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SEARCH TECHNIQUES 

Judea Pearl and Richard E. Kor! 

Computer Science Department, University of California, Los Angeles, 
California 90024 

INTRODUCTION 

Search is a universal problem-solving mechanism in artificial intelligence 
(AI). Almost by definition, the sequence of steps required for solution of 
AI problems is not known a priori but must be determined by a systematic 
trial-and-error exploration of alternatives. This is known as search 
behavior. Typical search tasks range from solving puzzles such as Rubik's 
Cube, to playing games such as chess, to solving complex practical prob
lems such as medical diagnosis and configuring computer systems. 

Common examples in the AI literature of search problems are the Eight 
Puzzle and its larger relative the Fifteen Puzzle (see Figure 1). The Eight 
Puzzle consists of a 3 x 3 square frame containjng 8 numbered square tiles 
and an empty position called the "blank." The legal operators slide any 
tile horizontally or vertically adjacent to the blank into the blank position. 
The task is to rearrange the tiles from some random initial configuration 
into a particular goal configuration. 

A problem space is the environment in which the search takes place 
(Newell & Simon 1972). A problem space consists of a set of states of the 
problem and a set of operators that change the state of the problem. For 
example, in the Eight Puzzle, the states are the different permutations of 
the tiles, and the operators are the primitive legal moves. A problem 
instance is a problem space together with an initial state and a goal state. 
In the case of the Eight Puzzle, the initial state would be the initial 
configuration of the tiles, and the goal state is a particular configuration, 
such as that shown in the figure. The problem-solving task is to find a 
sequence of operators that map the initial state to a goal state. Such a 
sequence is called a solution to the problem. 

Problem spaces are usually represented by graphs in which the states of 
the space are represented by nodes, and the operators by edges between 
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Figure 1 Eight and Fifteen Puzzles. 
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nodes. Edges may be undirected or directed, depending on whether their 
corresponding operators are invertible or not. Although most problems 
are actually represented by graphs with more than one path between a 
pair of nodes, for simplicity they are often represented as trees with the 
initial state as the root. The cost of this simplification is that the same state 
may be represented by more than one node in the tree. 

This brief exposition begins by describing general techniques for search
ing problem spaces. Brute-force search is the simplest and most general 
method since it requires no knowledge other than that contained in the 
problem space. Brute-force search algorithms include breadth-first, depth
first, depth-first iterative-deepening, and bidirectional search. Heuristic 
search requires some additional information in the form of an estimate of 
the number of operators in the problem space between a pair of states; as 
a result, it is much more efficient. Heuristic search algorithms include best
first search, the A * algorithm, and iterative-deepening-A *. 

After discussing these general techniques, we consider three special 
cases of problem spaces: AND/OR graphs, game trees, and constraint
satisfaction problems. AND/OR graphs are most suitable for problems 
where the solution is naturally represented as a tree or graph structure as 
opposed to a simple path. Most of the brute-force and heuristic search 
algorithms can be extended to handle AND/OR graphs as well. Game 
trees are used to model two-player adversary games such as chess. The 
best-known search algorithms for game trees are minimax with Alpha-Beta 
pruning, SSS*, and SCOUT. Constraint-satisfaction problems occur in 
situations where the solution is a particular artifact satisfying a set of 
constraints rather than a sequence of actions. For example, the task in the 
Eight-Queens problem is to place eight queens on a chessboard such that 
no two queens are on the same row, column, or diagonal. 

The efficiency of these algorithms, in terms of the costs of the solutions 
generated, the amount of time required to execute, and the amount of 
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computer memory required, is of central concern. Since search is a uni
versal problem-solving method, the only limitation on its applicability is 
the efficiency with which it can be performed. 

The two parameters of a search tree that determine the efficiency of 
various search algorithms are its branching factor and its depth. The 
branching factor (b) is the average number of children of a given node or 
the average number of new operators applicable to a given state. The depth 
(d) is the length of the shortest path from the initial state to a goal state 
or the length of the shortest sequence of operators solving the problem. 

BRUTE-FORCE SEARCH 

The most general search algorithms are brute-force searches since they do 
not require any domain-specific knowledge. All that is required for a brute
force search is a set of states, a set of legal operators, an initial state, and 
a goal criterion. The most important brute-force techniques are breadth
first, depth-first, depth-first iterative-deepening, and bidirectional searches. 

Breadth-First Search 

Breadth-first search generates the nodes of the search tree in order of their 
distance from the root (see Figure 2a). Since breadth-first search never 
generates a deeper-level node in a tree until all the nodes at shallower levels 
have been generated, the first path found to a goal will be a path of shortest 
length, or an optimal solution by this measure. Since the amount of 
time used by breadth-first search is proportional to the number of nodes 
generated, and the number of nodes at level d is bd, the amount of time 
used by breadth-first search is b + b2 + . . .  + bd, or O(bd) in the worst case. 

The main drawback of breadth-first search, however, is its memory 
requirement. Since each level of the tree must be saved in its entirety in 
order to generate the next level, and the amount of memory is proportional 
to the number of nodes stored, the space complexity of breadth-first search 
is also O(bd). As a result, breadth-first search is severely space-limited in 

.� /'x IX· 
3 4 5 6 2 3 5 6 4 5 7  8 

Figure 2 Order of node generation for searches: (a) breadth first; (b) depth first; (c) depth

first iterative deepening. 

A
nn

u.
 R

ev
. C

om
pu

t. 
Sc

i. 
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
L

os
 A

ng
el

es
 U

C
L

A
 o

n 
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



454 PEARL & KORF 

practice and will exhaust the available memory in a matter of seconds on 
typical computer configurations. 

Depth-First Search 

Depth-first search (see Figure 2b) expands nodes in a last-in, first-out 
order. Since it generates the same set of nodes as breadth-first search, the 
time complexity of depth-first search is also O(bd). Its advantage, however, 
lies in its space efficiency. Since depth-first search stores only the current 
search path, and the maximum length of this path is only d nodes, the 
space complexity of depth-first search is only Oed). As a practical matter, 
depth-first search is time-limited rather than space-limited. 

However, the disadvantage of depth-first search is that in general, in 
order to terminate it requires an arbitrary cutoff depth. Without such a 
cutoff depth, the first path could be explored forever, cycling back in an 
infinite loop to revisit previous states. Although the ideal cutoff is the 
solution depth d, this value is almost never known until the problem is 
solved. If the chosen cutoff depth c is less than the solution depth d, the 
algorithm will terminate before reaching a solution, whereas if c is greater 
than d, a large price, O(bC), is paid in terms of execution time, and the first 
solution found may not be optimal. 

Depth-First Iterative Deepening 

An algorithm that suffers neither the drawbacks of breadth-first nor depth
first search is called depth-first iterative deepening. Depth-first iterative 
deepening (DFID) first performs a depth-first search to depth 1, then 
conducts a complete depth-first search to depth 2, and continues executing 
depth-first searches, increasing the depth cutoff by 1 at each iteration, until 
a solution is found (see Figure 2c). 

Since it never generates a deeper node until all shallower nodes have 
been generated, the first solution found by DFID is guaranteed to be 
optimal. Furthermore, since at any given point it is executing a depth-first 
search, the space complexity of DFID is only O(d). Finally, although it 
appears that DFID wastes a great deal of time in the iterations prior to 
the successful one, the asymptotic time complexity of DFID is O(bd). The 
intuitive reason for this is that since the number of nodes at a given level 
of the tree grows exponentially with depth, almost all the time is spent in the 
deepest level, even though shallower levels are generated an arithmetically 
increasing number of times. 

It can be proven by a simple adversary argument that any brute-force 
search algorithm must take O(bd) time. Furthermore, a simple infor
mation-theoretic argument shows that any algorithm that takes O(b1 time 
must use Oed) space. These facts imply that DFID is asymptotically 
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SEARCH TECHNIQUES 455 

optimal in terms of time and space among all brute-force search algorithms 
that find optimal solutions on a tree (Korf 1985). 

Bidirectional Search 

One final brute-force search algorithm, which requires some additional 
structure in the problem space, is called bidirectional search (pohl 1971). 
Bidirectional search executes two breadth-first searches, one from the 
initial state and one from the goal state, until a common state is found 
between the two search frontiers. The path from the initial state is then 
concatenated with the inverse of the path from the goal state to form the 
complete solution path. 

Bidirectional search requires an explicit goal state rather than a goal 
criterion; and either the operators of the problem space must be invertible, 
or backward chaining must be feasible. Assuming that the comparisons 
for identifying common states can be done in constant time per node by 
using a technique such as hashing, the time complexity of bidirectional 
search is O(bd/2) since each search need proceed to only half the solution 
depth. Since at least one of the search frontiers must be stored in order to 
find a common state, the space complexity of bidirectional search is also 
O(bd/2). 

HEURISTIC SEARCH 

All brute-force algorithms suffer in efficiency from the fact that they are 
essentially blind searches; they use no domain knowledge to guide the 
choice of which nodes to expand next. Heuristic search takes advantage 
of the fact that most problem spaces provide, at relatively small com
putational cost, some information that distinguishes among states in terms 
of their likelihood of leading to a goal state. This information is called a 
heuristic evaluation function. 

In the context of a single-agent problem, a heuristic evaluation function 
is a function from a pair of states to a number that estimates the distance 
in the problem space between the two states. For example, in navigating 
from one point to another in a network of roads, the airline distance 
between a pair of locations gives a rough estimate of the distance in the 
road network between the states, at a small computational cost. Another 
example is a common heuristic function for the Eight Puzzle, called Man
hattan distance: For each tile not in its goal position, the distance in 
number of moves along the grid from its goal position is computed, and 
these values are summed over all tiles. The Manhattan-distance heuristic 
is an estimate of the number of moves required to get from one state to 
another, and it can be computed much faster than actually solving the 
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456 PEARL & KORF 

problem and counting the moves. If we fix the goal state, then a heuristic 
evaluation becomes a function of one state, computing the distance to the 
given goal state. 

A number of different algorithms, including best-first search, A *, and 
iterative-deepening-A *, make use of heuristic evaluation functions. 

Best-First Search 

Best-first search, one of the simplest and most general heuristic search 
algorithms, always expands next the node that appears most promising 
according to some heuristic evaluation function. The algorithm maintains 
two data structures, the Open and Closed lists. The Closed list contains 
those nodes already visited in the search, and disallows revisiting old 
nodes, thereby preventing infinite loops. The Open list contains the cur
rently active states, in order of their heuristic values, from which the next 
node to expand is selected. The algorithm begins with just the initial state 
on the Open list. At each cycle, the best node on the Open list is expanded, 
generating all of its successors, and is then placed on the Closed list. 
After eliminating those successors already on the Closed list, the heuristic 
evaluation function is applied to the remaining successors, and they are 
placed on the Open list in order of their heuristic values. The algorithm 
continues until a goal state is reached. 

Best-first search guarantees eventually finding a goal state in any finite 
problem space. Unfortunately, however, best-first search is not guaranteed 
to find a shortest path to the goal. This is due to the fact that selection of 
the next node to be expanded is based solely on the estimate of its distance 
to the goal and does not take into account its distance from the initial 
state. Thus, given two states, one of which is a long way from the initial 
state but has a slightly shorter estimate of distance to the goal, and another 
that is very close to the initial state but has a slightly longer estimate of 
distance to the goal, best-first search will always choose to expand next the 
state with the shorter estimate. The A * algorithm remedies this drawback. 

A * Algorithm 

A * is a best-first search algorithm in which the figure of merit associated 
with a node is not just the heuristic estimate but rather f(n) = g(n) + h(n), 
where g(n) is the actual cost of the path from the initial state to node n, 
and h(n) is the heuristic estimate of the cost of the cheapest path from 
node n to a goal node. In other words, f(n) is an estimate of the total cost 
of the cheapest solution path going through node n. At each point the 
node with the lowest f value is chosen for expansion next, until finally a 
goal node is chosen for expansion. 

An important result is that A * will always find an optimal path to a 
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SEARCH TECHNIQUES 457 

goal if the heuristic function hen) never overestimates the actual distance 
to the goal (Hart & Nilsson 1968). For example, since airline distance 
never overestimates actual highway distance, A * with the airline-distance 
heuristic will find optimal solutions to the road-navigation problem. Simi
larly, the Manhattan-distance heuristic never overestimates the distance 
to the goal in the Eight Puzzle, and therefore the first solution found by 
A * using Manhattan distance for hen) will be optimal. 

This result is most clearly evident if the cost function fen) is monotonic
i.e. never decreases along a path away from the initial state. Monotonicity 
is equivalent to the heuristic function h(n) being consistent, or obeying the 
triangle inequality of metrics. This condition is not really a restriction, 
since given a nonmonotonic cost function, a monotonic one can easily be 
constructed by assigning the value of a node to be the maximum value of 
the function along the path from the initial state to that node (Mero 1984). 
In either case, since A * expands paths in nondecreasing order of cost, once 
it expands a goal node, it will have found a lowest-cost path to a goal. 

A less-widely known property of A * is that it makes the most efficient 
use of a given heuristic function in the following sense: Among all algo
rithms that use a given consistent heuristic function hen) and that find an 
optimal solution, A * expands the fewest number of nodes, up to tie
breaking among nodes of equal cost (Dechter & Pearl 1985a). The actual 
number of nodes expanded by A * depends on the accuracy of the heuristic 
function. For example, if the heuristic function exhibits constant absolute 
error, the number of nodes expanded is a linear function of the solution 
depth (Pohl 1970), whereas if the heuristic is subject to constant relative 
error (a much more realistic assumption), the number of node expansions 
is exponential in the solution depth (Gaschnig 1979). In general, the num
ber of nodes expanded by A * is an exponential function of the typical 
error in the heuristic estimate (Pearl 1984). 

The main drawback of A *, and indeed of any best-first search, is its 
memory requirement. Since the entire Open list must be saved, A * is 
severely space-limited in practice and is no more practical than breadth
first search on current machines. This limitation is removed by an algo
rithm called iterative-deepending-A *. 

Iterative-Deepening-A * 

In the same way that depth-first iterative-deepening defeated the space 
complexity of breadth-first search, iterative-deepening-A * (IDA *) dras
tically reduces the memory requirement of A * without sacrificing opti
mality of the solutions found (Korf 1985). Each iteration of the algorithm 
is a complete depth-first search that keeps track of the cost, fen) = 

g(n)+h(n), of each node generated. As soon as this cost exceeds some , 
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458 PEARL & KORF 

threshold, that branch is cut off, and the search backtracks to the most 
recently generated node. The cost threshold starts with the heuristic esti
mate of the initial state and in each successive iteration is increased to the 
minimum value that exceeded the previous threshold. 

Since at any point IDA* is performing a depth-first search, the memory 
requirement of the algorithm is linear in the solution depth. In addition, 
it can easily be shown that if the cost function never overestimates, the 
first solution found by IDA* will be optimal. Finally, by an argument 
similar to that presented for depth-first iterative-deepening, it can be shown 
that IDA* expands the same number of nodes, asymptotically, as A*, 
provided that the number of nodes grows exponentially with solution 
depth and that the number of duplicate nodes in the search tree is relatively 
small. In practice, both of these assumptions are realistic. These facts, 
together with the optimality of A *, show that in practice IDA * is asymptot
ically optimal in terms of time and space over all heuristic search algo
rithms that find optimal solutions on a tree. 

An additional benefit of IDA* is that it is easier to implement and runs 
faster per node than A *. This is because it is a simple depth-first search 
and does not incur the overhead of managing an Open list. In experiments 
IDA* has proven to be the only algorithm capable of finding optimal 
solutions to the Fifteen Puzzle within practical time and space limits. 

AND/OR GRAPHS 

Another type of problem space is an AND/OR graph. In an AND/OR 
graph, the nodes typically represent complete subproblems. The root node 
of the tree represents the original problem to be solved, and the leaf or 
terminal nodes of the graph represent solved problems. The edges represent 
problem-reduction operators, which decompose a given problem into a set 
of subproblems. If only one of the subproblems needs to be solved to solve 
the main problem, the node is called an OR node. If all the subproblems 
must be solved to solve the main problem, the node is called an AND 
node. A problem space containing both AND and OR nodes is called an 
AND/OR graph. A solution to an AND/OR graph is a subgraph that 
contains the root node, one branch from every OR node, all the branches 
from every AND node, and only goal states at the terminal nodes. 

Generally, AND/OR graphs are suited to problems for which the final 
solution is most conveniently represented as a tree or a graph, rather than 
an ordered sequence of actions. Strategy-seeking tasks are typical examples 
of this class of problems, where the AND links represent changes in the 
problem situation caused by external, uncontrolled conditions and the OR 
links represent alternative reactions to such changes. In planning, the 

A
nn

u.
 R

ev
. C

om
pu

t. 
Sc

i. 
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
L

os
 A

ng
el

es
 U

C
L

A
 o

n 
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



SEARCH TECHNIQUES 459 

uncontrolled conditions could be possible outcomes of an uncertain event 
or results of a given test. In games, those conditions are created by the 
moves of the adversary. In program-synthesis, they may be the results of 
computations on unspecified data. 

Another important class of problems suitable for AND/OR graph rep
resentations includes cases in which the solution required is a partially 
ordered sequence of actions. In symbolic integration, for example, certain 
legal transformations (e.g. integration by parts, long division, etc) split the 
integrand into sums of expressions to be integrated separately in any order. 
The set of applicable transformations will be represented as OR links 
emanating from the node representing the integrand; the AND links rep
resent individual summands within the integrand, all of which must eventu
ally be integrated. 

The tasks of logical reasoning and theorem proving also give rise to 
AND /0 R structures. We begin with a set of axioms and a set of inference 
rules that allow us, at each step, to deduce a new statement from a subset 
of axioms and previously deduced statements. The new statement is added 
to the database, and the process continues until the desired conclusion 
(e.g. the theorem) is derived. The solution object pursued by the search is 
a plan specifying, at each step, which of the inference rules is to be applied 
to which subset of statements in the database and what the deduced 
statement is. This plan is best structured as an unordered tree because 
when a certain conclusion is derived from a given subset of statements the 
internal order in which these statements were themselves derived is of no 
consequence as long as they reside in the database at the appropriate time. 
Thus the solution structure is a tree and the appropriate search space 
would be an AND/OR graph. 

AND/OR graphs are also suitable for representing problems for which 
the solution sought is an ordered sequence of actions, as long as the search 
for some subsequences that make up the solution can be conducted in any 
order. A classical example is the Towers-of-Hanoi puzzle (Pearl 1984) 
where the three main subgoals (i.e. clearing the largest disk, moving that 
disk to a given peg, and placing the other disks on top of the largest one) 
must be executed in a certain order but the search for their solutions can 
be conducted in any order. 

Like state-space graphs, AND/OR graphs lend themselves to systematic 
search methods such as breadth-first, depth-first, and various forms of 
heuristic best-first algorithms. The basic rationale behind heuristic search 
methods is that the examination of various solution candidates (OR links) 
should start with the candidate most likely to succeed, while the exam
ination of subgoals within each candidate (AND links) should begin with 
the one most likely to fail. Numerical estimates of these likelihoods are 
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460 PEARL & KORF 

often used to guide the search so that a solution graph can be found after 
exploring only a small portion of the AND/OR graph that underlies a 
given problem. The algorithm AO*, for example, estimates the costs of the 
solution graphs rooted at the various candidate nodes and is guaranteed to 
find a cheapest solution if all cost estimates are optimistic (Bagchi & 
Mahanti 1983). 

GAME TREES 

An important special case of an AND/OR tree is a two-player game tree, 
the classic example of which is chess. In a game tree, the nodes represent 
particular game situations, and the edges represent legal moves. The root 
node represents the initial game situation, and the leaves represent situ
ations that are won, lost, or drawn positions. The edges descending from 
the root represent the legal moves of the first player to move, and thereafter 
alternate levels of the tree represent moves for one player or the other. 
Since the problem solver has control over the moves of only one player, 
the game is represented as an AND/OR tree. From the perspective of one 
of the players his moves represent OR nodes because the choice of only 
one winning move guarantees a win. His opponent's moves represent AND 
nodes since he must consider all his opponent's responses and secure a win 
in each one. The task in a two-player game is to force the path that is 
traversed through the state space to end in a winning state-in other 
words, to find a solution subtree that has all wins at the leaves. 

Game Searching Algorithms 

Solving a game tree means labeling the root node as win, loss or, possibly, 
draw. The labeling can be done recursively, starting from the leaves (where 
the labels are determined externally) and backing up toward the root. This 
is usually done by a depth-first algorithm that traverses the tree from left 
to right but skips all nodes that cannot provide useful information. For 
example, as soon as one successor of a node is found to be a win, that 
node can be labeled a win without solving the rest of its children. 

In practical games such as chess or checkers, the tree is too deep for 
finding winning moves and, instead, moves are determined by heuristically 
evaluating the strength of board positions a few moves ahead. The pre
vailing strategy, called minimax, is to treat the estimated evaluation of 
nodes on the search frontier as if these were true terminal payoffs given to 
the player upon reaching these nodes. This assumption allows the recursive 
assignment of values to any node in the tree, based on those of its 
successors. The player's positions are valued at the maximum value of 
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SEARCH TECHNIQUES 461 

their successors and the opponents' positions are valued at the minimum 
of their successors. 

By far the most popular algorithm for searching game trees is Alpha
Beta pruning. Other search algorithms that have been implemented and 
analyzed are SSS* and SCOUT. 

Alpha-Beta is a depth-first algorithm that, in order to determine the 
minimax value of the root of a game tree, traverses the tree in a pre
determined order (e.g. left to right) and uses the information obtained to 
cut off branches of the tree that could no longer influence the minimax 
value of the root (Knuth & Moore 1975). Such cut-off branches consist of 
options available at game positions that the player, having better choices, 
will surely avoid. For example, in the tree shown in Figure 3, where squares 
represent moves for MAX and circles represent moves for MIN, the 
rightmost terminal node need not be evaluated since it cannot affect the 
value of the root. 

SSS* is a best-first search procedure that maintains upper bounds on 
the values of partially developed candidate strategies, selecting the most 
promising one for further development. A strategy specifies one response 
of the player to each of the opponent's moves. The development process 
continues until one game strategy is fully developed, at which point it 
represents the optimal strategy (Stockman 1979). Like its A * counterpart 
for single-player games, SSS* is optimal in terms of the average number 
of nodes examined; but its superior pruning power is more than offset by 
the substantial storage space and bookkeeping required. 

SCOUT evaluates a position J by first computing the minimax value of 
its leftmost successor J1 and assigning it to a temporary variable v. It then 
scouts the remaining successors from left to right, testing whether any 
attains a value higher than v, assuming MAX is to move at J. (Testing 
such suppositions can be performed faster than actually evaluating Ji.) If 
a successor Ji passes the test, its value is then computed and assigned to v 

for use in subsequent scouting tests, otherwise; Ji is exempted from evalu-

Figure 3 Alpha-Beta pruning. 
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462 PEARL & KORF 

ation. (In contrast, Alpha-Beta pursues the evaluation of Jj initially and 
stops the evaluation only upon receiving evidence that Ji will not evaluate 
to more than v.) When all successors have been either tested and evaluated 
or tested and found unworthy of evaluation, the last value of v obtained 
is returned as the value of J. 

PERFORMANCE OF GAME SEARCIDNG ALGORITHMS A lower bound on the 
number of nodes that must be examined by any game searching algorithm 
can be established by the following argument. Evaluating a game with 
value V amounts to verifying that, no matter how the opponent reacts, 
the player can guarantee a payoff of at least V and, simultaneously, that 
no matter how our player acts, the opponent can prevent him from getting 
more than V. These two verification tasks require the display of two 
adversary strategies with equal values, one for the player and one for the 
opponent. Since each strategy branches out once in every two moves of 
the game, the number of nodes contained in a typical strategy is roughly 
the square root of the number of nodes in the game tree. Therefore, every 
search strategy that evaluates a game tree must examine at least twice the 
square root of the number of nodes in the entire game tree. 

In practice, this lower bound of twice-the-square-root is rarely achieved, 
because we do not know in advance which of the partially exposed stra
tegies are in fact compatible. Many incompatible strategies are partially 
searched, only to be abandoned when more of their leaves are exposed. 
To guide the search toward finding two compatible strategies, one needs 
to know, at each game configuration, the best next move for each player. 
If no information is available regarding the relative merits of the pending 
moves, roughly the 3/4-root of the number of nodes in the game tree will, 
on the average, be explored. As the move-rating information becomes 
more accurate, the number of nodes examined gradually approaches the 
absolute square-root bound (Pearl 1984). 

The average pruning power of various game-playing strategies is usually 
measured by a parameter called the "effective branching factor." Formally, 
if d stands for the maximal depth reached by an algorithm A, and IA(d) 
stands for the average number of nodes generated during the search, then 
the effective branching factor, EA, is defined by 

BA = lim [IACd)]l/d. 
d-oo 

This definition extracts the basis of the dominant exponential term in 
the expression of IA(d). Thus, the effective branching factor measures the 
relative increase in average complexity due to extending the search depth 
by one extra level or, equivalently, it measures the average number of 
branches explored by an algorithm from a typical node of the search space. 
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SEARCH TECHNIQUES 463 

Theoretical analyses of game-searching strategies usually assume 
uniform, b-ary game-trees, searched to depth d, with random distinct 
values assigned to nodes at the search frontier (Knuth & Moore 1975). 
Based on this model, it can be shown (Pearl 1982) that the effective 
branching factor of the Alpha-Beta pruning algorithm (as well as that of 
SCOUT and SSS*) is given by 

B=��b3/4 
l-�b � , 

where �b is the unique positive root of the equation 

�+x-l=O. 

Moreover, this branching factor is the best achievable by any game
searching algorithm. 

Roughly speaking, only a fraction (b3/4) of the b legal moves available 
from each game position will be explored by Alpha-Beta. Alternatively, 
for a given search-time allotment, the Alpha-Beta pruning allows the 
search depth to be increased by a factor log b/log B � 4/3 over that of an 
exhaustivc minimax search. 

Under perfect ordering of successors, Alpha-Beta examines a total of 
2bd/2 - I game positions. Thus, we have: 

1. B = b for exhaustive search; 
2. B � b3/4 for Alpha-Beta with random ordering; and 
3. B = bl/2 for Alpha-Beta with perfect ordering. 

It is important to mention that the branching factor only captures the 
asymptotic growth rate of a search strategy as the search depth increases 
indefinitely; it does not reflect the size of nonexponential factors in JCd), 
regardless of how large they are. However, an exact evaluation of the 
average performances of three game-searching strategies shows (Pearl 
1984) that the ratio J(d)/Bd is in fact fairly small; it remains below 5 over 
wide ranges of b and d (b ::;:: 20, d ::;:: 20). 

CONSTRAINT-SATISF ACTION PROBLEMS 

In the Eight Puzzle, the goal state is given explicitly. In other problems, 
however, the goal state is not given explicitly but rather is specified by a 
set of constraints that must be satisfied by any goal state. Such a problem 
is called a constraint-satisfaction problem (CSP). For example, the Eight
Queens problem is to place eight queens on a chessboard so that no two 
queens are attacking each other along a row, column, or diagonal. The 
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464 PEARL & KORF 

task here is not to find a sequence of actions but rather to exhibit a 
particular state that satisfies all the constraints simultaneously. Since this 
problem is too difficult to be solved in a single step, it must be broken 
down into a series of simpler steps. In the Eight-Queens problem, this 
typically involves defining states that are partial assignments of queens to 
board positions, and operators that consist of placing an additional queen 
on the board. Thus, even though the sequence of operators required to 
solve the problem is not of interest, the problem is still formulated as a 
search through a problem space. 

Formally, a constraint-satisfaction problem involves a set ofn variables 
XI1 • • •  , Xno each represented by its domain values, RI, • • •  , Rn and a set of 
constraints. A constraint Ci(Xil, ... , X�) is a subset of the Cartesian prod
uct Ri x ... x R.- that specifies which values of the variables are com-I J 
patible with each other. A solution is an assignment of values to all the 
variables that satisfy all the constraints, and the task is to find one or all 
solutions. A constraint is usually represented by the set of all tuples 
permitted by it. A binary CSP is one in which all the constraints are 
binary-i.e. involve only pairs of variables. A binary CSP can be associ
ated with a constraint graph in which nodes represent variables and arcs 
connect pairs of variables that are constrained explicitly. 

For example, the constraint graph associated with the Eight-Queens 
problem is a complete graph, because every queen placed on the board 
influences the permitted positions available for any other queen. Many 
CSPs, however, are characterized by sparse constraint graphs, the topology 
of which can be instrumental in pruning the search for a solution. For 
example, the task of choosing numerical values for the variables X, Y, and 
Z, such that Z divides both X and Y, defines a chain-structured constraint 
graph X-Z- Y. A nonbinary CSP can be represented by a hypergraph, 
where the hyperarcs connect subsets of variables tied by an explicit con
straint. 

The topology of the constraint graph can sometimes be used to identify 
easy solution methods. The best known and most useful result in this 
direction is that binary CSPs whose constraint graph is a tree can be 
optimally solved in O(nk2) time where n is the number of variables and k 
is the number of values for each variable (Dechter & Pearl l 985b; Freuder 
1982). Starting from the leaves toward the root, we simply delete from 
every node those values that do not have at least one match for each of 
its successors. If any of the nodes ends up empty, the problem has no 
solution. Otherwise, we trace any of the remaining values, from the root 
down, and issue a consistent solution. 

The search space associated with a CSP has states being consistent 
assignments of values to subsets of variables. A state (Xl = X], • • •  ,Xi = Xi) 
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can be extended by any consistent assignment to any of the remaining 
variables. States at depth n represent solutions to the problem, namely n
tuples satisfying all the constraints. If the order by which variables are 
instantiated is fixed, then the search space is limited to contain only states 
in that specific order. 

The most common algorithm for solving CSPs is a depth-first search 
called backtracking. In its most primitive version, backtracking traverses 
the variables in a predetermined order, provisionally assigning consistent 
values to a subsequence (Xb • • •  , Xi) of variables and attempting to append 
to it a new instantiation such that the whole set is consistent. (An assign
ment of values to a subset of the variables is consistent if it satisfies all the 
constraints applicable to this subset.) If no consistent assignment can be 
found for the next variable, Xi+ h a dead-end situation occurs, and the al
gorithm backtracks to one of the earlier variables and changes its assignment. 

Since backtracking is the main control strategy in many AI applications 
(e.g. theorem proving in PROLOG, Truth Maintenance Systems), numer
ous schemes have been devised for improving its performance. These 
schemes, often termed "intelligent backtracking," "selective backtrack
ing," and "dependency-directed backtracking," can be classified as fol
lows: 

1. Look-ahead schemes: affecting the decision of what variable to instan
tiate or what value to assign to the next variable among all the consistent 
choices available. 

a. Variable ordering: An attempt is made to instantiate that variable 
which would render the rest of the problem easy to solve. Usually, 
the variable participating in the highest number of constraints is 
selected (Freuder 1982; Purdom 1983). 
b. Value ordering: An attempt is made to assign a value that max
imizes the number of options available for future assignments 
(Decbter & Pearl 1987; Haralick & Elliott 1980). 

2. Look-back schemes: affecting the decision of where and how to go in 
case of a dead-end situation. Look-back schemes are centered around two 
fundamental ideas: 

a. Go-back to source of failure: An attempt is made to detect and 
change previous decisions that caused the dead end without changing 
decisions irrelevant to the dead end. 
b. Constraint recording; The reasons for the dead end are recorded 
so that the same conflicts will not arise again in the continuation of 
the search. 

The best-known "go-back" scheme is Gaschnig's (Gaschnig 1979) 
"backjumping." Backjumping marks each value of the dead-end variable 
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466 PEARL & KORF 

with the age of the oldest ancestor forbidding that value and then jumps 
back to the youngest among these ancestors. A simpler version of back
jumping, still yielding remarkable performance improvement, jumps to 
the youngest ancestor constraining (via a constraint arc) the dead-end 
variable. 

Constraint recording can be implemented either by preprocessing the 
problem prior to search or by recording constraints dynamically as they 
are discovered during the search. The most common preprocessing tech
niques are arc consistency and path consistency (Freuder 1982; Mackworth 
1977; Montanari 1974). Arc consistency involves deleting from the domain 
of some variables those values that find no match in other, directly con
nected variables. Path consistency consists of recording sets of forbidden 
value pairs, if these pairs find no match at a third variable. Preprocessing 
a CSP for full path consistency may be quite expensive, requiring at least 
0(n3k3) operations, while many of the forbidden pairs discovered may not 
be encountered in the actual search. For that reason, learning techniques 
have been devised (Dechter 1986) that are more efficient in both time and 
storage. These perform partial arc and path consistencies by recording 
only those constraints that emanate from paths discovered during the 
search. 

Another method devised for improving the performance of backtrack
ing, called the cycle-cutset method (Dechter & Pearl 1987), is based on 
identifying a set of nodes that, once removed, would render the constraint
graph cycle-free-i.e. tree-structured. The improvement relies on the fol
lowing observation: If, in the course of a backtrack search, we remove from 
the constraint graph the nodes corresponding to instantiated variables and 
find that the remaining subgraph is a tree, then the rest of the search can 
be completed in linear time. Thus, rather than continue the search blindly, 
we invoke a tree-searching algorithm tailored to the topology of the 
remaining subproblem. 

This observation also offers a theoretical upper bound on the complexity 
of CSPs. If c stands for the size of some cycle cutset found in the constraint 
graph, and if we choose the cutset variables to be instantiated first, then 
the complexity of the search is at most O(nkC). Thus, compared with the 
exponential complexity O(k") usually associated with backtrack search, 
this method may yield substantial savings when the constraint graph is 
sparse. 

CONCLUSIONS 

Search techniques are extremely general problem-solving methods. All 
that is required to formulate a search problem is a set of states, a set of 
operators, an initial state, and a goal criterion. The cost of this generality, 
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SEARCH TECHNIQUES 467 

however, is exponential complexity. In order to perform searches more 
effectively, additional knowledge about the problem, such as heuristic 
evaluation functions, must be brought to bear. Much of the research in 
search techniques is focussed on devising algorithms to make use of this 
additional knowledge, and analyzing the effect of such knowledge on the 
complexity of those algorithms. 
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