
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 41, 2-24 (1990)

Decomposing a Relation into a Tree of Binary Relations*

RINA DECHTER +

Computer Science Department, Cognitive Systems Laboratory,
University of California, Los Angeles, California 90024

Received July 8, 1987; revised February 26, 1989

We present an efficient algorithm for decomposing an n-ary relation into a tree of binary
relations and provide a simple test for checking whether or not the tree formed by the
algorithm represents the relation precisely. If a tree decomposition exists, the algorithm is
guaranteed to find one. Otherwise, the tree generated by the algorithm can be used as an
approximation of the relation. The method can be extended to decomposing a relation into
an acyclic database of bounded relation arity. The unique feature of the algorithm presented
in this paper is that it does not a priori assume any dependencies in the initial relation, but
rather derives such dependencies from the bare relation instance. 0 1990 Academic Press, Inc.

1. INTRODUCTION

The primary use of functional dependencies and multivalued dependencies in
relational databases is to guide the decomposition of a relation scheme into a
database scheme consisting of smaller relations that satisfy the join-dependency
property, i.e., the reconstruction of the whole relation from its components by the
natural join operation is lossless [111. The purpose of such decomposition is to
attenuate data redundancy and enhance data reliability. Query processing, on the
other hand, which may sometimes require the reconstruction of the whole relation,
becomes more expensive.

Some of the shortcomings of decomposition are avoided if the relation is decom-
posed into a tree of binary relations. Being a special case of acyclic database
schemes, such trees inherit the latter’s desirable property [2], e.g., efficient query
processing, and, at the same time, require minimum storage space.

In this paper we present a greedy algorithm which is guaranteed to produce a
lossless decomposition of a relation into a tree of binary relations when such
decomposition exists, along with a simple test for determining whether the tree
produced by the algorithm is indeed a lossless decomposition. If the relation is not
tree-decomposable, then we can use the tree decomposition of the relation, together
with that of its complement, as an approximate representation. Alternatively, the

* This work was supported in part by the National Science Foundation, Grant IRI-8815522 and by
Air Force Oilice of Scientific Research, Grant AFOSR 88 0177.

+ Current affiliation, Computer Science Department, Technion, Haifa, Israel.

0022-0000/90 $3.00
Copyright 0 1990 by Academic Press, Inc.
All rights of reproduction in any form reserved.

TECHNICAL REPORT
R-76-II

DECOMPOSING A RELATION INTO A TREE 3

decomposition scheme can be extended to form acyclic database instances where
the arity of each subrelation is greater than two.

Since the method operates on a single database instance, and since the decom-
posability of a relation may change as a result of add and delete operations, the
practicality of the method we propose is limited to databases requiring infrequent
updates. This is the case, for example, when databases are used for describing
natural phenomena such as relations between diseases and their characteristic
manifestations or for describing complex physical systems and their possible modes
of failure.

Another potential use of the algorithm is to assist a database designer by
suggesting candidate multivalued dependencies [6] (MVDs) that fit an initial
relation instance. This set of MVDs can be inspected by the designer to select those
he may wish to impose on all instances.

The method was motivated by an algorithm developed by Chow and Liu [3] for
approximating discrete probability distributions with dependence tree. Related work
is presented in [13-151.

2. DEFINITIONS AND PRELIMINARIES

A data base instance can be associated with a hypergraph where the nodes repre-
sent the attributes and the hyperarcs are subsets of attributes appearing in the same
relation. When all relations in the instance are binary, i.e., containing only two
attributes, the hypergraph reduces to an ordinary graph, called a constraint graph.
In the special case where the constraint graph is a tree, a useful result states that
the database can be processed very efficiently [2], for instance, one tuple in the
relation instance can be generated in O(nk’), where n is the number of attributes
and k is their domain size [4].

Consider, for example, the relation on FLIGHT, DAY-OF-WEEK, and
PLANE-TYPE presented in Fig. 1 (from [11 I). This relation can be decomposed
losslessly into relations on the pairs (FLIGHT, DAY-OF-WEEK) and (FLIGHT,
PLANE-TYPE). The associated graph is given in Fig. 2.

Let p denote an n-ary relation over the set of attributes U = (Xi, X,}, i.e., a
subset of the Cartesian product Dom(X,) x , x Dom(X,), where Dom(X,) is the

I I I
FLIGHT DAY-OF-WEEK PLANE-TYPE

I I
IM I Mondav I 147 1 /

Thursday ;4; 1

FIG. 1. The relation (FLIGHT, DAY-OF-WEEK, PLANE-TYPE).

4 RINA DECHTER

FLIGHT

DAY-OF-WEEK PLANE-TYPE

FIG. 2. The graph associated with (FLIGHT, DAY-OF-WEEK), (FLIGHT, PLANE-TYPE).

set of values of attribute Xi. Let ps denote the projection of p on a subset S of
attributes, namely, ps is obtained from p by striking out columns corresponding to
attributes U - S and removing duplicate tuples in the columns that remain. Given
an attribute A and an element a of its domain, the restriction of p to A = a, denoted
by P

r(A = a) is the n-ary relation containing all n-tuples in p having value a for A.
Similarly, ;he restriction of p to a subtuple t = (Xi, = xii, X,, = xir), denoted by
P ‘(!), consists of all the n-tuples of p that match t for the corresponding attributes.

The property of a relation that enables its lossless decomposition into two
smaller relations is what we call conditional independence.

DEFINITION. Let Si , S2, S3 be subsets of U. S, and Sz are conditionally inde-
pendent given S3, denoted by (Si 1 S3 1 S,), if for every combination of values for
attributes in S3, denoted by S3 = s3, we have

L’(S3=sl)= (L
SI s3

)r(S3=s3)W (L, s)G3=s3)
2 3 3

where
L = PS,S*S3.

If (S,
losslessl!
Fig. 1, t

1 S3 1 S,) holds in a relation p, and U = S, S,S,, then p can be decomposed
v into the database scheme Si S3 and S2 S3. For instance, in the relation of
he attribute DAY-OF-WEEK is conditionally independent of PLANE-

TYPE given FLIGHT. Conditional independence parallels the notion of embedded-
multi-valued-dependencies (EMVDs) [6]. That is, (S, I S3 1 S,) iff S3 --H S, in the
projection of p on Si S2S3. We will use the terms conditional independence and
EMVDs interchangeably.

A constraint graph, representing. a relation, explicates some of its conditional
independencies. In a graph, S2 is said to separate S, from S3 if by removing the
nodes in S2, nodes in S, are disconnected from nodes in S,. Every separation in the
constraint graph corresponds to a conditional independence, i.e., if a subset S,
separates (in the constraint graph) subset S, from S, then (S, I S, 1 S,). However,
there may be conditional independencies in the relation which are not manifested

DECOMPOSINGARELATION INTO A TREE 5

in the constraint graph. For a detailed discussion of conditional independencies and
their graphical representation see [17, 181.

The following notations will be used throughout:

n,(Xi = xi) G number of n-tuples in p for which Xi = xi
n,(Xi = xi, Xi = x,) g number of n-tuples in p for which Xi = xi and Xj = xj.

In general,
n,(X, = xi,, . ..) Xi, = x,,) 6 number of n-tuple in p for which X, = xi,,

Xi< = Xi!.

Let S be any subset of U. We define, n,(X,=x;) 2 number of 1 Sl-tuples in the
projection ps for which Xi= xi, namely, n,(.) is used as a shorthand for nps(.).
In general, n,(X,, = xi,, Xi, = xi,) 2 number of 1 Sl-tuple in ps for which
xi, = Xi,) . ..) Xii = xit.

When the referenced relation is the global relation, p, we may simplify n,(.) to
n(.), and, when there is no confusion regarding the identity of the attributes, we
will simplify n(Xi, = xi,, Xi, = xi,) to n(x,,, xi,).

3. THEORETICAL GROUNDS FOR TREE DECOMPOSITION

The following is a demonstration of the algorithm which will be developed in the
sequel. Consider the relation over the binary attributes {A, B, C, D, E) given in
Fig. 3. The first step of the algorithm computes the quantities {n(X, = xi)} and
{n(X,=xi, xi= ,) x } for all attributes and their values. Obtaining:

n(A=0)=8, n(B= 1)=6, n(B=0)=2,

n(B=O, C= 1)=2, n(B=l,C=1)=3, etc.

Next, for each pair of attributes (Xi, Xi) we compute the weights m(X,, X,)
according to the formula given in Eq. (32) of Section 4,

m(A, B) = m(A, C) = m(A, D) = m(A, E) = - 16.63,

m(B, C) = - 13.97, m(B, D) = - 15.95, m(B, E) = - 16.55,

m(C, D) = - 16.55, m(C, E) = - 17.13, m(D, E) = - 15.50.

FIGURE 3 FIGURE 3

6 RINA DECHTER

Finally, using the maximum-weight spanning-tree algorithm on these weighted arcs,
the tree shown in Fig. 4 is produced. The relations associated with the arcs of the
tree are the projections of the global relation on pairs of connected attributes. For
instance, the relation associated with attributes D and B is pDB. The tree generated
in this example, together with its associated database (see Fig. 4) represents the
original relation, in the sense that it provides a iossless decomposition. The relation
can be efficiently recovered by performing the natural join operation in the partial
order dictated by the tree going from leaves to the root.

The tree structure also explicates several conditional independencies (i.e.,
EMVDs). For instance, since attribute D separates attributes B, A, C, from E, the
conditional independence, (BAC[D 1 E) holds. In trees every attribute separates
the graph into two subsets, and each separation represents a genuine EMVD in the
relation.

The following paragraphs contain the justification for this algorithm. It is par-
tially based on a result by Chow and Liu [3] concerning an optimal approximation
of a probability distribution by a tree-dependent distribution. We shall first sum-
marize Chow and Liu’s result and then establish a relationship between relations
and probability distributions, from which a similar algorithm for finding tree
decompositions for relations will emerge.

Let P(x) be a probability distribution of n variables, X,, X,, X,, and let T be
a tree connecting the n variables. To our convenience we use both the n-tuple
x1 , x2 > ..., x, and the symbol x to denote the set of n propositions X, =x1,
x2 = X2) . ..) X, = x,. The tree-dependent distribution associated with P and T,
denoted by PT, is defined by the product form

PT(xl 7 ?..., xn) = fi p(xi I xj(i)),

i=l
(1)

where Xici) is the variable designated as the parent of Xi in some root-down orienta-
tion of the tree. The root X, can be chosen arbitrarily and, having no parents, is
characterized by the prior probability P(x, 1 x,,) = P(xl) (see Fig. 5). Chow and Liu
asked the following question: Given a probability distribution P, what is the tree-
dependent distribution PT that best approximates P? In other words, among all the
spanning trees that one can draw on n variables, each yielding a product form PT

A C

FIGURE 4

DECOMPOSING A RELATION INTO A TREE 7

FIG. 5. A tree-dependent distribution.

(see (l)), which PT will be closest to P? As a distance criterion between two
distributions, P and PT, they chose the cross-entropy measure [S, 19)

P(x) D(P,PT)=C P(x) log-
i P'(x)' (2)

This measure is non-negative and attains the value zero iff PT coincides with P.
Surprisingly, they found a simple solution:

THEOREM 1 [3]. The distance measure (2) is minimized when T is any maxi-
mum weight spanning tree (MWST), where the weights of all arcs (Xi, Xi) are
defined by the mutual information measure

Z(X;, Xi) = 1 P(Xj, x,) log pT;;:‘, 20.
I,, -q I I

(3)

By virtue of this result, the minimization can be solved, without exhaustively
considering all possible trees, by the efficient MWST algorithm [S].

We now address the question whether it is possible to extend Chow and Liu’s
result from probabilities to relations in the following intuitive way. Suppose that a
relation p is associated with a uniform probability distribution which accords equal
non-zero probabilities to all tuples in the relation and to those tuples only. Does
the existence of an exact tree-dependent distribution for this uniform distribution
imply that the relation is tree decomposable? Moreover, does a tree-decomposable
relation necessarily have a tree-dependent uniform probability distribution? Are
they decomposable by the same tree? And if so, can we use the method to find an
optimal tree-decomposition approximation to a given relation? We will formalize

8 RINA DECHTER

these questions and show that the answer is in the affirmative for exact decomposi-
tion but remains unsettled for approximate decompositions.

Let p be an n-ary relation on attributes Xi, X,. We define by PP(p) the set
of all probability distributions that associate non-zero probabilities with tuples in
p, and with these tuples only. Namely,

PP(p)= {PIP(x)>OVxEp and P(x)=OVx$p}. (4)

An arbitrary member of PP(p) will be denoted by P,. In particular, the uniform
probability distribution, denoted by U,, is a member of PP(p). It is defined by

1
U,(x) = EY VXEP,

where 1 p 1 is the cardinality of p.
Given a probability distribution on n variables (attributes) we define the relation

rel(P), associated with P, as the set of all tuples that have non-zero probabilities,
namely,

rel(P)= {xlP(x)>O}. (6)

Clearly,

P = Wp,), VP, E PP(p). (7)

For a probability distribution P and a tree T, the tree-dependent distribution PT
is defined in (1). Similarly, for a relation p and a tree T we define the tree-
dependent relation pT as the relation generated by projecting p on pairs of
attributes connected in the tree and then joining these binary relations. Formally,

PT’ w Px,x,* (8)

Next, we show that if P is tree dependent along a tree T, then rel(P) has a
lossless decomposition by the same tree.

THEOREM 2. If P = PT then (rel(P) = rel(P))=.

ProojI For every relation p and a tree T it is always the case that pT 1 p. In par-
ticular, (rel(P))’ 3 rel(P). We have to show that if a tuple is not a member of rel(P)
it is also not a member of (rel(P))=. Suppose that x # rel(P). From the definition of
rel(P), it follows that P(x) = 0, and since T supports an exact tree-dependent
distribution of P, it also follows that P’(x) = 0. This last equality translates to

P’(x)= JJ p(xi I xj(i)) = 07
(X,, X,(&E =

(9)

DECOMPOSINGARELATIONINTOA TREE 9

which implies that at least one component of the product must be zero. Assume
that P(x, 1 xjciO,) = 0, then, also P(x,, xjciO,) = 0. Since Vx, P(x) > 0 and, since

O = p(xio, xj(io)) = c P(x), (10)

~.~I~‘~=~‘o.x,l,~)=x,(,~,~

all tuples x having Xi0 = x,, X,(,,, = xlciO, must have P(x) = 0, and, therefore, do not
appear in rel(P). Consequently, the projection of rel(P) on these two attributes
cannot contain the tuple (xi,, xjciO,). Thus

(11)

Since (X,, XjciO,) is an arc in the tree T, it is impossible that x will be a member
of (rel(P))? 1

Theorem 2 implies that for a given relation p, if U, is an exact tree-dependent
distribution, UT, then the tree T supports a lossless decomposition of p and the
MWST algorithm on U, will generate such a tree. In the continuation of this
section we show that a partial converse of Theorem 2 is also true, namely, that if
p can be decomposed losslessly into some tree T, then its associated uniform
distribution, U,, is indeed tree dependent along T. Therefore, the MWST algorithm
is guaranteed to produce a tree decomposition to p if such a decomposition exists.
It is not true, however, that every probability P, is tree-dependent when p is tree
decomposable. The main result is stated in Theorem 4 below. But first, we need the
following theorem which establishes a product form for tuples of a tree decomposed
relation.

THEOREM 3. Zf p is representable by a tree, T, namely p = p T, then Vx E p,

(12)

The following subsections establish the proof of Theorem 3 via several lemmas.
We say that a (constraint) graph represents the relation p, if p can be losslessly

decomposed into the binary relations corresponding to the arcs of the graph. If, in
a constraint graph, an attribute Xi separates two subsets of attributes, Si and S,,
each containing Xi, then, in the joined relation each value of Xi which appears in
ps, will be duplicated as many times as it appears in ps,. The following lemma
states this property.

LEMMA 1. Let S1, S,, and S, be subsets of U such that U = S, S2S3. If in a
constraint grah representing p, S, separates S, from S,, then Vx E ps,,

n,(& = xl = n,,,,(S, = xl .n,,,,(& = xl. I

10 RINA DECHTER

A similar product form holds for a tuple in p:

LEMMA 2. If, in a graph representing p, X, separates S1 = X, ... A’-, from
sZ=xj+I ... X,, (see Fig. 6), then Vx E p,

n(xj)=n(x,, xj-,, X,).n(Xj, Xj+I, X,).

Proof Let S:= XjSi, i= 1,2. Since (X,, X,_, IXjIXj+i,
Lemma 1,

Vxj E Dom(Xi), n(Xj) = ns;(Xj) . ng(xj).

However,

a. ns;(xj)=n(xj, xi+ 1, x,), and
b. ns;(xj) = n(x,, x,).

. . .)

(13)

X,) then from

(14)

Equality (a) is true since (x,, xj+ , , x,) E ps; will appear in p as many times as
X, = xi appears in ps;(xj). The same argument works for (b). Substituting (a) and
(b) in (14) yields (13). 1

An immediate extension of Lemma 2 is obtained if, instead of one separating
variable, we have a chain or any subset of separating variables. In particular, we
state the following corollary:

COROLLARY 1. If in a graph representing p, X,, Xi+, separate S, = X1 ... Xi+ I
from S,=Xj,i,, . ..X., then Vx~p,

n(Xj+ I, .-, ~~+~)=n(x,, xjpl, xi, ~,+~).n(x,, x~+~, x,). (15)

The proof is based on Lemma 1 and follows the same steps as Lemma 2.

Sl s2

FIG. 6. (S,IX,IS,).

DECOMPOSINGARELATION INTO A TREE 11

LEMMA 3. if S is a subtree of T rooted at Xi, and if Xi separates S, from S, (see
Fig. 7), then V’x E S,

n(x) =
n(21SIXi).n(xIS2Xj)

n(xi) ’
(16)

where X 1 S denotes the projection of tuple x on the attributes in S.

Proof From Lemma 2,

V’xES, 1 = n&f I SI Xi) .ns(x I s*xi)

ns(xi)
(17)

Let S’ = (U - S) Xi. From the tree-structure we obtain

n(x,) = nY(xi) .ns(xi).

Also, for both S, and Sz it holds that

(18)

Since also

n(x I S,X,) = n,(x I SiXi) .ns(xi). (19)

n(x) = n,.(x,), (20)

we obtain

n(x) =
n(~~S,Xi)~n(~~S,Xi)

n(xi)
. I (21)

LEMMA 4. Let p be a relation on X, . . .X,, represented by tree T and let S be a
subtree of T rooted at Xi with XjCi, as its parent node (see Fig. 8), then
t/x = (Xi,, . ..) Xi,) E p&y,

n(2) = n(xi, xj(i)) . n&f I s)

4x;) ’

where S’ is the union of S with XjCi,.

(22)

FIGURE 7

12 RINA DECHTER

FIGURE 8

Proof Let S” = U- S, X be a member of ps9, and let ext(Z) be an arbitrary
extension of X to all attributes s.t. ext(Z) E p. Since Xi separates S from S”, from
Lemma 2 we obtain

n(x,) = n(i 1 S) .n(ext(Z)l SUXi). (23)

Also from Corollary 1 we obtain

n(x,, xjci,) = n(Z) . n(ext(Z) I S”Xi). (24)

Substituting (24) in (23) and some manipulation yields the desired result. 1

Proof of Theorem 3. Theorem 3 can be proved by recursively applying Lemmas
2, 3, and 4. Given an n-tuple XE p, then for x1, the root value, we first apply
Lemma 2 to yield

1 = n(xs, . ..) x1, . ..) Xi”) = n(xi, 3 ...v x1) ’ n(xl 3 ...9 xin)

n(xJ
7 (25)

where the indices in the first and in the second tuples correspond to two subtrees
separated by X,. We continue to decompose each part of the numerator by
applying Lemma 3 and Lemma 4 as necessary until we have only single and pairs
of n-quantities. In this decomposition, each parent node appears b - 1 times in the
denominator when b is its degree in the tree. For all parents accept X,, b - 1 is also
the number of children. We therefore obtain

’ n(xi9 xj(i)) 1=4x1) ll
i=l n(xj(i)) ’

which completes the proof. 1

(26)

DECOMPOSING A RELATION INTO A TREE 13

We are now ready to state and prove the promised theorem 4.

THEOREM 4. For any relation p, if p = p T then U, = (U,) T.

ProojI Let T be a tree such that p = p T. By definition, U, satisfies: VXE p,
U,(x) = l/l p I. We have to show, therefore, that Vx E p, (U,)T (x) = l/l p I. By
definition,

t”p)’ tx) = fl p(x, I x,(i)). (27)
(X,3 -y,(r)) 6 T

The conditional probabilities for U, satisfies

P(Xi 1 Xi) = n(xi3 xj)

n(Xj)

and
4x1) p(xd=pl.

Substituting (28) and (29) in (27) we obtain

4x, 1
(up)T(X)= IpI (X,,X,,,,)ET

-n

(28)

(29)

(30)

Finally, from Theorem 3 and (30) it follows that

1
(u,)““‘=~= ~,(X)~ I (31)

Although Theorems 3 and 4 could also be proved using maximum-entropy
considerations [12, 141 the derivation we showed uses only structural properties of
the relation and reveals interesting features, characteristic of tree-decomposable
relations.

4. AN ALGORITHM FOR TREE DECOMPOSITION

Theorems 3 and 4 guarantee that a relation p has a tree-decomposition iff U, is
tree-dependent distribution. From Theorem 1 we know that a tree supporting a
tree-dependent distribution is generated by MWST algorithm using the arc weights
given in (3). If we substitute the conditional probabilities for the uniform distribu-
tion (given in (28) and (29)) in (3), we obtain the following arc-weights:

1
1

m(Xi9 4)=m(x,,r,)EP,,S
4x,, xj) log n~~~~~~,,.

I J
(32)

Since the quantity I pi is common to all weights it can be ignored.

14 RINADECHTER

The tree-decomposition algorithm (described next), denoted also the MWST
decomposition, takes a relation p and returns a set of tree-structured binary
relations, which are guaranteed to be lossless if the relation is tree-decomposable.

TREE-GENERATION ALGORITHM. a. Compute the basic quantities: n(xi) and
ntxi, Xj).

b. For every two attributes Xi, Xj compute the weights m(X,, X,) given in
(32).

c. Find a maximum weight spanning tree of the complete graph w.r.t. the
above arc weights.

d. For each pair of attributes that corresponds to an arc in the selected tree
find the associated relation by projecting the global relation on that pair.

The complexity of the algorithm is O((Z+ log n) n2), where n is the number of
attributes and 1 is the size of the relation. This can be shown by following its
individual steps. The computation of part (a) can be completed in O(Zn2) steps. Part
(b) is bounded by O(n2Z) since the number of weights needed to be computed is
O(n2), and each computation can take at most 1 steps. Since the MWST algorithm
of part (c) takes just O(n* log n) steps [7], the total complexity is O((Z+ log n) n*).

To verify that the generated tree represents the input relation, we can compute
the number of n-tuples represented by the tree-decomposition and compare it to the
size of the given relation. If the two numbers are equal, the database losslessly
represents the relation. Otherwise, we know that no tree representation exists. The
size of a relation represented by the tree can be computed in linear time [4], and
(for the sake of completeness) an algorithm for doing so is henceforth described.

Given a directed tree (arcs are directed from a parent to its children), choose an
ordering, d, on the attributes, such that a parent always precedes all its children.
Let N(xj,) stands for the size of the projection of p on the variables in the subtree
rooted at Xi, after selecting those with X, = xi!. Consider a node X, with all its child
successor nodes as in Fig. 9.

Xi
x;

FIG. 9. Schematic computation of relation size on trees.

DECOMPOSING A RELATION INTO A TREE 15

Looking first on the association between A’, and a specific child node X,, it is
clear that the value xi! can participate in a consistent tuple with each compatible
value of A’,, no matter what values are assigned to variables in the subtree rooted
at A’,. Therefore, the number of tuples consistent with xj, in the subtree rooted at
X, (i.e., in the projection of p on the variables in the subtree rooted at A’,), denoted
N,(xj,), is a sum of those contributed by each compatible value of X,.. Namely,

NX<(X,) = c JW,.,). (33)
i.~~r~Dom(X,.)l(.~,,,x~~)~~~,,~}

Since the partial tuples associated with different successor nodes can be joined (all
of them have X, = xi,), the size of the joined relation, restricted to xi = xjt and to
the successors of Xi, will be the product of the corresponding sizes. Therefore, N(.)
satisfies the following recurrence:

Nx,,) = n c Wd (34)

From this recurrence it is clear that the computation of N(xjt) has the following
steps. For each value xi,, transfer to X,, from each of its children, the sum total of
the counts computed for the child’s values that are consistent with xjt. The overall
value of N(x,,) will be computed later by multiplying the summations obtained
from each of the children. The computation starts at the leaves, initialized to N = 1,
and progresses towards the root. Each variable performs the counting only after all
its child nodes computed their counts using the procedure COUNT that follows.

The procedure COUNT peforms the calculation according to (34). The algo-
rithm terminates when the root is assigned counts for all its values. The COUNT
procedure is next defined for a parent node X, and all its children X,, X,,

COUNT&,, X,, X2, X,)

1. begin
2. For each (X,, X,) do
3. For each xP, E Dom(X,,) (for each value of X,) do
4. I, = c Nx,,)

.x ‘I ;&I,. X,,) E Pxpx,
5. end
6. For each xP, E Dom(X,) do
7. Wxp,) = fl dx,,)

/;X, a child

8. end
9. end

Lines 3 and 4 take k2 steps, where k bounds the domain size and, therefore, for
each parent node, XP, processing takes k2. deg(X,) steps, where deg(X) denotes the
degree of X in the tree. Thus, the counting for all n variables in the subtree adds
up to O(nk*).

571/41/l-2

16 RINA DECHTER

5. PRECISION

The MWST algorithm, which is part of the tree-decomposing algorithm, bases its
selection on the weights m(Xi, Xi) given in (32). Therefore, we should compute the
precision (i.e., the number of binary digits) required to reliably compare the
weights. Since the weights are used merely to establish relative order, we can
eliminate the logarithm function in (32) and use as weights, 2” instead of m, thus
maintaining the same relative order. The new weights m’ = 2” are expressed by

Since

n(xi, xj)

n(xi) n(xj)
< 1,

(35)

(36)

we get that always m’ < 1. In order to get a lower bound we use the fact that all
the counts n(x,) and n(x,, xi) are bounded by 1, the size of the input relation, to
obtain

(37)

Representing numbers of this size requires 212 log I binary digits. Hence, the
precision needed for reliable decomposition requires temporary storage roughly
quadratic in the size of the relation itself.

6. TREE- DECOMPOSITION AS APPROXIMATION

It is clear that there is a very small chance that a random relation has a lossless
decomposition into a tree of binary relations. If we take the set of binary relations
generated by projecting the relation on each pair of variables, we get what
Montanari called the minimal network [16] of the relation. He showed that the
relation represented by the minimal network (i.e., the relation generated by joining
all the binary relations in the minimal network) yields the best approximation to
the original relation among all networks of binary relations. Clearly any tree
decomposition is just an approximation to the minimal network’s relation. Since
the number of possible relations having n variables and k values each, is 2k, while
the number of possible networks of binary relations is roughly 2k2n2 (the number of
possible tree relations is about O(nk’“)), there is a very small probability that an
arbitrary relation will have a lossless decomposition by the minimal network, and
more so by any tree decomposition.

DECOMPOSING A RELATION INTO A TREE 17

When no tree decomposition exists, the decomposition algorithm still produces a
tree decomposition which is not lossless but can be regarded as an approximation
to p. In the context of probability distribution we know that the tree, T, generated
by the algorithm determines a tree-dependent distribution (U,)’ which is the best
approximation to U, with respect to proximity measure (2). However, it is not clear
how this proximity measure can be translated into a meaningful distance measure
for relations. The distance measure (2) for U, is given by

(38)

and after some manipulation one can show that minimizing (38) is equivalent to
maximizing the product

I-l uJ,)‘(x). (39)
XCP

Substituting (30) in (39), results in

(40)

Therefore, the algorithm finds a tree, T, which maximizes D’(T).
We cannot, however (as of this writing), make any theoretical claim regarding

the relationship between this measure and a more intuitive measure such as the
number of tuples in the approximating relation. Setting aside the issue of how well
a relation can be approximated by a tree, we still would like to verify that the
approximation provided by the MWST method is better than random tree decom-
positions. To gain insight we performed an initial set of experiments the results of
which are summarized in Figs. l&12. In the table of Fig. 10, each row shows the
results associated with one randomly generated relation. We experimented with
relations having 415 variables each having two values. For each relation we show
its size (r-size), the size of the relation generated from the MWST decomposition
(mwst-size) and the size of relations generated from random tree decompositions
(# Ti). To our satisfaction, in all cases tried, the MWST decomposition was better
or equal to a random tree decomposition. For larger relations the binary projec-
tions permitted all four pairs and, therefore, the approximation is equally bad for
all trees. Later, when we experimented with multi-valued relations (not reported
here), we could scarcely see cases where the MWST decomposition was outperformed
by a randomly generated tree.

Intuitively, one may think that an approximating tree decomposition should
consist of the tightest binary relations. We followed this intuition and in Fig. 11 we
compare the MWST decomposition and random trees decompositions with the tree
generated by the minimum weight spanning tree algorithm, where the weight of
each arc is the size of the projected binary relation (called minimum projection size

18 RINA DECHTER

FIGURE 10

FIG. 11. Comparing mwst decomposition with minimum projection size tree (mpst).

DECOMPOSING A RELATION INTO A TREE 19

tree-mpst). To our surprise, the trees generated that way provided the worse
approximations even compared to random tree decompositions.

As noted earlier, it is quite unfair to judge the approximating power of the tree
decomposition on an arbitrary relation since even the minimal network which is the
best possible approximation will do poorly. We therefore evaluated the MWST
decomposition for relations which are representable by networks of binary relations
(in this case a random network of binary relations was generated and the relation
associated with them was computed and served as input to the decomposition algo-
rithm). The results, tabulated in Fig. 12, show that the MWST decomposition is
lossless in most cases while in others it provides a very good approximation to the
relation, much better than any random tree decomposition.

The quality of the approximation can be enhanced by using also a tree
approximation of the Complement of p, p = {xIx$p}, which yields a lower bound
to p. The weights of the arcs associated with the complement relation as well as
their corresponding binary relations do not require that the complement relation be
explicitly generated. Assume that, a priori, each variable has k possible values, and
let ti denote the n-qauntities of the complement relation. The equality

E(xi, xj) = k”- * - n(x,, x,) (41)
holds, since any (n - 2)-tuple of all the attributes excluding Xi and X,, which is not
consistent with (xi, x,) will be consistent with (xi, xi) in p. Similarly,

ii = k”- ’ - n(x,). (42)
Thus, the weights fi are given by

52(X;, Xj) = c (k,-‘--n(x;, xi))
(x8, x,) E Dom(X,) x Dom(X,)

x log
k”-*--(xi, xi)

(kn--l -n(x,))(k”-’ -n(xj))’ (43)

FIG. 12. Comparing mwst-decomposition for relations represenatable by a binary network of relations.

20 RINA DECHTER

With these weights the minimum spanning tree algorithm determines a tree F, so
that p’ can be generated. The binary relations associated with each arc of this tree
contain the Cartesian product of the domains of the two attributes excluding those
pairs (xi, x,) for which ii(xi, x,) is 0. Namely, for each (Xi, X,) E F,

P cx, = {(xi, xj)l (xi, xj) E Dom(Xi) X Dom(X,); fi(Xi, Xj) > O}. (44)

pT and p’ provide two bounding sets for the relation p that have a compact
representation, and the membership of a tuple in each set can be efficiently deter-
mined. A tuple which is not in pT is definitely not in p and a tuple which is not in
p’ is definitely in p (see Fig. 13). A tuple belonging to both sets is undetermined.

Notice, however, that the usefulness of the approximation by the complement
relation is limited to large relations only. It is apparent (see (41) and (44)) that if
the relation size, 1, is smaller than k”-* then the projection of the complement
relation on each pair of variables allows all possible combinations of pairs and the
approximation generated by such binary relations is the universal relation, thus
providing no information. By the same token, if the size of the relation itself is very
big, i.e., if I z (k* - 1) k”-* then approximating the relation itself by binary rela-
tions will yield the worse approximation-the universal relation. In this case the
approximation by use of the complement relation may be more informative. In
summary, if we divide the possible relation sizes into three regions: 1.1 <k”-*;
2. k”-* < I < (k* - 1) kflm2; 3.1> (k* - 1) k*-*, then only the relation should be
approximated in the first region, both the relation and its complement should
be approximated in the second region, and only the complement relation should be
approximated in the third region.

An important feature of these approximations is that their quality can be deter-
mined in advance. The quality of the tree approximation pT can be measured by the
ratio of its relation size to 1.

The computation of p’ does not involve a precision problem, since it should only
be used when I > k” - * and in these cases the size of the complement relation is no
larger than k*l, where k is the number of values. The
puting the arc weights of the complement relation are
in that number.

precision required for com-
therefore roughly quadratic

FIGURE 13

DECOMPOSINGARELATIONINTOA TREE 21

7. EXTENSION TO ACYCLIC SCHEMES

The method described above is restricted to representing, or approximating, a
relation by a tree of binary relations. It can be generalized to allow relations of
higher arity in the decomposition as long as they are interconnected via a tree
structure. Such decompositions are called join-trees [111.

A set of relations R,, R,, can be associated with a graph, called a clique graph,
in which the attributes are represented by nodes and pairs of attributes which
belong to the same relation are connected by an arc. Thus, every relation is
associated with a clique. A database scheme whose clique graph is chordal (i.e.,
every cycle of length at least four has a chord), and whose maximal cliques
correspond to relations in the scheme, is called an acyclic scheme [2]. There exists
an underlying join-tree for such a scheme, namely, the maximal cliques can be
connected by a tree structure, whose topology dictates an efficient procedure for a
lossless recovery of the whole relation. The existence of a join-tree enables an
efficient query processing algorithms and therefore acyclic databases are desirable
decomposition schemes [2].

Since a chordal graph can be associated with an acyclic database scheme whose
relations are determined by the maximal cliques (i.e., those which are not contained
in another clique) of the graph, it seems reasonable to extend the decomposition
target from simple trees, representing only binary relations, to join-trees, having
relations (cliques) of varying sizes. Since cliques of smaller sizes are preferable, we
will characterize the join-trees by the cardinality of the cliques and will consider a
special class of chordal graphs called k-trees. A k-tree is a chordal graph whose
maximal cliques are of size k + 1 and it can be defined constructively as follows:

1. A complete graph with k vertices is a k-tree.
2. A k-tree with r vertices can be extended to r + 1 vertices, by connecting the

new vertex to all the vertices in a clique of size k.

In particular, l-trees are ordinary trees. The addition of each vertex (step 2)
generates a new clique of size k + 1 and, by associating each new clique with one
“parent clique” which shares k vertices with it, we get a join-tree. Figure 14a
presents a 2-tree which could be constructed in the order A, B, C, D, E, F.

\ CDE DBF

FIGURE 14

22 RINA DECHTER

A possible join tree among the cliques ABC, BCD, DFB, and CDE is given in
Fig. 14b. For a detailed discussion of the properties of k-trees see [l].

Since k-trees represent acyclic schemes, we consider them as a desirable target for
decomposition. Equation (12) can be extended to any join-tree of an acyclic scheme
[13]. Given a directed join-tree with relations R,, R,, when R, is the root of the
tree, the relation which can be recovered from this scheme satisfies

vx E p, x = x,) .*., x,, 1 =@IR,) fi -n(X’Ri)
i=zn(XIRinRj(i))’

(45)

where Ri represents the set of attributes in the ith relation, (.%I Ri) denotes the
projection of n-tuple X on the attributes in Ri, and Rjci, is the parent of Ri in the
join-tree. We can show that if with each join-tree, T, we associate a mapping

T(%)=n(.flR,) n n(x I Ri)

(R,, R,(,))E T n(x 1 Ri n RAt))’
(46)

and a measure

then F,(T) satisfies

F,(T)= 1 1% W), (47)
.f’Ep

where

Fp(T)=m(R,)+ 1 (m(Ri) - m(Ri n Rj(i))), (48)
CR,. R,(‘))E 7-

m(R;) = 1 n(x) log n(x). (49)
.-fEP,Q

Associating with each relation pR, the weight

w(RJ = m(Ri) - m(Ri n Rjci,)

(for the root, RI, the parent relation is empty), we obtain

F,(T) = i w(Ri). (51)
i= 1

In particular, every join-tree of a k-tree has an F value which can be computed by
(50). We can prove that:

THEOREM 5. A relation p has an acyclic decomposition into a k-tree, having a
join-tree, T, iff T maximizes F over ail other k-trees (and their join-trees).

The theorem can be proved in the same way as in the binary tree-decomposition
case, however, here we will present proof of one part of the theorem without using
the analogy between probabilities and relations. We will show that if T is a join-tree
representing p, then T maximizes F.

DECOMPOSINGARELATIONINTOA TREE 23

Proof of Theorem 5. Since F is a concave and symmetric function on
I’= { (T(X,), T(X,))j TE JOIN-TREES OF K-TREES) and it is bounded by a
symmetric constraint C, T(X) d I [3], where 1 is the size of the relation p, F’s
extremum (maximum) is achieved when T(2) are all equal. Moreover, since F is
monotone w.r.t. each of its components, if there exist T such that VX, T(f) = 1, F
will attain its maximum in this T. I

We, therefore, seek a k-tree whose directed join-tree has a maximal sum of
weights. Unfortunately, k-trees do not possess some of the nice properties of
ordinary trees. In particular, there is no greedy algorithm that enables the deter-
mination of a k-tree of maximum sum of weights (i.e., k-trees are not matroids
[9]). Determining the maximum weight k-tree may require exhaustive search
among all possible k-trees. Alternatively, one can always use a greedy algorithm
heuristically and arrive at a k-tree which has a (hopefully) good but non-optimal
F value.

Such an algorithm can generate the k-tree incrementally. At each step one vertex
is selected and connected to a clique of size k already in the tree. This determines
a new clique whose parent will be one of the old cliques that shares k vertices with
it. The vertex chosen is one which contributes maximum weight according to (50).
When k = 1 the algorithm is the same as the binary-tree decomposition described
before, and only in this case is the decomposition guaranteed to be lossless, if one
exists. Otherwise, the algorithm is heuristic and a lossless decomposition into a
k-tree may exist even if the algorithm does not arrive at such a decomposition.

8. CONCLUSION

We have presented an efficient algorithm for decomposing an n-ary relation into
a tree of binary relations, and a simple test for checking whether or not the tree
formed represents the relation. If such a tree decomposition exists, the algorithm is
guaranteed to find one. Otherwise, the tree generated will fail the test, indicating
that no tree decomposition into binary relations exists. We then discuss the use of
tree decomposition of the relation and its complement as an approximation to the
relation. Finally, we proposed a heuristic algorithm for decomposing any relation
into an acyclic decomposition of bounded arity by extending the binary-tree decom-
position scheme into a k-tree decomposition.

The work reported here has its motivation in the area of constraint satisfaction
problems (CSPs), which have many applications in AI [lo]. Constraint satisfaction
involves the assignment of values to variables subject to a set of constraints, where
each constraint is an i-ary relation on a subset of i variables (i < n), and the task
is to find one or all solutions. Thus, a network of constraints is an instance of a
data base scheme, variables in a CSP are attributes in database, and the task of
finding all solutions is equivalent to creating the join of all relation instances in the
scheme. As in databases, it was realized in CSPs that tree-like structures provide a
useful representation that is accompanied by efficient processing algorithms.

24 RINADECHTER

Normally in a CSP environment the relation itself is not available for decomposi-
tion (this is the target of processing) but in applications involving large networks
representing knowledge that is going to be queried repeatedly, it may be worthwhile
to manipulate the structure of the representation, and the tree-decomposition
algorithm provides one such tool. Recently, we had developed a greedy
“qualitative” tree-decomposition scheme which can be applied directly to the
constraint network (in “Proceedings of AAAI-90, Boston, MA”).

ACKNOWLEDGMENTS

I thank Avi Dechter and Judea Pearl for providing many helpful comments and for reading this
manuscript. I thank the students, Bit Moshe and Ronit Nadam, who implemented the tree-decomposi-
tion algorithm and provided the experimental results presented in the paper. I also thank the referees
of this paper.

REFERENCES

1. S. ARNBORG, Efficient algorithms for combinatorial problems on graphs with bounded decom-
posability-A survey, BIT 25 (1985), 2-23.

2. C. BEERI, R. FAGIN, D. MAIER, AND M. YANNAKAKIS, On the desirability of acyclic database
schemes, J. Assoc. Compur. Much. 30, No. 3 (1983), 4799513.

3. C. K. CHOW AND C. N. LIU, Approximating discrete probability distributions with dependence trees,
IEEE Trans. Inform. Theory (1968), 462467.

4. R. DECHTER AND J. PEARL, Network-based heuristics for constraint-satisfaction problems, Artif:
Intell. J. 34, No. 1 (1987), l-38.

5. S. EVEN, “Graph Algorithms,” Comput. Sci. Press, Rockville, MD, 1979.
6. R. FAGIN, Multivalued dependencies and a new form for relational databases, ACM Trans. Datnbase

Systems 2, No. 3 (1977), 262-278.
7. J. B. KRUSKAL, On the shortest spanning subtree of a graph and the traveling salesman problem,

Proc. Amer. Math. Sot. 7 (1956), 48-50.
8. S. KULLBACK AND R. A. LEIBLER, Information and sufficiency, Ann. Math. Statist. 22 (1951) 79-86.
9. E. L. LAWLER, “Combinatorial Optimization, Networks and Matroids,” Holt, Rinehart, & Winston,

New York, 1976.
10. A. K. MACKWORTH, Consistency in networks of relations, Artif: Zntell. 8, No. 1 (1977) 99-118.
11. D. MAIER, “The Theory of Relational Databases,” Comput. Sci. Press, Rockville, MD, 1983.
12. F. M. MALVESTUTO, Decomposing complex contingency tables to reduce storage requirements,

in “Proceedings, International Workshop on Statistical & Scientific Database Management,
Luxenburg, 1986.”

13. F. M. MALVESTUTO Modelling large bases of categorical data with acyclic Schemes, Rome, 1986.
14. F. M. MALVESTUTO, Statistical treatment of the information content of a database, Znform. Systems

11, No. 3 (1986), 21 l-223.
15. F. M. MALVESTUTO, Answering queries in categorical databases, in “Proceedings, Sixth Conference

on the Principles of Database Systems, San Diego, CA, 1987,” pp. 87-96.
16. U. MONTANARI, Networks of constraints: Fundamental properties and applications to picture

processing, Inform. Sci. 7 (1974), 95-132.
17. J. PEARL AND A. PAZ, On the logic of representing dependencies by graphs, in “Proceedings, AI-86,

Canadian Conference, Montreal, Canada, 1986.”
18. J. PEARL, “Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,” Morgan

and Kauffman, Palo Alto, CA, 1988.
19. J. E. SHORE, Axiomatic derivation of the principle of maximum entropy and the principle of

minimum cross-entropy, IEEE Trans. Inform. Theory IT-26 (1980) 2637.

