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ABSTRACT 

Researchers m the areas o f  constramt sattsfactton problems, logtc programmmg, and truth mamte- 
nance systems have suggested vartous schemes for enhancmg the performance o f  the backtracking 
algorithm Thts paper defines and compares the performance o f  three such schemes "backlumpmg," 
"learmng," and "cycle-cutset " The backlumpmg and the cycle-cutset methods work best when the 
constramt graph is sparse, whde the learnmg scheme mostly benefits problem mstances wtth dense 
constramt graphs An integrated strategy ts described whwh utdtzes the dzstmct advantages o f  each 
scheme Expertments show that, m hard problems, the average tmprovement reahzed by the 
mtegrated scheme ts 20-25% higher than any o f  the mdtvtdual schemes 

I. Introduction 

Backtracking search is a prominent processing technique in Artificial Intellig- 
ence, in particular due to its use in PROLOG [2, 4, 20, 35], truth maintenance 
systems (TMSs) [9, 21, 26, 29, 32], and constraint satisfaction problems (CSPs) 
[5, 12-14, 17, 24, 25, 28]. In recent years there has been great emphasis in all 
of these areas on developing methods for improvmg backtrackmg efficiency. 
The terms "intelligent backtracking," "selective backtracking," and "depen- 
dency-directed backtracking" denote such ~mprovements. The main trust of 
these efforts is to enhance the chronological nature of the textbook backtrack- 
lng algorithm with mechamsms that faclhtate more informed decisions at 
various stages of the search. 

The standard backtracking search algorithm attempts to assign values to a set 
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of variables so that all the given constraints among the variables are satisfied. 
The algorithm typically considers the variables in some order and, starting with 
the f rs t ,  assigns a value, taken from a set of possible values, to each successive 
variable in turn as long as the assigned value is consistent with the values 
assigned to the preceding variables. When,  in the process, a variable is 
encountered such that none of its possible values is consistent with previous 
assignments (a situation referred to as a dead-end), backtracking takes place. 
That  is, the value assigned to the immediately preceding variable is replaced, 
and the search continues in a systematic way until either a solution (1.e,  
assignment ot values to all variables) is found or until it may be concluded that 
no such solution exists 

Improving backtracking efficiency amounts to reducing the size of the search 
space expanded by the algorithm. The size of the search space is greatly 
dependent  on the way the constraints are represented.  General ly speaking, the 
algorithm will benefit from representat ions which are more  exphctt, that is, 
when constraints are spelled out exphcltly, even if they are implied by other 
constraints. The size of the search space is also heavily influenced by user- 
specific choices such as the variable ordering and, when one solution suffices, 
the order in which values are assigned to each variable. 

In trying to use these factors to improve the performance of backtracking 
algorithms, researchers have developed procedures of two types: those that are 
employed m advance of performing the search, and those that are used 
dynamically during search Techniques designed to be applied in advance 
Include a variety of consistency enforcing algorithms [18, 24]. These algorithms 
transform a given constraint network into an equivalent, but more exphclt 
network by using the given constraints to deduce new constraints which are 
then added to the network There are also several heuristics that have been 
proposed for the purpose of deciding the ordering of the variables prior to 
performing backtracking search [7, 12]. 

Strategies for dynamically improving the pruning power  of backtracking can 
be conveniently classified as lookahead schemes and lookback schemes. 

Lookahead  schemes are invoked whenever  the algorithm is preparing to 
assign a value to the next variable. Some of the functions that such schemes 
perform are '  

(1) Calculate and record the way in which the current instantlations restrict 
future variables. This process has been referred to as constraint propagation.  
Examples  include Waltz's algorithm [36] and forward checking [14]. 

(2) Decide which variable to instantiate next (when the order is not pre- 
determined).  Generally,  it is advantageous to first lnstantlate variables which 
maximally constrain the rest of the search space. Therefore ,  the variable par- 
tlclpatlng in the highest number  of constraints is usually selected [12, 28, 33, 37]. 

(3) Decide which value to assign to the next variable (when there is more 
than one candidate) Generally,  for finding one solution, an at tempt  is made to 
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assign a value that maximizes the number of options available for future 
assignments [5, 14]. 

Lookback schemes are invoked when the algorithm encounters a dead-end 
and prepares for the backtracking step. These schemes perform two functions: 

(1) Decide how far to backtrack. By analyzing the reasons for the dead-end 
it is often possible to go back directly to the source of failure instead of to the 
previous variable in the ordering. This idea is often referred to as dependency- 
dtrected backtracking [32] or backjumping [13]. 

(2) Recordmg the reasons for the dead-end in the form of new constraints so 
that the same conflicts will not arise again later in the search (terms used to 
describe this idea are constraint recording and nogood constraints). 

This paper reports the results of theoretical and empirical investigations of 
three enhancement schemes for the backtracking algorithm using the model of 
constraint satisfaction problems. The advantage of using the CSP model is that, 
unlike models based on PROLOG and TMSs, it permits an implementation-free 
definition of the techniques involved and simple criteria for their evaluation 
At the same time, the CSP model is rich enough to exhibit the basic problem 
areas, so that the conclusions of this study are likely to apply to other domains 
where backtracking is used. The choice of enhancement schemes for this study 
was largely motivated by insight gained through the graphical representation of 
CSPs, called the constraint graphs. The three schemes are: 

(1) Graph-based backjumpmg. An implementation of the idea of going back 
to the source of the failure by using only knowledge extracted from the 
constraint graph. 

(2) Learning while searching. An adaptation of the constraint recording idea 
to CSPs We view this process as that of learning, since it results in modified 
data structure and improved performance. We consider the effects of learning 
on the structure of the problem and identify several levels of learning, 
characterized by the degree to which the structural properties of the problems 
are affected, and the amount of computational resources required. 

(3) Cycle-cutset decomposmon. A new method [6] which exploits algorithms 
for solving tree-structured CSPs in linear time. Variable instantmtlon by the 
backtracking algorithm reduces the effective connectivity of the constraint 
graph, possibly until such point that the remaining constraint graph is a tree. 
At this pomt, rather than continue the search blindly, a special-purpose 
algorithm is invoked that completes the rest of the search in linear time. 

We have simplified the presentation of the methods discussed in this paper 
by considering only binary constraint satisfaction problems, namely problems 
whose constraints involve no more than two variables. However, these 
methods are easily extendible to the general CSPs using a hypergraph generah- 
zation of the constraint graph [7]. 
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The paper  is organized as follows. Section 2 introduces the CSP model and 
its search space, the backtracking algorithm, and the way it is modified by the 
graph-based backlumping Section 3 discusses the method of learning, dis- 
cusses the computat ional  aspects of several dialects of th~s method,  and reports  
the results of a computat ional  evaluation of these dialects. The cycle-cutset 
decomposit ion is discussed in Section 4. Bounds on its performance are 
calculated, and the results of experimental  evaluation are provided. Section 5 
reports on the results of experiments  where all three methods are integrated in 
one algorithm. A summary  and conclusions are given in Section 6. 

2. Constraint Satisfaction, Backtracking, and Backjumping 

2.1. The CSP and its search space 

A constraint sattsfactton prob lem (CSP) is represented by a constramt network ,  
consisting of a set of n variables, X ~ , . . . ,  X,,; their respective value domains,  
R 1, . .  , Rn; and a set of constraints. A constramt C, (Xq . . . .  X , )  is a subset 
of the Cartesian product R,~ x . . .  × R , ,  consisting of all tuples o~values for a 

subset (X,1 . . . . .  X,,) of the variables which are compatible with each other. A 
soluuon of the network is an assignment of values to all the variables such that 
all the constraints are satisfied. Solving the CSP requires finding either one 
solution or all the solutions of the network. A binary CSP  is one in which each 
of the constraints involves at most two variables. A binary CSP is associated 
with a constraint graph consisting of a node for each variable and an arc 
connecting each pair of variables which has a constraint in the network. 

Consider,  for example,  a constraint satisfaction problem involving three 
variables, X, Y, and Z,  whose domains are X = { 5 , 2 }  Y = { 2 , 4 }  and Z =  
{5, 2}. The problem is to assign a value for each variable, taken out of the 
domain of that variable, so that the value of Z divides the values of both X and 
Y. This restriction can be expressed in terms of two binary constraints, one 
between X and Z represented by the set of tuples ( X Z )  = ((55)(22)), and the 
other between Y and Z consisting of the set of tuples ( Y Z )  = ((22)(42)). The 
constraint graph of this problem is shown in Fig. l(a). 

z{5, 21 

A ;22 2', Z, 2,, ; ' 
X{5,2} Y{2,4} 5 2 5 2 5 2 5 2 5 2 5 2 

(a) (b) (c) 

Fig 1 A CSP and its state space representation 
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The  state space explored by the backtracking algori thm depends  on the 
order ing of  the variables. For  instance,  Figs. l (b)  and 1(c) display two state 
spaces associated with two different order ings for the CSP of  Fig. l(a).  The 
states of  this space are consistent assignments of  values to a prefix of  the 
variables m the order ing,  and the opera tors  are all consistent  value assignments  
to the next variable in the order ing For  example,  given an order ing d = 
(X~ . . . . .  X n), a state at depth  i would consist of  the assignment (X~ = x l, 
. . . ,  X , _  1 = x ,_~)  and the opera tors  are the consistent extensions X, = x, of  
such a state. A n  assignment  of  values to a subset of  the variables ~s consis tent  ff  

it satisfies all the constraints  applicable to this subset. A constraint  is appl icable  

to a set S of  variables if it is defined over  any subset of  S. The  consistent states 
m depth  n represent  all the solutions to the problem.  

2.2. Backtracking 

In its s tandard  version,  the backtracking algori thm traverses the variables m a 
p rede te rmined  order ,  provisionally assigning consistent values to a sub- 
sequence (X  1 . . . . .  X,)  of  variables and a t tempt ing to append  to it a new 
mstant ia t ion of  X,+ 1 such that  the whole  set is consistent.  If  no  consistent  
assignment  can be found  for the next variable X,+~, a dead-end  situaUon 
o c c u r s - - t h e  algori thm "back t racks"  to the most  recent  variable,  changes  its 
assignment  and cont inues  f rom there.  A backtracking algori thm for  finding one 
solution is given below. It is defined by two recursive procedures ,  Fo rward  and 
Go-back. The first extends a current  partial assignment if possible, and the 
second handles  dead-end  situations. The  procedures  maintain  lists of  candidate  
values (C,) for each variable X,. 

Forward(x1,  . . . , xt) 

begin 

1. if t = n exit with the current  assignment.  

2. Ct + 1 <-- Compute-candidates(x1,  - • • , x~, )it + 1 ) 

3. if C,+~ is not  empty  then 

4. x, + 1 <--- first e lement  in C, + 1, and 

5. r emove  x,+~ f rom C,+~, and 

6. Forward(x1 ,  . . . , x,, xz+l) 

7. else 

8. Go-back(x  1, . . . , x,) 
end. 
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Go-back(x 1 . . . . .  x~) 

begin 

1 if t = 0, exit. No soluton exists. 

2. if C, is not empty  then 

3. x, <--first in C,, and 

4. remove x, f rom C,, and 

5 Forward(x1, .  . , x , )  

6. else 

7. Go-back(x,  . . . . .  x ,_.)  
end. 

Backtracking search is initiated by calling Forward with t = 0, namely, the 
instantiated list is empty.  The procedure Compute-candidates(x 1 , , x,, X, + 1) 
selects all values in the domain of X,+I which are consistent with the previous 
assignments. 

2.3. Graph-based backjumping 

The idea of going back several levels m a dead-end situauon, rather than going 
back to the chronologically most recent decision was exploited independently 
in [13], where the term "back jumping"  is introduced, and in [32] as a part  of 
the well known dependency-dtrected backtracking. The idea has been used 
since in truth maintenance systems [9], and in intelligent backtracktng m 
PROLOG [2]. Gaschnlg's  [13] algorithm uses a marking technique that main- 
tains, for each variable, a pointer to the highest level variable with which any 
value of this variable was found to be incompatible.  In case of a dead-end the 
algorithm can safely jump directly to the variable pointed to by the dead-end 
variable. Although this scheme retains only one bit of information w~th each 
variable, it requires an additional (constant) computat ion with each consistency 
check. 

Graph-based backlumpmg extracts knowledge about  dependencies from the 
constraint graph alone. Whenever  a dead-end occurs at a particular variable X, 
the algorithm backs up to the most recent variable connected to X in the graph 
The additional computat ion at each consistency check is eliminated, at the cost 
of less refined information about the potential  cause of the dead-end. 

Consider, for instance, a CSP represented by the graph in Fig. 2(a). Each 
node represents a variable that can take on any of the values indicated, and the 
constraint between connected variables ~s a strict lexicographic order  along the 
arrows (the allowed pairs are specified along the arcs). If  the search on this 
problem is performed in the order X 3, X 4, X1, X2, X 5 (see Fig. 2(b)), then 
when a dead-end occurs at X 5 the algorithm will jump back to variable X 4 since 
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X1 X2 

X3 X2 

X3 
(a,b) 

X 4 X 5 

(a) (b) 

Fig 2 An example CSP 

X 5 is not connected to either X 2 or X 1. If the variable to which the algorithm 
retreated has no more values it should back up more to the most recent 
variable among those connected both to the original variable and to the new 
dead-end variable, and so on. In short, the backjumpmg algorithm backs up to 
the most recent variable among those that are both connected to it by a path of 
preceding variables, and from which it can continue forward. 

The implementation of graph-based backjumping requires that both the 
F o r w a r d  a n d  G o - b a c k  procedures must be modified. They should carry a global 
variable P, indicating the parent set of variables that need to be consulted upon 
the next dead-end. The parent set is updated only when going back. Procedure 
Forward has P as an additional parameter.  Its hnes 6 and 8 are changed as 
follows: 

6. Forward(x 1 . . . . .  x,, x,+ 1, P)  

8. Jump-back(x~ . . . . .  x,, X,+~, P)  

G o - b a c k  is replaced by J u m p - b a c k  which has the partial mstantiatlon, the 
dead-end variable, and the set P as parameters.  Procedure Jump-back is given 
below. It uses a procedure Parents(X) that computes the variables connected 
to X that precede it in the ordering (e.g., in the ordering of Fig. 2(b), 
Parents(Xs) = {X3, X4}). 

J u m p - b a c k ( x  I , . . . , x,, X, + 1, P) 

begin 

1. if i = 0, exit. No solution exists. 

2 .  PARENTS ~-- Parents(X, + 1) 

3. P <-- P U PARENTS 

4. Let  1 be the largest indexed variable in P, 

5. P ~ - - P -  Xj  

6. if Cj ~ 0  then 
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7 xj = first in Cj, and 

8 remove xj from Cj, and 

9 Forward(x t . . . . .  xl, P)  

10. else 

11. Jump-back(x 1 . . . . .  xl i, Xj, P) 
end. 

In the next section we describe the learning scheme which, although it is not 
based on structural properties of the CSP m the way graph-based backjumping 
does, its ~mplementat~on can exploit graph-based information. 

3. Learning While Searching 

3.1. Introduction 

By the term learning we mean the task of usefully recording information which 
becomes known to the problem solver while solving the problem. This informa- 
tion can be used later either in the same problem instance or m solving other 
instances of the same problem. One of the first apphcatlons of this idea 
involved the creation of macro-operators. These are sequences and sub- 
sequences of atomic operators that have proven useful as solutions to earlier 
problem instances from the domain. This ~dea was exploited m STRIPS with 
MACROPS (Fikes and Nilsson [11], and by Korf  [15]). Other  examples of 
learning m problem solving are the work on analogical problem solving 
(Carbonell [3]), learning heuristic problem solving strategies through ex- 
perience as described in the program LEX (Mitchell et al. [23]), and developing 
a general problem solver (SOAR) that learns about aspects of its behavior usmg 
chunking (Laird et al [16]). Recently, a set of methods, commonly referred to 
as explanation-based learmng (EBL),  has captured the attention of the machine 
learning community. These methods identify, during search or theorem prov- 
ing process, the most general description of a set of conditions (a concept) that 
can be learned from one example [22]. 

In the context of CSPs, the process of making zmphcit constraints into 
explicit constraints can be viewed as a form of explanation-based learning. This 
process can be performed independently of backtracking search (e.g., con- 
sistency algorithms), but its potential as a means of improving search efficiency 
may be even greater when it is incorporated into the backtracking algorithm 
~tself 

3.2. Controlled learning 

An opportunity to learn new constraints is presented whenever the algorithm 
encounters a dead-end, i.e., when the current state S = (X 1 = x~ . . . .  , X, ~ = 
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X,_l) cannot be extended by any value of the next variable X,. In such a case 
we say that S is in conflict with X, or, in short, that S is a conflict set. Had the 
problem included an explicit constraint prohibiting the set S, the current 
dead-end would have been avoided. However ,  there is no point recording such 
a constraint at this stage, because under the backtracking control strategy this 
state will not reoccur. (Recording this constraint may still be useful for 
answering future queries on the same initial set of constraints.) If, on the other  
hand, the set S contains one or more subsets which are also in conflict with X,, 
then recording this information in the form of new explicit constraints might 
prove useful in the continued exploration of the search space because future 
states may contain these subsets. I 

When a conflict set has at least one subset which is also a conflict set, then 
recording the smaller conflict set as a constraint is sufficient for preventing the 
larger one from occurring. The target of this learning scheme is to identify 
subsets of the original conflict set S which are as small as possible because small 
conflict sets will occur earlier in the search than larger sets. A mintmal conflict 
set [1] is one which does not have any subset which is a conflict set. Minimal 
conflict sets can be thought of as the sets of lnstantiations that "caused" the 
conflict. 

A first step in discovering a subset of S which is in conflict with X, consists of 
removing from S variable-value pairs which are trrelevant to X,. A pair 
consisting of a variable and its value, (X, x), is said to be irrelevant to X, if it is 
consistent with all values of X,. Irrelevant pairs can be safely removed from S 
because they cannot belong to any minimal conflict set. 

The process of recording constraints generated by the removal of irrelevant 
pairs from S will be called shallow learning. We say that full shallow learning is 
performed when all irrelevant pairs are removed,  and denote by conf(S, X,), 
or, in short, conf-set, the resulting conflict set. The constraint graph provides 
an easy way for identifying irrelevant pairs, namely those whose variables are 
not connected to the dead-end variable. Using the constraint graph as the sole 
source for detecting irrelevant pairs is called graph-based shallow learning 
Graph-based shallow learning may fail to detect all irrelevant variable pairs, 
because a variable connected with the dead-end variable may still be irrelevant. 
Consequently, the resulting conflict set, called graph-based conf-set, contains 
the conf-set. 

Consider the CSP presented in Fig 2(a). Suppose that a backtracking 
algorithm, using the ordering (X1, X2, X3, X4, X5) is currently at state (X 1 ~- b, 
X 2 = b, X 3 = a, X 4 = b). This state cannot be extended by any value of Xs 

1The type of learning discussed here can be viewed as explanatton-based learnmg, m which 
learning can be done by recording an explana tmn or a proof  to some concept of  interest. Here the 
target concept is a dead-end s l tuatmn,  ~ts proof  is the conflict set and we record a summary  of th~s 
proof  which could be useful later [31] 
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since none of its values is consistent with all the previous lnstantlations 
Obviously, the tuple (X~ = b, X 2 =- b, X3 = a, X 4 = b) should not have been 
allowed in this problem, but as we pointed out above, there is no point in 
recording this fact as a constraint among the four variables involved. A closer 
look reveals that the lnstantiatlons X l = b and X 2 = b are both irrelevant to 
this conflict because there is no explicit constraint between X~ and X 5 or 
between X 2 and Xs. Neither X 3 = a nor X~ = b can be shown to be irrelevant 
and, therefore, the conf-set is (X 3 = a, X 4 = b), which could be recorded by 
eliminating the pair (a, b) from the set of pairs permitted by constraint 
C(X  3, X4). The conf-set is not minimal, however, since the instantlation X 4 = b 
is, by itself, in conflict with X~ Therefore, it would be sufficient to record only 
this information, by eliminating the value b from the domain of X 4. 

Identifying and recording only conflict sets which are known to be minimal 
constitutes deep learnmg Discovering all minimal conflict sets amounts to 
acquiring all the possible information out of a dead-end and is called full  deep 
learning. However, instead of improving the overall work in searching, full 
deep learning may result in a substantial addition of time and space overhead 
which may outweight its benefits 

If r is the cardinality of the conf-set, we can envision a worst case where all 
subsets of conf(S, X,) having ½r elements are in conflict with X, The number 
of minimal conflict sets should then satisfy 

tr) r #rain-conflict-sets i r 

which amounts to exponential time and space complexity at each dead-end 
Even if performed efficiently, learning from each dead-end is too space- 
expensive, since it is equivalent to recording almost the entire search space 
explored 

In addition, it is not clear that adding constraints necessarily reduces the 
work of the backtracking algorithm. The presence of more constraints, while 
potentially pruning the search space, increases the cost of generating states in 
the search space because more constraints need to be tested with each new 
instantiation. Thus backtracking may be slowed down considerably. 

For these reasons, it is imperative to focus the learning process on those 
constraints having good pruning capability. This can be accomplished by 
recording only constraints with a small number of variables, thus limiting both 
the number of constraints recorded, their size, and the time needed for their 
detection. In addition, the pruning power of lower-arity constraints is higher 
than the pruning power of constraints involving more varmbles, as they stand a 
higher chance of reoccurring. 2 We may decide, for example, to record only 

-~ In hght of thts d~scusslon, it as somewhat surprising that most researchers m the area of truth 
maintenance systems have adopted the approach to learn from each dead-end (recordmg nogood 
sets, e g Doyle [9], de Kleer [8], Martins and Shapiro [19]) Indeed some of these systems suffer 
from space problems 
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conflict sets consisting of a single variable. This can be implemented by 
eliminating the value from the domain of its variable, and is referred to as 
first-order learnmg. 3 

Second-order learning is per formed by recording only conflict sets involving 
e~ther one or two variables. 4 In a similar vein we can define and execute an 
t th-order learning algorithm, recording every constraint involving i or less 
variables. Obviously,  as i increases t ime and space complexities increase. 
Moreover ,  since not all subsets of variables are directly constrained m the 
initial representation,  learning of second order and higher may also change the 
topology of the constraint graph. This can be avoided, however,  by further 
restricting the algorithm to modtfy  only existing constraints without creating 
new ones. This restriction leaves the structure of the constraint graph un- 
changed; a desirable property,  particularly in the presence of graph-based 
techniques which benefit f rom the graphs '  sparseness (see Section 4). 

Controlling the size of the constraints recorded is applicable to both shallow 
and deep learning. For example,  shallow second-order learning means record- 
ing the conf-set as a constraint only if it has no more than two variables. Deep  
second-order  learning means identifying and recording as constraints all mini- 
mal conflict sets of either one or two variables. 

3.3. Computational aspects of controlled learning 

The complexity of graph-based shallow learning is just O(l ) ,  where l is the 
number  of variables in the initial conflict set, S, that are connected to the 
dead-end variable. Full shallow learning (i.e., identifying all irrelevant vari- 
ables) requires the examination of each of the I connected variables and testing 
whether  each of its values is consistent with each of the values of the dead-end 
variable. Therefore ,  the complexity is O(kl ) ,  where k is the number  of values 
for X~. The computat ion of the conf-set can be enhanced by remember ing  
some information already explicated during the Forward phase of the back- 
track procedure.  For instance, a marking procedure similar to the one sugges- 
ted by Gaschnig [13] can be worked out with only a small amount  of additional 
cost. 

A detailed trace of the performance of shallow second-order  learning on the 
example of Fig. 2 is given in Appendix  C. Figure 3 gives the search space 
explicated by naive backtracking vis h vis that generated by incorporating 

3 First-order learmng amounts to making a subset of the arcs arc-conszstent An arc (X, Y) is 
arc-consistent if for any value x m the domain of X, there ~s a value y xn the domain of Y s t 
(x, y) E C(X, Y) [17] In first-order learning only those arcs that are encountered during the search 
are made arc-consistent 

4 Second-order learning performs partial path consistency [24] since it only adds and modifies 
constraints from paths &scovered during the search A pair (X, Y) is path-consistent w r t. Z if for 
any pair of values (x, y) E C(X, Y) there is a value z of Z st  (x, z) @ C(X, Z) and (y,z)E 
c(v,  z )  
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root 

X ~ ---~ 

X 2-.... ~ 

X 3 ---~ 

a ~  ~ b  ~ a  

X 4 - - .  ~. 

X S .-.. ~ 

~ bb bc ca cc 

bbaa / cca bb 

bbaba bbabb bcaba bcabb ccaba ccabb 

Fig 3 Exphcated search space with naive backtrackmg with and without shallow learning 

shallow second-order  learning; all marked  branches in Fig. 3 are not generated 
by the latter. 

Restricting the level of shallow learning does not affect its time complexity 
but does affect the storage required. For  example,  first-order learning does not 
require any additional space beyond that of naive backtracking. Second-order 
learning may increase the size of the problem and changes its constraint graph. 
Since there are at most ½n(n - 1) binary constraints, each having at most  k 2 
pairs of  values, the increase in storage is still reasonably bounded and may be 
compensated by savings gained in search. Of  course, when the algorithm is 
restricted to modifying existing constraints, the constraint graph does not 
change. 

Full deep learning, l . e ,  discovering all minimal conflict subsets of  the 
conf-set, can be implemented enumeratively:  it first recognizes all conflict sets 
of one element,  then all those with two elements,  and in general, given that all 
minimal conflict sets of size 1, . . ,  t - 1 are recognized, it finds all the size-t 
conflict sets which do not contain any smaller conflict sets. The time and space 
complexity of this mode of learning is exponential  In the size of the conf-set. 

Restricting the level of deep learning affects both space and time The effect 
on space is similar to the case of shallow learning, as discussed above The time 
complexity of deep first-order learnmg IS O(kr), where r 1s the size of the 
conf-set, since each of the r value-assignments in the conf-set is tested against 
all values of X,. For deep second-order learning the complexity can rise to 
O(½r(r-  1)k) since each pair of instantmtions should be checked against each 
value of X,. We will replace r with an upper  bound w, defined as follows. 
Given an ordered constraint graph, the width o f  a node is the number  of its 
adlacent predecessors (parents) in the ordering. The wtdth of  the ordering, w, 
is the maximum width of all nodes in that ordering. Since the size of the 
conf-set cannot exceed w (i.e.,  any dead-end variable is connected to at most w 
variables), w can be used to bound r (i.e.,  r ~< w). The width, w, also bounds 
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Table 1 

285 

Shallow learning Deep learning 

Complexities 1st-order 2nd-order all lst-order 2nd-order all 

time/dead-end O(w) O(w) O(w) O(wk) O(kw z) O(kw2 ~) 
space/dead-end O(1) O(1) O(w) O(1) O(w z) O(w2 ~ ) 
#added-constraints O(1) O(n 2) 0(2") O(1) O(n z) 0(2") 

Prunmgfactor ( 1 - 1 )  (l-~52) ( 1 - ~ , )  (1 - 1 )  (1-~52) ( 1 - ~ )  

the number of constraints needed to be checked when determining a smaller 
conflict subset of the conf-set (i.e., l ~< w). (For an additional analysis of the 
effects of recording nogoods, see [27].) 

Table 1 summarizes the time and space bounds for controlled learning in 
each dead-end situation (lines 1 and 2). The expressions for shallow learning 
are based on computing the graph-based conf-set. Line 3 of the table gives 
bounds on the total number of contralnts that may be recorded during the 
whole search, and line 4 gives a rough in&cation on the pruning power of 
different sizes of conflict sets. The expressions in line 4 describe the utmost 
pruning potential, assuming that the overall search space is O(k n) and that the 
conflict set recorded is the only constraint used for pruning the search space. 
For instance, ehminating a tuple of size i (i.e., recording an t-ary constraint) 
results m a worse-case number of solutions of kn-~(k' - 1) = k n - k n-~. Thus, 
the search space is reduced by a factor of (1 - 1/k') 

3.4. Experimental evaluation 

3.4.1. Classes of problems 

The learning scheme, implemented with a graph-based backjumping algorithm, 
was tested on several classes of problems with varying degrees of difficulty. The 
first is the class-assignment problem, a database type problem adapted 5 from 
[2]. The problem statement and the associated constraint graph are given m 
Appendix A. The second is a more difficult problem known as the zebra 
problem. The problem can be represented as a binary CSP by defining 25 
variables each wxth 5 values (a detaded statement of the problem and its 
formulation as a binary CSP is given in Appendix B). Several instances of each 
problem have been generated by randomly varying the order of variables. As 
explained m Section 2, each ordering results in a different search space for the 
problem and, therefore, is considered as a different instance. 

s Our problem is an approxlmat~on of the original problem where only binary constraints are 
used 
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Two other classes of problems, random CSPs and random planar CSPs were 
tested. The random CSPs were generated using two parameters p~ and P2- The 
first IS the probability that any pair of variables is directly constrained, and the 
second is the probability that pairs of values belonging to constrained pairs of 
variables are compatible. Planar problems are CSPs whose constraint graph is 
planar. Problems that arise in vision have this property. These problems were 
generated from an lmtlal max~mally connected planar constraint graph with 16 
variables, as shown in F~g. 4. The parameter  p~ in this case determines the 
probability that an arc will be deleted from this graph, while P2 controls the 
generation of each constraint as in the case of random CSPs. We tested the 
algorithms on random CSPs with 10 and 15 variables, having 5 or 9 values. The 
planar problems were tested with 16 variables and 9 values. The planar and the 
landom problems were solved in a fixed order,  nonlncreaslng with the vari- 
able's degree This is a reasonable heuristic since it estimates the norton of 
width of the graph as described by Freuder [12] 

3 4 2. The algorithms 

The modes of learning used in the experiments were controlled by three 
parameters: the depth of learning (i.e., shallow or deep),  the level of learning 
(l.e , first-order or second-order),  and either adding constraints or only modify- 
mg existing ones. This results in six types of learning: shallow first-order (SF), 
shallow second-order modify (SSM), shallow second-order add (SSA), deep 
first-order (DF),  deep second-order modify (DSM),  and deep second-order 
add (DSA). For shallow learning we computed the graph-based conf-set All 
learning modes were implemented on top of a graph-based backjumping 
algorithm Thus, each problem instance was solved by eight search strategies: 
naive backtracking, graph-based backlumping (no learning), and graph-based 
backjumplng enhanced with each of the six possible modes of learning. 

3.4 3. Performance measures 

Two measures were recorded" the number of backtrackmgs during search and 
the number of conststency checks performed A consistency check is performed 

a b 

h ,c 
' J m 

d 

F~g 4 A 16-node, fully triangular planar graph 
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each time the algorithm checks if two values of a variable are consistent w.r.t. 
the direct constraint between them. (Notice that had we implemented our 
algorithms on constraints with more than two variables, the time for testing the 
consistency of a tuple could not have been regarded as constant.) The number 
of backtracklngs measures the size of the search space which was explicated 
(every dead-end is a leaf in this space), while the amount of consistency checks 
measures the overall work invested in generating this search space. 

3.4.4. Results 

Tables 2 and 3 present the results for six problem instances of the class- 
assignment problem, and for six problem instances of the zebra problem, 
respectively. For these problems we omitted the distinction between adding or 
modifying constraints since there was only negligible difference between these 

Table 2 
The class-assignment problem 

# NB BJ SF SS DF DS 

1 (25,219) (25,219) (25,218) (25,221) (25,218) (22,194) 
(0,44) (0,44) (0,44) (0,44) 

2 (12,123) (12,123) (12,123) (12,133) (12,137) (12,137) 
(0,43) (0,43) (0,42) (0,42) 

3 (24,266) (24,266) (24,266) (24,267) (20,260) (7,125) 
(10,140) (10,140) (10,140) (0,51) 

4 (42,407) (42,407) (42,406) (42,409) (40,423) (39,509) 
(8,108) (&10S) (4,91) (0,50) 

5 (42,433) (42,433) (42,433) (42,435) (40,445) (39,527) 
(8,116) (8,116) (4,91) (0,50) 

6 (85,559) (85,559) (85,559) (53,391) (85,692) (57,619) 
(68,441) (2,55) (54,461) (0,49) 

Table 3 
The zebra problem 

# NB BJ SF SS DF DS 

1 (180,2066) (57,1241) (56, 1234) (56,1234) (56,1272) 
(53,1214) (53,1214) (53,1252) 

2 (5378,37541) (1315,20542) (1279,19498) (12799,19498) (1279,21371) 
(1276, 19416) (1276, 19416) (1276, 19945) 

3 (31097, 241204 a) (2848, 46771) (2723, 44719) (2721,44716) (2512, 41911) 
(2719, 44693) (2719, 44693) (2300, 38421) 

4 (23778,237152) (738,21946) (738,21946) (655,21205) (738,22117) 
(738,21946) (301,10591) (738,22117) 

5 (5378, 37541) (4159, 30100) (4158, 30091) (1621, 11777) (4158, 30091) 
(4155, 30009) (1566, 11180) (4155, 30009) 

6 (105215, 11533666 a) (6362, 91026) (6362,91026) (6362, 93610) (6362, 93610) 
(1975,33071) (1975,33126) (1975,33126) 

37,884) 
11,322) 

(302,4523) 
(97,1584) 

(530,10670) 
(113,1861) 
(190, 5521) 
(16,572) 

(414,4604) 
(117,1579) 
(961,17367) 
(626,9535) 

a Count recorded at the time the run was stopped 
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two types of learning. Each entry records the number of backtrackmgs and the 
number of consistency checks respectively. 

Each of the problem instances was solved twice by the same strategy; the 
second run using a new representation that included all the constraints 
recorded in the first run. This was done in order to check the effectiveness of 
these strategies in finding a better problem representaUon. The results of these 
runs are shown in a second pair of numbers m the corresponding entries in 
Tables 2 and 3 Figures 5 and 6 provide a graphic display of these results 
depicting only the number of consistency checks performed for the two 
problems. 

The third and fourth classes of problems are similar m their behavior for the 
various learning algorithms. Figures 7 and 8 present these results for the 
random and planar problems respectwely, after grouping similar instances into 
clusters and averaging on each cluster. 

Our experiments (implemented in LISP on a Symbolics LISP Machine) show 
that the behavior of the algorithms is different for different problems. From 
these results we see that the class-assignment problem turned out to be very 
easy, and is solved efficiently even by naive backtracking (see Fig. 5 and Table 
2). The effects of backlumping and learning are, therefore, minimal, except for 
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Fig 5 Performance of learning schemes on the class-assignment problem 
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Fig 6 Performance of learning schemes on the zebra problem 

deep second-order learning where some gains are evident. In all these cases, 
the second run gave a backtrack-free performance. 

The zebra problem, on the other hand, is apparently much more difficult, 
and in some cases could not be solved by naive backtracking in a reasonable 
amount of time (in these cases the numbers reported in Table 2 are the counts 
recorded at time the run was stopped). The enhanced backtrack schemes show 
dramatic improvements in two stages (see Fig. 6). First, the introduction of 
backjumping by itself improved the performance substantially, with only 
moderate additional improvements due to the introduction of first-order or 
shallow second-order learning. Deep second-order learning caused a second 
leap in performance, with gains over no learning backjump by a factor of 5 to 
10. 

For the planar and random problems which appear to be of moderate 
difficulty the behavior pattern is different (see Figs. 7 and 8). In almost all 
cases we see a big improvement in the performance going from naive back- 
tracking to backjumping. Additional, more moderate improvement continues 
for shallow first- and shallow second-order learning when constraints are 
modified only, then the performance deteriorates when deeper forms of 
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Fig 7 Performance of learning schemes on the planar problems 

learning are used. The amount of work invested in these deeper learning 
schemes outweighs the savings in the search. 

The experiments demonstrate that learning might be beneficial in solving 
CSPs. For difficult and moderately difficult problems (e.g. the zebra problem, 
planar and random problems) backjumping, coupled with shallow (first- or 
second-order) learning, largely outperformed naive backtracking. In contrast, 
for easy problems (e.g. the class-assignment problem) their performance is 
roughly similar. These results strongly support the work on intelligent back- 
tracking in PROLOG which is centered on various backlumping schemes. In 
recent work Rosiers and Bruynooghe [30] also demonstrated that these 
schemes compare favorably with some known lookahead schemes. 

Deeper forms of learning perform well on difficult problems, like the zebra 
problem, on which the greatest improvement was achieved by the strongest 
form of learning tested: deep second-order learning. It still remains to be seen 
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F i g  8 Performance of learning schemes on the random problems 

whether higher degrees of learning are worth pursuing in view of the additional 
bookkeeping storage space they require. For easier problems, however, (e.g. 
planar problems, random problems and the class-assignment problem), their 
performance was generally worse in comparison to backjumplng. 

We showed that with the use of learning the "knowledgeable" representation 
achieved upon termination is significantly better than the original one,  when 
answering exactly the same query. This could be used when a CSP is 
representing a knowledge base on which many different queries can be posed. 
Each query assumes a world that satisfies all the domain constraints plus some 
additional query constramts. In such an environment It may be worthwhile to 
keep the knowledge in the form of a set of constraints enriched by those 
learned during past searches. It is in such environments that the benefits of 
learning across instances could be best demonstrated. However,  such a study is 
beyond the scope of this paper. 
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Addinonal expertmental results are required for establishing how first- and 
second-order learnmg compare with the pre-processing approaches of arc and 
path consistency. However,  theoretical considerations by themselves reveal 
that pre-processmg may be too costly and may perform unnecessary work. For 
instance, the path consistency algorithm is known to have a lower-bound 
worse-case complexity of O(n3k3), and the best performance is O(n3k 2) [18] ~' 
For the zebra problem these consistency checks range between 388625 and 
1953125, which is far greater than those encountered in deep second-order 
learning on all problem instances presented. Finally, we conjecture that the 
effect of learning would be higher ff all solunons were generated. 

In the next secnon we present another  graph-based technique, called the 
cycle-cutset scheme, and subsequently demonstrate its effect on backjumping 
and learning. 

4. The Cycle-Cutset Decomposition 

4.1. The cycle-cutset method 

Whereas learning methods attempt to prune the search space by exphcatmg 
deducible constraints, decomposition methods keep the problem representa- 
tion mtact and attempt, instead, to exploit special features of the constraint 
graph which admit simple solutions. The decomposmon method investigated in 
this section utilizes the stmphcity of tree-structured problems We call it the 
cycle-cutset method since tt ts based on identifying a set of nodes that, once 
removed, would render  the constraint graph cycle-free. 

The cycle-cutset method ts based on two facts: one is that tree-structured 
CSPs can be solved very efficiently [5, 12, 18], and the other  is that vartable 
instantiation changes the effecuve connectivity of the constraint graph In Fig. 
2(a), for example, mstantiating X 3 to some value, say a, renders the choices of 
X I and X 2 independent of each other as if the pathway X1--X~--X 2 was 
"blocked" at X~ Similarly, this instantiation "blocks" the pathways X~--X~-- 

X 1 X2 
/ X1 X 2 X 1 X 2 

X3 X3 

X4 X5 X4 X5 

(a) (b) (c) 
F~g 9 An mstantmted variable cuts ~ts own cycles 

6 Recent experimental results are also available m R Dechter and I Meln, Experimental 
evaluation of preprocesslng techmques in constraint sansfactlon problems, m Proceedings IJCAI- 
89, Detroit, MI (1989) 
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S5, S2--S3--X4, S4--S3--S5 and others, leaving only one path between any 
two variables. The constraint graph for the rest of the variables is shown in Fig. 
9(a), where the instantiated variable, X 3, is duplicated for each of its neigh- 
bors. The method of cutting loops in the "CONSTRAINTS" language [34] is a 
variant of the same idea. 

When the group of instantiated variables constitute a cycle-cutset, the 
remaining network is cycle-free, and the efficient algorithm for solving tree- 
constrained problems is applicable. In the example above, X3, cuts the single 
cycle X3--X4--X 5 in the graph, and the graph in Fig. 9(a) is cycle-free. Of 
course, the same effect would be achieved by instantiatmg either X 4 or Xs, 
resulting in the constraint trees shown m Figs. 9(b) and 9(c). In most practical 
cases ~t would take more than a single variable to cut all the cycles in the graph 
(see Fig. 10). 

Therefore, a general way of solving a problem whose constraint graph 
contains cycles is to mstantiate the variables in a cycle-cutset in a consistent 
way and solve the remaining tree-structured problem by a tree algorithm. If a 
solution to the restricted problem is found, then a solution to the entire 
problem is at hand. If not, another instantiat,on of the cycle-cutset variables 
should be considered until a solution is found. Thus, if we wish to solve the 
problem in Fig. 2, we first assume X 3 = a and solve the remaining problem. If 
no solunon is found, then assume X 3 = b and try again. 

Since the complexity of this scheme is dominated by the exponential 
complexity of mstantiating the cutset variables, and since finding a minimal size 
cycle-cutset is an NP-complete problem, it will be more practical to incorporate 
it within a general problem solver like backtracking. This could be done by 
keeping the ordering in which backtracking mstantiates variables unchanged 
and enhancing its performance once a tree-structured problem is encountered. 

Since all backtracking algorithms work by progressively instantiating sets of 
variables, all we need to do is keep track of the connectivity status of the 
constraint graph. As soon as the set of mstantiated variables constitutes a 
cycle-cutset, the search algorithm is switched to a specialized tree-solving 
algorithm on the remaining problem, i.e., either finding a consistent instantla- 
tion for the remaining variables (thus, findmg a solution to the entire problem) 

A A 

E 
C 

C D D C 

(a) (b) 

Fig 10 A constraint graph and a constraint tree generated by the cutset {C, D} 
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Fig II The constraint graph of backtracking with cutset 

or concluding that no consistent instantlauon for the remammg variables exists 
(m which case backtracking must take place) For instance, assume that 
backtracking instanUates the variables of the CSP represented in Fig. 10(a) m 
the order D, C, E, A, B (Fig. l l(a)).  Backtracking with the cutset provision 
wdl mstantiate varmbles C and D, and then, realizing that these variables cut 
all cycles, will revoke a tree-solving routme on the rest of the problem (Fig. 
l l(b)) .  If no solution is found, control returns to backtracking which will go 
back to variable C 

Observe that the applicabihty of this idea is independent of the particular 
type of backtracking algorithm used (e.g., naive backtracking, backlumping, 
backtracking with learning, etc., see Fig. 12). When the origmai problem has a 
tree constraint graph, the enhanced backtracking scheme coincides with a tree 
algorithm, and when the constraint graph is complete, the algorithm reverts to 
nawe backtracking. 

4.2. Bounds on the performance of the cutset method 

In [5] it is shown that tree CSPs can be solved in O(nk 2) and that no algorithm 
can do better m the worst case. It seems reasonable, therefore, that any 
backtracking algorithm should improve its worst case bound if it cooperates 
with a tree algorithm via the cycle-cutset method. This, however, may only be 

Cutset leaf 

BaCklxackmg's search 
n cutset  

Tree's search 

Fig 12 The search space of algortthm backtracking with cutset 
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true for naive backtracking. Let  M(A) denote the worst-case complexity of an 
algorithm A, where complexity is measured by the number of consistency 
checks performed. 

Theorem 4.1. Let B be the naive backtrackmg for solving a CSP, and let B c be 
the algortthm resulting from incorporating a tree algorithm m B vta the 
cycle-cutset approach Then 

M(B¢) <~ M(B) .  

Proof. Let  Scu t s e t  be the search space explored by B, truncated at the depth 
corresponding to the cutset states, and let M(Scutset ) be the number of 
consistency checks used by B to explore this search space. Each leaf node in 
Scutset corresponds either to a leaf state in the full search space, one which 
cannot be extended by any consistent assignment, or to an instantiated 
cycle-cutset. Denote  the latter type leaves by CUTSET-LEAVES, and let M,(B) 
stand for the effort spent by B in exploring the subtree rooted at the ith state 
of the CUTSET-LEAVES. The overall complexity of B is given by 

M(B) = M(Scutset ) + Z M,(B). 
t E C U T S E T - L E A V E S  

Algorithm B, being naive backtracking, does not acquire any information from 
searching the subtree rooted at i. Namely, if an oracle were to inform 
backtracking that a certain state in the CUTSET-LEAVES leads to a dead-end, the 
rest of the search would be the same, had B discovered this information on its 
own. Therefore,  the truncated search space and the set of CUTSET-LEAVES are 
the same for both B and B c. Let TREE be the tree-solving algorithm. The 
complexity of B c is given, therefore,  by: 

M(Bc) = M(Scutset) + Z M,(TREE) . 
t E C U T S E T - L E A V E S  

Each state in the CUTSET-LEAVES induces a new CSP problem, which, as 
explained, has a tree-structured graph and therefore can be solved efficiently 
by a tree algorithm. Moreover ,  since for naive backtracking M,(B) is depen- 
dent only on state i, we get 

M,(TREE) ~< M,(B) 

yielding 

M(B) >! M(B¢). [] 
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The performance of any backtracking algorithm, Bc, that incorporates the 
cutset approach can be bounded as follows. Let d = X 1 . . . .  X,,, be an 
ordering of the variables, and let C - - X  1 . . . . .  X~ be a cycle-cutset in the 
g r aph ]  For a state in the CUTSET-LEAVES, only n - c  variables remain to be 
instantiated. Therefore ,  all tree-structured CSPs induced by these states have 
n - c variables and they can be solved by a tree algorithm in O((n - c)k 2) (k is 
the number  of values) Switching to a representat ion required by the tree 
algorithm may take O ( ( n -  c)ck))  consistency checks, since each cutset vari- 
able must propagate  its value to all its neighbors which are not in the cutset. 
The complexity (i.e., the number  of consistency checks) of the TREE algorithm 
at state i including the transition work is therefore O((n - c)k  2 + (n - c)ck) .  
The number  of consistency checks required for generating all CUTSET-LEAVES 
and the cardlnality of this set are bounded by k c since the CUTSET-LEAVES are 
the solutions of a CSP restricted to the cutset variables whose cardinality is c. 
We get: 

M(Bc) = O(k '  ) + O(kC{(n - c)k  2 + (n -- c)ck } ) 

and, therefore,  

M(Bc) : O(k  ' {(nk 2) + (n2k)}) .  

Obviously, as the s~ze of the cycle-cutset diminishes the exponential  term m the 
above expression is reduced and we get bet ter  upper  bounds for the perfor- 
mance of the algorithm. We see that using the cutset method,  the exponential  
term in the upper  bound on the performance of any algorithm can be reduced 
from O(k  n) to O(kC). 

Practically, however,  the algorithms rarely exhibit their worst-case perfor- 
mance,  and their average-case performance is of greater  interest. We do not 
expect to see the superiority of the cycle-cutset method in every problem 
instance. This is so because there is no tree algorithm which is superior to all 
other algorithms for all trees; so, the tree algorithm used in the cycle-cutset 
method may occasionally perform worse than the original backtracking al- 
gorithm 

4.3. Experimental evaluation 

We compared  the performance of backtracking enhanced by the cycle-cutset 
approach to that of naive backtracking, on the random and planar problems 
and on one instance of the zebra problem. As before,  variables were in- 
stantlated in a decreasing order of their degrees. 

v Observe that, when the ordering of variables is not fixed, each state should be tested for the 
cycle-cutset property which would render the cycle-cutset method computanonally unattractive 



ENHANCEMENT SCHEMES FOR CONSTRAINT PROCESSING 297 

The tree algorithm which was used in the cutset method is the one presented 
in [5], which is optimal for tree CSPs. The algorithm performs directional arc 
consistency (DAC) from leaves to root, i.e., a child always precedes its parent. 
If, in the course of the DAC algorithm a variable becomes empty of values, the 
algorithm concludes immediately that no solution exists. When a solution 
exists, the tree algorithm assigns values to the variables in a backtrack-free 
manner, going from the root to the leaves. Many total ordering will satisfy the 
partial order dictated by the DAC algorithm (e.g., child precedes its parent) and 
the choice may have a substantial effect on its average performance. The 
ordering we implemented is the reverse of "in-order" traversal of trees [10]. 
This ordering compared favorably with other orderings tried. It realizes 
empty-valued variables early in the DAC algorithm, thus concludes that no 
solution exists as soon as possible. For completeness we present the tree 
algorithm: 

Tree-backtraek(d = X 1 , . . .  , X n) 
1. begin 

2. call Dac(d) 
3. if completed then Find-solution(d) 
4. else (return, no solution exists) 

5. end 

Dac-d-arc-consistency 
(the order d is assumed) 

1. begin 

2. F o r i = n t o  l b y - l d o  

3. For each arc (Xj, X,); j < i do 

4. Revise(Xj, X,) 

5. if Xj is empty, return (no solution exists) 

5. end 

6. end 

7. end 

The procedure Find-solution is a simple backtracking algorithm on the order 
d which, in this case, is expected to find a solution with no backtrackings and 
therefore its complexity is O(nk). The algorithm Revise(Xj, X,) [17] deletes 
values from the domain of Xj until the directed arc (X,, X,) is arc-consistent. 
The complexity of Revise is O(k2). 

In Fig. 13 and Fig. 15 we compare the two algorithms graphically on random 
CSPs, and in Fig. 14 and Fig. 16 the comparison is on planar CSPs. In Figs. 13 
and 14 the x-axis displays the number of consistency checks (on a log-log 



2 9 8  R. DECHTER 

7 

/ 

f 

/ 

R A N D O M  PROBLEMS 
;oo,ooo 

10 00o 

2 000 " " 

I 000 . . " 

100 1 000 2 000 10 000 100,000 

NO OF C O N S I S T E N C Y  C I I E C K S  IN B A C K T R A C K I N G  

Fig 13 Performance of the cutset method on random problems 

100,000 

7 

< 

z 
• -r 10,000 

q 

7 
1,000 

Fig 14 

P L A N A R  P R O B L E M S  

i 
100 1 000 2 000 10,000 100,000 

NO OF C O N S I S T E N C Y  C H E C K S  IN B A C K T R A C K I N G  

Performance of the cutset method on planar problems 



ENHANCEMENT SCHEMES FOR CONSTRAINT PROCESSING 

R A N D O M  PROBLEMS 

299 

z 

r j 

[.-, 

r...) 

== 

18 

17  

16 

15  

14 

13  

12  

11 

10  

09  

0 8  

07  

06  

0 5  

04  

0 3  

0 2  

01  

O 
O 

O 
Q • 

• ! 

L I I I I I I I  
0 1 0 2  0 3  0 4  0 5  0.6 07  0 8  

CUTSET/n  

Fig 15 Evaluat ing  the cutset  m e t h o d  r e la twe  to cutset  stze on r a n d o m  p r o b l e m s  

paper) performed by backtracking (denoted by B) and the y-axis displays the 
same information for backtracking with cutset (denoted by Bc). Each point in 
the graph corresponds to one problem instance. The 45-degree line represents 
equal performance for both algorithms; above this line backtracking did better; 
and below this line backtracking with cutset did better. We see that most 
problem instances lie underneath this line. 

In Figs. 15 and 16 the graph displays the relationship between the perfor- 
mance of B e and the size of the cycle-cutset. The x-axis gives the ratio of the 
cutset size to the number of variables, and the y-axis gives the ratio between 
the performances of B c and B. When the ratio of the cutset size to n is less than 
0.3, almost all problems lie underneath the line y = 1, for which Bc out- 
performed B. Unlike backjumping, the cycle-outset method does not always 
improve naive backtracking's peformance. This indicates that for some prob- 
lem instances the tree algorithm was less efficient than naive backtracking on 
the tree part of the search space (although its worst-case performance is 
better). Indeed, while no algorithm for trees can do better than O(nk 2) in the 
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worst case, the performance of  such algorithms ranges between O(nk) and 
O(nk 2) when there is a solution, and it can be as good as O(k 2) when no 
solution exists. It depends mainly on the order of visiting variables, either for 
establishing arc consistency or for instantmtion. Backtracking may unintention- 
ally step in the right order and, since it avoids the preparation work required 
for switching to a tree representation (which may cost as much as O(n2k)),  it 
may outperform backtracking with cutset. On the average, however,  the cutset 
method improved backtracking by 25% on the planar problems,  and by 20% 
on the random CSPs. Observe that when the size of  the cutset is small B c 
outperformed B more often. 

On the zebra problem the performance of  backtracking w~th and without the 
cutset method was almost the same (we tested only one instance of  the zebra 
problem). This can be explained by the fact that the constraint graph of  this 
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problem is very dense and 20 out of the 25 variables were required to cut all 
cycles. Since most of the search is performed by nawe backtracking anyway, 
the impact of the tree algorithm was quite negligible. 

As we see, the cycle-cutset method provides a promising approach for 
~mproving backtracking algorithms. The experiments demonstrate that the 
effectiveness of this method depends on the size of the cutset, which provides 
an a priori criterion for deciding whether or not the method should be utilized 
in any specific instance. 

The effectiveness of this method also depends on the efficiency of the tree 
algorithm employed and on the amount of adjustment reqmred while switching 
to a tree representation. The development of an algorithm that exploits the 
topology of tree-structured problems without intentional pre-processing would 
be very beneficial. 

Since the applicability of the cycle-cutset method seems independent of the 
particular version of backtracking used, it is interesting to see whether it has a 
similar effect when it is incorporated with nonnaive versions of backtracking. 
In the next section we answer this question by combining the enhancement 
schemes presented in this paper: backjumping and learning, with the cutset 
method. 

5. Integrating the Three Schemes 

5.I. Integration principles 

In principle the cycle-cutset method can be used with any backtracking scheme, 
not necessarily naive backtracking. The version of backtracking used will 
instantiate variables in a fixed order, until a cutset is reahzed and then it will 
switch to a tree-solving algorithm. This suggests that the cutset method may 
improve any backtracking scheme and thus provide a universal improvement. 
This conclusion, however, is only valid when there is no flow of information 
which is used by the specific backtracking scheme when it is between the first 
part of the search (called the cutset part) and that corresponding to the tree 
search (the tree part) (see Fig. 12). This assumption is true for naive backtrack- 
ing but not for all its enhancements. For instance, when backjumping alone 
searches the tree part of the search space, it gathers some valuable information 
that helps it prune the search in the cutset part by jumping back efficiently. If 
the integrated scheme backs up naively from the tree part to the cutset part, no 
such information will be available. 

Consider again the constraint graph of Fig. 10(a) and suppose that back- 
jumping works on this problem in the order (D--~ C---~E---~A---~B) (Fig. 
17(a)). If, for instance, there is a dead-end at E, backjumping will back up to 
node D. If the cutset method is integrated "naively" into backjumping, it will 
instantiate D and C (the cutset variables) and give control to the tree algorithm 
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Fig 17 Incorporating backjumpmg with cutset 

(see Fig. 17(b)). When the dead-end at E is encountered the tree algorithm will 
indifferently switch back to backjumpmg, providing it no information for 
skipping C. This difficulty may be corrected if we equip the tree-solving 
algorithm with the ability to gather the same information needed by backjump- 
lng, namely identifying the subset of variables which may be responsible for a 
failure. 

Therefore,  the tree algorithm which we integrated with backjumping wdl 
return a subset of responsible variables, given a "no solution" situation. If the 
domain values of variable X, become empty during DAC (as a result of Revise) 
it implies that only the variables which are located within the processed part of 
the subtree rooted at X, may be relevant to this situation The cutset variables 
of this subtree can be regarded, therefore,  as the parent set (also as the 
conf-set) of this dead-end. These variables will be returned to backlumping 
which will back up to the most recent among them. If, for instance, the tree 
part of the problem in the example of Fig. 17 is solved in left to right order  and 
if the algorithm finds that the domain values of E are empty after performing 
Revise on (E, D)  it will return D as its only parent (D is the only cutset leaf in 
the subtree rooted at E)  and backjumping will back up to it and not to C as in 
the naive integration The difference between naive integration and the one 
suggested here were profound in our experiments and only by this kind of 
integration would the combined scheme improve w.r.t its individual compo- 
nents. 

As to the integration with learning, the same kind of information gathering 
process, as with backjumpng alone, was used. Namely, upon a "no solution" 
situation identified at node X, of the tree, the conf-set is identified (same as the 
parent sets for backjumpmg) and returned back for analysis. Shallow learning 
can be performed on this set. For deep learning an additional analysis of the 
conf-set should be performed when X, is considered the dead-end variable 
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5.2. Experimental evaluation 

Figures 18 and 19 compare the performance of backjumping against the 
performance of backjumping with cutset on random and planar problems. For 
most hard instances (i.e. those requiring more than 1000 consistency checks for 
backlumping ) the integration improved the performance and in some cases 
quite significantly (the comparison is displayed on a log-log paper as in Fig. 
13). On the average backjumping was improved by 25% on these two classes. 
For the easiest problems, when backjumping performed 1000 consistency 
checks or less, the integration didn't pay off. The deterioration, however, is 
not severe: 50% for planar problems and 10% for random problems. 

Figure 20 compares the integrated learning and backjumpmg schemes with 
their unintegrated counterparts on planar problems. On the right-hand side of 
the y-axis we repeat the results appearing in Fig. 7 while on the left-hand side 
we added the corresponding results of the integrated strategy. The actual 
numbers (without the deep learning results) are given in Table 4. The name of 
each integrated learning scheme is preceded by "C" to indicate the cutset 
method which is embedded into it (e.g. CSF stands for cycle-cutset method 
integrated with shallow first-order learning), "ratio" gives the ratio between 

P L A N A R  I )ROBLEMS 
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Fig. 18 Comparing backjumpmg to cutset backlumpmg on planar problems 
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the average cutset size and the number of variables. Thus, we compared the 
performances of naive backtracking, the cutset method, backjumping, shallow 
first-order, shallow second-order modify, shallow second-order add, deep 
first-order, deep second-order modify and deep second-order add, averaged 
over clusters of instances, with and without the cutset method. We see that the 
curves to the left of the y-axis are generally below those to the right, indicating 
an improvement in performance. In two clusters one corresponding to easy 
problems and one corresponding to 5000-10000 consistency checks (comprised 
of only two instances) a small deterioration is detected. 

We tested the integrated scheme on one instance of the zebra problem, the 
one on which naive backtracking showed the best performance, and the results 
are tabulated in Table 5. Backjumping alone improves performance by 50% 
and combining It with the cutset method produced an additional improvement 
of 40% desDte the large size of the cutset (20 out of the 25 variables are in the 
cutset). The class-assignment problem was tested on few instances as well, 
however, due to the inherent easiness of this problem the cutset approach 
caused a deterioration in performance. 
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Fig 20 Performance of learning with and without cutset 

Table 4 

Average number  of consistency checks for different backtracks 

Number of 
Range instances Ratio NB Cutset BJ SF SSM SSA CBJ CSF CSSM CSSA 

0-1000 
1000-5000 
5000-10000 

10000-20000 
20000-50000 
50000-100000 

7 0 19 454 404 261 248 252 263 285 270 267 267 
11 0 29 2702  2 3 6 0  1 2 2 9  1 1 5 2  1 1 2 5  1 4 2 3  1023 996 985 1201 
2 0 23 5782  4 3 3 5  1 9 6 6  1 7 6 9  1 7 7 8  1 8 7 2  2 2 5 6  1 9 8 8  1 7 3 7  1601 
10 0 17 15423 8 6 8 3  2 7 4 0  2 5 0 8  2 6 6 8  2 5 4 5  1 7 3 0  1 4 3 7  1 3 9 9  2235 
7 0 39 35157 39188 5225  5 0 5 0  4 6 8 3  4 6 7 2  3 8 5 7  3 6 1 1  3 4 3 7  3974 
7 0 28 104730 33150 6655  6 5 0 0  5 2 6 0  5 5 7 4  5 8 0 9  4 2 2 9  3 5 2 5  6065 

Table 5 

The zebra problem 

NB BJ SF SS DF DS CBJ CSF CSS CDF CDS 

2066 1241 1234 1234 1272 884 782 759 759 813 1189 
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We see that the integrated strategy provides an improvement on each of its 
individual constituents; backjumpmg, learning, and the cycle-cutset method. 
Each of the individual schemes shows its strength m different classes of 
problem instances and the integrated scheme takes advantage of each scheme's 
power when appropriate. For instance, when the constraint graph is sparse, 
backjumping and the cutset method are most effective When it is highly 
densed, backjumping and the cutset method lose their effectiveness and the 
learning schemes take over. For intermediate cases both the cutset method and 
backjumpIng cooperate and, on the average, they do better than each one 
alone. 

6. Conclusions 

This paper presents and evaluates three schemes for improving the perfor- 
mance of backtracking: backjumping, learning, and cycle-cutset decomposi- 
tion. Variants of these schemes can be found in various disguises in the 
literature and this paper presents a unifying formal framework within which 
such schemes can be defined, evaluated and integrated. 

Our experiments and analyses conclude that backjumping defeats naive 
backtracking on an instance-by-instance basis and, when the constraint graph is 
sparse, the improvement ~s significant Since this scheme doesn't trade off 
anything for its virtues we recommend it should always replace naive back- 
tracking 

Learning does revolve trade-off consideration. We showed that the amount 
of learning effects the overall performance. Difficult problems (e.g,  the zebra 
problem) benefited from deeper forms of learning even though it required 
more time and space, while other problems improved their performance with 
shallow learning but the additional work required by deep learning was not 
justified. We conclude, therefore, that learning should be used selectively-- 
recording all constraints can cause serious deterioration of performance. 
Therefore, when no prior knowledge is available regarding the nature of the 
problem, only shallow forms of learning should be attempted. When the 
problem ~s expected to be difficult, deeper, though level-restricted learning 
should be performed. This advice IS particularly relevant for the current 
versions of TMSs which mdiscriminantly record all constraints. 

Recording all constraints may be justified m frequently queried knowledge 
bases, since the cost of learning is amortized over many queries. Our experi- 
ment provide a hmited evidence to such behavior, showing that the representa- 
tion resulting from any amount of learning improved the efficiency of answer° 
ing the same queries again. 

The cycle-cutset too improves the worse-case performance of naive back- 
tracking, and integrating it with learning and backjumping revealed its poten- 
tial for improving any backtracking algorithm. Although this improvement is 



ENHANCEMENT SCHEMES FOR CONSTRAINT PROCESSING 307 

not on a case-by-case basis, the average improvements justify incorporating 
this idea in any algorithm especially if a way can be found to minimize the 
overhead of integrating the tree algorithm with the hosting algorithm. 

A constraint 

1. 

2. 

3. 
4. 

5. 

6. 

7. 

Appendix A. The Class-Assignment Problem 

between a student and a class 

Student(Robert, Prolog) 

Student(John, Music) 

Student(John, Prolog) 
Student(John, Surf) 

Student(Mary, Science) 
Student(Mary, Art) 

Student(Mary, Physics) 

A constraint between a Professor and a class 

1. Professor(Luis, Prolog) 
2. Professor(Luis, Surf) 

3. Professor(Maurice, Prolog) 
4. Professor(Eureka, Music) 
5. Professor(Eureka, Art) 

6. Professor(Eureka, Science) 

7. Professor(Eureka, Physics) 

A trinary constraint among a class, a day, and a place 

1. Course(Prolog, Monday, Room1) 
2. Course(Prolog, Friday, Rooml) 
3. Course(Surf, Sunday, Beach) 

4. Course(Math, Tuesday, Rooml) 

5. Course(Math, Friday, Room2) 

6. Course(Science, Thursday, Room1) 
7. Course(Science, Friday, Room2) 
8. Course(Art, Tuesday, Rooml) 

9. Course(Physics, Thursday, Room3) 
10. Course(Physics, Saturday, Room2) 
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The query is: find Student(stud, coursel )  and Course(coursel ,  dayl ,  room) 
and Professor(prof,  coursel)  and Student(stud, course2) and Course(course2, 
day2, room) and noteq(coursel ,  course2) 

The constraint graph corresponding to the problem's representation as a 
binary CSP is shown in Fig. 21. 

Appendix B. The Zebra Problem 

1. There  are five houses, each of a different color and inhabited by 
men of different nationahties, with different pets, drinks, and 
cigarettes. 

2. The Enghshman lives in the red house. 

3. The Spamard owns a dog 

4. Coffee is drunk in the green house. 

5. The Ukranian drinks tea. 

6. The green house is immediately to the right of the ivory house 

7 The Old-Gold smoker owns snails. 

8. Kools are being smoked m the yellow house. 

9 Milk is drunk m the middle house. 

10. The Norwegian lives m the first house on the left. 

11. The Chesterfield smoker lives next to the fox owner. 

12 Kools are smoked m the house next to the house where the 
horse is kept. 

13. The Lucky-Strike smoker drinks orange juice. 

14. The Japanese smokes Parhament.  

15. The Norwegian lives next to the blue house. 

The query is: Who drinks water and who owns the zebra? 
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Fig. 22 The constraint graph of the zebra problem 

The problem can be represented as a binary CSP using 25 variables divided 
into 5 clusters as follows: 

1. red; blue; yellow; green; ivory. 

2. norwegian; ukrainian; englishman; spaniard; japanese. 

3. coffee; tea; water; milk; orange. 

4. zebra; dog; horse; fox; snails. 

5. old-gold; parliament; kools; lucky; chesterfield. 

Each of the variables has the domain values {1, 2, 3, 4, 5} associating a house 
number with the characterisnc represented by the variable (e.g., assigning the 
value 2 to the variable red mean that the second house is red, etc.) 

The constraints of the puzzle are translated into binary constraints among 
the variables. For instance, the sentence "The Spaniard owns a dog" describes 
a constraint between the variable spamard and the variable dog that allows 
only the pairs: {(1, 1)(2, 2)(3, 3)(4, 4)(5, 5)}. In addinon, there is a constraint 
between any pair of variables of the same "cluster" ensuring that they are not 
assigned the same value. The constraint graph for this problem is given in Fig. 
22 (the constraints among the variables of each cluster are omitted for clarity). 

Appendix C. A Detailed Example 

This appendix illustrates the operation of backtracking with learning on the 
CSP in Fig. 2, assuming that the search is conducted in the order 
(X1,)(2, X3, X4, )(5). In Fig. 23 we follow step by step the performance of 
backtracking with shallow second-order learning. The steps in Fig. 23 corre- 
spond to consistent states generated by backtracking and each string of values 
corresponds to an instantiation according to the above order. C,. I denotes the 
constraint between variables X, and Xj and the arrows represent backtrack 
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1 a 

2 aa 

3 ab 

4 ac 

5 

6 b 

7 ba 

8 bb  

9 bba  

10 b b a b  

l l  

12 

13 bc 

14 c 

15 ca 

16 cb 

17 cc 

18 ccb 

19 ccba 

20 ccbb  

21 

C o n f  = { X I 

C o n f  = {X, 

Conf  = { X 1 

Conf  = {X, 

Conf  = {X 1 

- a, X 2 = a)  --~ add C~ z, de l e t e  (a,  a) f rom C t 

= a, X~ = b} --~ modify  C, 2, de l e t e  (a,  b) f rom C, 

= a, X 2 = c}--> modify  C, _,, de le te  (a, c) f rom C~ _, 

= a }--~ modi fy  C~, de l e t e  a, f rom C, 

= b, X 2 = a} --~ modify  C~ 2, de l e t e  (b, a) f rom C~ 

C o n f =  {X 3 = a,  X 4 = b}----> modify  C~ 4, de le te  (a, b) f rom C~ 4 

Conf  = {X~ = a} --~ modify  C 3, de le t e  a f rom C~ 

Conf  = {X~ = b, X~ = b)--~ modify  C~ 2, de l e t e  (b ,  b) f rom C~ 

Conf  = {X, = b)--~ modi fy  C~, de l e t e  b f rom C~ 

C o n f  = {X 2 = a} --~ modify  C 2, de le t e  a f rom C 2 

Conf  = {X 2 = b}--~ modify  C 2, delete b from C 2 

C o n f =  {X~ = b, X 4 = a} ---->modify C~ ~, delete (b, a) from C~ 

Conf  = {X~ = b, X 4 = b}---~ modify  C~ 4, de le te  (b,  b) f rom C~ 4 

Conf  = {X~ = b}---~ modi fy  C~ delete b f rom C~ 

Fig 23 Simulating shallow second-order learning 

points, that is, states which cannot be extended. With each such point the 
learning scheme identifies the conf-set and records the constraint discovered. 
Consecutive back-arrows correspond to several consecutive backtracks needed 
to reach a state that can be extended. W~th each such backtrack the learning 
procedure either adds or modifies a constraint. 

When the search starts, X 1 is assigned the value a and then X 2 is assigned the 
value a (this is indicated by the first two steps in Fig. 23). This state cannot be 
extended by any value of  X 3 and therefore there is a backtrack point. The 
conf-set includes the whole  dead-end state and therefore a binary constraint 
between X 1 and X 2 is added excluding the pair (a, a) from the constraint C~,2 
Later on, the constraint C1, 2 is modified and the pairs (a, b) and (a, c) are 
deleted. When the search reaches state (b, b, a, b) (step 10), which cannot be 
extended by X 5, three consecutive backtracks are performed. The first results 
in modifying the constraint C3, 4 and the second m deleting the value a from C~. 
This last modification helps prune the search. For instance, in step 13, the state 
(b, c) is not extended to (b, c, a) since a is no longer in the domain of X 3 
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