

3 ab

4 ac

5

6 b

7 ba

8 bb

9 bba

10 b b a b

l l

12

13 bc

14 c

15 ca

16 cb

17 cc

18 ccb

19 ccba

20 ccbb

21

C o n f = { X I

C o n f = {X,

Conf = { X 1

Conf = {X,

Conf = {X 1

- a, X 2 = a) --~ add C~ z, de l e t e (a, a) f rom C t

= a, X~ = b} --~ modify C, 2, de l e t e (a, b) f rom C,

= a, X 2 = c}--> modify C, _,, de le te (a, c) f rom C~ _,

= a }--~ modi fy C~, de l e t e a, f rom C,

= b, X 2 = a} --~ modify C~ 2, de l e t e (b, a) f rom C~

C o n f = {X 3 = a, X 4 = b}----> modify C~ 4, de le te (a, b) f rom C~ 4

Conf = {X~ = a} --~ modify C 3, de le t e a f rom C~

Conf = {X~ = b, X~ = b)--~ modify C~ 2, de l e t e (b , b) f rom C~

Conf = {X, = b)--~ modi fy C~, de l e t e b f rom C~

C o n f = {X 2 = a} --~ modify C 2, de le t e a f rom C 2

Conf = {X 2 = b}--~ modify C 2, delete b from C 2

C o n f = {X~ = b, X 4 = a} ---->modify C~ ~, delete (b, a) from C~

Conf = {X~ = b, X 4 = b}---~ modify C~ 4, de le te (b, b) f rom C~ 4

Conf = {X~ = b}---~ modi fy C~ delete b f rom C~

Fig 23 Simulating shallow second-order learning

points, that is, states which cannot be extended. With each such point the
learning scheme identifies the conf-set and records the constraint discovered.
Consecutive back-arrows correspond to several consecutive backtracks needed
to reach a state that can be extended. W~th each such backtrack the learning
procedure either adds or modifies a constraint.

When the search starts, X 1 is assigned the value a and then X 2 is assigned the
value a (this is indicated by the first two steps in Fig. 23). This state cannot be
extended by any value of X 3 and therefore there is a backtrack point. The
conf-set includes the whole dead-end state and therefore a binary constraint
between X 1 and X 2 is added excluding the pair (a, a) from the constraint C~,2
Later on, the constraint C1, 2 is modified and the pairs (a, b) and (a, c) are
deleted. When the search reaches state (b, b, a, b) (step 10), which cannot be
extended by X 5, three consecutive backtracks are performed. The first results
in modifying the constraint C3, 4 and the second m deleting the value a from C~.
This last modification helps prune the search. For instance, in step 13, the state
(b, c) is not extended to (b, c, a) since a is no longer in the domain of X 3

ENHANCEMENT SCHEMES FOR CONSTRAINT PROCESSING 311

ACKNOWLEDGEMENT

I thank the AI Lab at Hughes Aircraft for providing me with a very supportwe environment for
this work In particular Dave Payton, Dave Kelrsey, Ken Rosenblatt, and Charles Dolan offered
valuable help in getting these experiments going. I also thank Itay Mere, Judea Pearl and Greg
Provan for valuable comments on previous versions of this manuscript I am especmlly grateful to
my husband, Avl Dechter, who helped me shape these Ideas and bring the manuscript to readable
form

REFERENCES

1 M Bruynooghe, Solving combinatorial search problems by intelligent backtracking, Inf.
Process Lett 12 (1981) 36-39

2 M Bruynooghe and L M Pereira, Deduction revision by intelligent backtracking, in J A.
Campbell, ed , Implementation of Prolog (Ellis Horwood, Chichester, 1984) 194-215

3 J G Carbonell, Learning by analogy Formulation and generating plan from past experience,
in' R S Mlchalskl, J G Carbonell and T M Mitchell, eds , Machine Learmng: An Artificial
Intelligence Approach (Tioga, Palo Alto, CA, 1983)

4 P T Cox, Finding backtrack points for intelligent backtracking, in: J A Campbell, ed.,
Implementation of Prolog (Ellis Horwood, Chlchester, 1984) 216-233

5 R Dechter and J Pearl, Network-based heuristics for constraint-satisfaction problems,
Artificial Intelhgence 34 (1987) 1-38

6. R Dechter and J Pearl, The cycle-cutset method for improving search performance in AI
apphcatlons, in Proceedings 3rd 1EEE on AI Apphcatzons, Orlando, FL (1987)

7 R Dechter and J. Pearl, Tree clustering for constraint networks, Artificial Intelhgence 38
(1989) 353-366

8. J de Kleer, An assumption-based TMS, Artificial Intelhgence 28 (1986) 127-162
9 J Doyle, A truth maintenance system, Artificial Intelligence 12 (1979) 231-272

10. S Even, Graph Algorithms (Computer Science Press, Rockville, MD, 1979)
11 R E. Flkes and N.J Nilsson, STRIPS A new approach to the apphcation of theorem proving

to problem solving, Artificial Intelligence 2 (1971) 189-208
12 E C Freuder, A sufficient condition of backtrack-free search, J ACM 29 (1) (1982) 24-32.
13 J Gaschnig, Performance measurement and analysis of certain search algonthms, Tech Rept

CMU-CS-79-124, Carnegie-Mellon University, Pittsburgh, PA (1979)
14 R.M Harahck and G L Elhott, Increasing tree search efficiency for constraint satisfaction

problems, Artificial Intelhgence 14 (1980) 263-313
15 R E Korf, A program that learns how to solve Rubik's cube, In" Proceedings AAA1-82,

Pittsburgh, PA (1982) 164-167
16 J E Laird, P S Rosenbloom, and A. Newell, Towards chunking as a general learmng

mechanism, in Proceedings AAA1-84, Austin, TX (1984)
17 A K Mackworth, Consistency In networks of relations, Artificial Intelhgence 8 (1977) 99-118
18 A K Mackworth and E C Freuder, The complexity of some polynomial network consistency

algorithms for constraint satisfaction problems, Artificial Intelhgence 25 (1985) 65-74
19 J P Martins and S C Shapiro, Theoretical foundations for belief revision, m Proceedings

Theoretical Aspects of Reasomng about Knowledge (1986)
20 S Matwln and T Pletrzykowskl, Intelhgent backtracking in plan-based deduction, IEEE

Trans Pattern Anal Mach Intell 7 (1985) 682-692
21 D A McAllester, An outlook on truth-maintenance, Tech Rept , AI Memo No 551, MIT,

Boston, MA (1980)

22 T M Mitchell, R.M Keller, and S T. Kedar-Cabelll, Explanation-based generahzatlon- A
unifying view, Machine Learning 1 (1986) 47-80

312 R DECHTER

23 T Mitchell, P E Utgoff and R Baner F, Learning by experimentation, acqulnng and refining
problem solving heuristics, m R S Mlchalskl, J G Carbonell and T M Mttchell, eds ,
Machme Learnmg An Arttficlal Intelhgence Approach (Tioga, Palo Alto, CA, 1983) 163-190

24 U Montanan, Networks of constraints Fundamental properties and apphcatlons to picture
processmg, lnf Sct 7 (1974) 95-132

25 B Nudel, Conslstent-labehng problems and their algorithms Expected-complexmes and
theory-based heuristics, Arttfictal Intelhgence 21 (1983) 135-178

26 C J Petrie, Revised dependency-directed backtracking for default reasomng, m Proceedmg~
AAAI-87, Seattle, WA (1987) 167-172

27 G Provan, Complexity analysis of multiple-context TMSs m scene representation, m Proceed-
mgs AAAI-87, Seattle, WA (1987) 173-177

28 PW Purdom, Search rearrangement backtracking and polynomial average time, Arttfictal
lntelhgence 21 (1983) 117-133

29 R Relter and J de Kleer, Foundations of assumption-based truth maintenance systems
Prehmmary report, m Proceedmgs AAAI-87, Seattle WA (1987)

30 W Roslers and M Bruynooghe, Empirical study of some constraint satisfaction algorithms,
Tech Rept CW 50, Kathoheke Umversxtelt Leuven, Leuven, Belgium (1986)

31 M Sims, An AI approach to analytic discovery m mathematics, Departments of Computer
Science and Mathematics, Rutgers UmversJty, New Brunswick, NJ (1988)

32 R M Stallman and G J Sussman, Forward reasoning and dependency-directed backtracking
m a system for computer-aided clrcmt analysis, Arttfictal Intelhgence 9 (1977) 135-196

33 H S Stone and J M Stone, Efficient search techmques An empirical study of the N-queens
problem, Tech Rept RC 12(157 (#54343), IBM T J Watson Research Center, Yorktown
Heights, NY (1986)

34 G J Sussman and G L Steele Jr, CONSTRAINTS A language for expressing almost-hlerarchz-
cal descriptions, Arttfictal lntelhgence 14 (1980) 1-39

35 P van Hentenryck and M Dmcbas, Forward checking m logic programming, m J -L Lassez,
ed , Proceedmgs 4th lnternattonal Conference on Logic Programming (MIT Press, Cambridge,
MA, 1987) 229-255

36 D Waltz, Understanding hne drawings of scenes with shadows, m P H Winston, ed , The
Psychology of Computer Vtston (McGraw-Hdl, New York, 1975)

37 R Zablh and D McAllester, A rearrangement search strategy for determining proposttlonal
satlsfiabdlty, m Proceedmgs AAAI-88, St Paul, MN (1988)

Received December 1987; revised version received Augus t 1988

