
Ann. Rev. Comput. Sci. 1987. 2 :451�7
Copyright © 1987 by Annual Reviews Inc. All rights reserved

SEARCH TECHNIQUES

Judea Pearl and Richard E. Kor!

Computer Science Department, University of California, Los Angeles,
California 90024

INTRODUCTION

Search is a universal problem-solving mechanism in artificial intelligence
(AI). Almost by definition, the sequence of steps required for solution of
AI problems is not known a priori but must be determined by a systematic
trial-and-error exploration of alternatives. This is known as search
behavior. Typical search tasks range from solving puzzles such as Rubik's
Cube, to playing games such as chess, to solving complex practical prob­
lems such as medical diagnosis and configuring computer systems.

Common examples in the AI literature of search problems are the Eight
Puzzle and its larger relative the Fifteen Puzzle (see Figure 1). The Eight
Puzzle consists of a 3 x 3 square frame containjng 8 numbered square tiles
and an empty position called the "blank." The legal operators slide any
tile horizontally or vertically adjacent to the blank into the blank position.
The task is to rearrange the tiles from some random initial configuration
into a particular goal configuration.

A problem space is the environment in which the search takes place
(Newell & Simon 1972). A problem space consists of a set of states of the
problem and a set of operators that change the state of the problem. For
example, in the Eight Puzzle, the states are the different permutations of
the tiles, and the operators are the primitive legal moves. A problem
instance is a problem space together with an initial state and a goal state.
In the case of the Eight Puzzle, the initial state would be the initial
configuration of the tiles, and the goal state is a particular configuration,
such as that shown in the figure. The problem-solving task is to find a
sequence of operators that map the initial state to a goal state. Such a
sequence is called a solution to the problem.

Problem spaces are usually represented by graphs in which the states of
the space are represented by nodes, and the operators by edges between

451
8756-70 16/87/1 1 15-0451$02.00

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s
pr

ov
id

ed
 b

y
U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

-
L

os
 A

ng
el

es
 U

C
L

A
 o

n
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

TECHNICAL RERPORT
R-75

452 PEARL & KORF

1 2

8

7 6

3

4

5

1 2

5 6

9 10

13 14

Figure 1 Eight and Fifteen Puzzles.

3 4

7 8

11 12

15

nodes. Edges may be undirected or directed, depending on whether their
corresponding operators are invertible or not. Although most problems
are actually represented by graphs with more than one path between a
pair of nodes, for simplicity they are often represented as trees with the
initial state as the root. The cost of this simplification is that the same state
may be represented by more than one node in the tree.

This brief exposition begins by describing general techniques for search­
ing problem spaces. Brute-force search is the simplest and most general
method since it requires no knowledge other than that contained in the
problem space. Brute-force search algorithms include breadth-first, depth­
first, depth-first iterative-deepening, and bidirectional search. Heuristic
search requires some additional information in the form of an estimate of
the number of operators in the problem space between a pair of states; as
a result, it is much more efficient. Heuristic search algorithms include best­
first search, the A * algorithm, and iterative-deepening-A *.

After discussing these general techniques, we consider three special
cases of problem spaces: AND/OR graphs, game trees, and constraint­
satisfaction problems. AND/OR graphs are most suitable for problems
where the solution is naturally represented as a tree or graph structure as
opposed to a simple path. Most of the brute-force and heuristic search
algorithms can be extended to handle AND/OR graphs as well. Game
trees are used to model two-player adversary games such as chess. The
best-known search algorithms for game trees are minimax with Alpha-Beta
pruning, SSS*, and SCOUT. Constraint-satisfaction problems occur in
situations where the solution is a particular artifact satisfying a set of
constraints rather than a sequence of actions. For example, the task in the
Eight-Queens problem is to place eight queens on a chessboard such that
no two queens are on the same row, column, or diagonal.

The efficiency of these algorithms, in terms of the costs of the solutions
generated, the amount of time required to execute, and the amount of

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s
pr

ov
id

ed
 b

y
U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

-
L

os
 A

ng
el

es
 U

C
L

A
 o

n
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

SEARCH TECHNIQUES 453

computer memory required, is of central concern. Since search is a uni­
versal problem-solving method, the only limitation on its applicability is
the efficiency with which it can be performed.

The two parameters of a search tree that determine the efficiency of
various search algorithms are its branching factor and its depth. The
branching factor (b) is the average number of children of a given node or
the average number of new operators applicable to a given state. The depth
(d) is the length of the shortest path from the initial state to a goal state
or the length of the shortest sequence of operators solving the problem.

BRUTE-FORCE SEARCH

The most general search algorithms are brute-force searches since they do
not require any domain-specific knowledge. All that is required for a brute­
force search is a set of states, a set of legal operators, an initial state, and
a goal criterion. The most important brute-force techniques are breadth­
first, depth-first, depth-first iterative-deepening, and bidirectional searches.

Breadth-First Search

Breadth-first search generates the nodes of the search tree in order of their
distance from the root (see Figure 2a). Since breadth-first search never
generates a deeper-level node in a tree until all the nodes at shallower levels
have been generated, the first path found to a goal will be a path of shortest
length, or an optimal solution by this measure. Since the amount of
time used by breadth-first search is proportional to the number of nodes
generated, and the number of nodes at level d is bd, the amount of time
used by breadth-first search is b + b2 + . . . + bd, or O(bd) in the worst case.

The main drawback of breadth-first search, however, is its memory
requirement. Since each level of the tree must be saved in its entirety in
order to generate the next level, and the amount of memory is proportional
to the number of nodes stored, the space complexity of breadth-first search
is also O(bd). As a result, breadth-first search is severely space-limited in

.� /'x IX·
3 4 5 6 2 3 5 6 4 5 7 8

Figure 2 Order of node generation for searches: (a) breadth first; (b) depth first; (c) depth­

first iterative deepening.

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s
pr

ov
id

ed
 b

y
U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

-
L

os
 A

ng
el

es
 U

C
L

A
 o

n
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

454 PEARL & KORF

practice and will exhaust the available memory in a matter of seconds on
typical computer configurations.

Depth-First Search

Depth-first search (see Figure 2b) expands nodes in a last-in, first-out
order. Since it generates the same set of nodes as breadth-first search, the
time complexity of depth-first search is also O(bd). Its advantage, however,
lies in its space efficiency. Since depth-first search stores only the current
search path, and the maximum length of this path is only d nodes, the
space complexity of depth-first search is only Oed). As a practical matter,
depth-first search is time-limited rather than space-limited.

However, the disadvantage of depth-first search is that in general, in
order to terminate it requires an arbitrary cutoff depth. Without such a
cutoff depth, the first path could be explored forever, cycling back in an
infinite loop to revisit previous states. Although the ideal cutoff is the
solution depth d, this value is almost never known until the problem is
solved. If the chosen cutoff depth c is less than the solution depth d, the
algorithm will terminate before reaching a solution, whereas if c is greater
than d, a large price, O(bC), is paid in terms of execution time, and the first
solution found may not be optimal.

Depth-First Iterative Deepening

An algorithm that suffers neither the drawbacks of breadth-first nor depth­
first search is called depth-first iterative deepening. Depth-first iterative
deepening (DFID) first performs a depth-first search to depth 1, then
conducts a complete depth-first search to depth 2, and continues executing
depth-first searches, increasing the depth cutoff by 1 at each iteration, until
a solution is found (see Figure 2c).

Since it never generates a deeper node until all shallower nodes have
been generated, the first solution found by DFID is guaranteed to be
optimal. Furthermore, since at any given point it is executing a depth-first
search, the space complexity of DFID is only O(d). Finally, although it
appears that DFID wastes a great deal of time in the iterations prior to
the successful one, the asymptotic time complexity of DFID is O(bd). The
intuitive reason for this is that since the number of nodes at a given level
of the tree grows exponentially with depth, almost all the time is spent in the
deepest level, even though shallower levels are generated an arithmetically
increasing number of times.

It can be proven by a simple adversary argument that any brute-force
search algorithm must take O(bd) time. Furthermore, a simple infor­
mation-theoretic argument shows that any algorithm that takes O(b1 time
must use Oed) space. These facts imply that DFID is asymptotically

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s
pr

ov
id

ed
 b

y
U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

-
L

os
 A

ng
el

es
 U

C
L

A
 o

n
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

SEARCH TECHNIQUES 455

optimal in terms of time and space among all brute-force search algorithms
that find optimal solutions on a tree (Korf 1985).

Bidirectional Search

One final brute-force search algorithm, which requires some additional
structure in the problem space, is called bidirectional search (pohl 1971).
Bidirectional search executes two breadth-first searches, one from the
initial state and one from the goal state, until a common state is found
between the two search frontiers. The path from the initial state is then
concatenated with the inverse of the path from the goal state to form the
complete solution path.

Bidirectional search requires an explicit goal state rather than a goal
criterion; and either the operators of the problem space must be invertible,
or backward chaining must be feasible. Assuming that the comparisons
for identifying common states can be done in constant time per node by
using a technique such as hashing, the time complexity of bidirectional
search is O(bd/2) since each search need proceed to only half the solution
depth. Since at least one of the search frontiers must be stored in order to
find a common state, the space complexity of bidirectional search is also
O(bd/2).

HEURISTIC SEARCH

All brute-force algorithms suffer in efficiency from the fact that they are
essentially blind searches; they use no domain knowledge to guide the
choice of which nodes to expand next. Heuristic search takes advantage
of the fact that most problem spaces provide, at relatively small com­
putational cost, some information that distinguishes among states in terms
of their likelihood of leading to a goal state. This information is called a
heuristic evaluation function.

In the context of a single-agent problem, a heuristic evaluation function
is a function from a pair of states to a number that estimates the distance
in the problem space between the two states. For example, in navigating
from one point to another in a network of roads, the airline distance
between a pair of locations gives a rough estimate of the distance in the
road network between the states, at a small computational cost. Another
example is a common heuristic function for the Eight Puzzle, called Man­
hattan distance: For each tile not in its goal position, the distance in
number of moves along the grid from its goal position is computed, and
these values are summed over all tiles. The Manhattan-distance heuristic
is an estimate of the number of moves required to get from one state to
another, and it can be computed much faster than actually solving the

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s
pr

ov
id

ed
 b

y
U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

-
L

os
 A

ng
el

es
 U

C
L

A
 o

n
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

456 PEARL & KORF

problem and counting the moves. If we fix the goal state, then a heuristic
evaluation becomes a function of one state, computing the distance to the
given goal state.

A number of different algorithms, including best-first search, A *, and
iterative-deepening-A *, make use of heuristic evaluation functions.

Best-First Search

Best-first search, one of the simplest and most general heuristic search
algorithms, always expands next the node that appears most promising
according to some heuristic evaluation function. The algorithm maintains
two data structures, the Open and Closed lists. The Closed list contains
those nodes already visited in the search, and disallows revisiting old
nodes, thereby preventing infinite loops. The Open list contains the cur­
rently active states, in order of their heuristic values, from which the next
node to expand is selected. The algorithm begins with just the initial state
on the Open list. At each cycle, the best node on the Open list is expanded,
generating all of its successors, and is then placed on the Closed list.
After eliminating those successors already on the Closed list, the heuristic
evaluation function is applied to the remaining successors, and they are
placed on the Open list in order of their heuristic values. The algorithm
continues until a goal state is reached.

Best-first search guarantees eventually finding a goal state in any finite
problem space. Unfortunately, however, best-first search is not guaranteed
to find a shortest path to the goal. This is due to the fact that selection of
the next node to be expanded is based solely on the estimate of its distance
to the goal and does not take into account its distance from the initial
state. Thus, given two states, one of which is a long way from the initial
state but has a slightly shorter estimate of distance to the goal, and another
that is very close to the initial state but has a slightly longer estimate of
distance to the goal, best-first search will always choose to expand next the
state with the shorter estimate. The A * algorithm remedies this drawback.

A * Algorithm

A * is a best-first search algorithm in which the figure of merit associated
with a node is not just the heuristic estimate but rather f(n) = g(n) + h(n),
where g(n) is the actual cost of the path from the initial state to node n,
and h(n) is the heuristic estimate of the cost of the cheapest path from
node n to a goal node. In other words, f(n) is an estimate of the total cost
of the cheapest solution path going through node n. At each point the
node with the lowest f value is chosen for expansion next, until finally a
goal node is chosen for expansion.

An important result is that A * will always find an optimal path to a

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s
pr

ov
id

ed
 b

y
U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

-
L

os
 A

ng
el

es
 U

C
L

A
 o

n
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

SEARCH TECHNIQUES 457

goal if the heuristic function hen) never overestimates the actual distance
to the goal (Hart & Nilsson 1968). For example, since airline distance
never overestimates actual highway distance, A * with the airline-distance
heuristic will find optimal solutions to the road-navigation problem. Simi­
larly, the Manhattan-distance heuristic never overestimates the distance
to the goal in the Eight Puzzle, and therefore the first solution found by
A * using Manhattan distance for hen) will be optimal.

This result is most clearly evident if the cost function fen) is monotonic­
i.e. never decreases along a path away from the initial state. Monotonicity
is equivalent to the heuristic function h(n) being consistent, or obeying the
triangle inequality of metrics. This condition is not really a restriction,
since given a nonmonotonic cost function, a monotonic one can easily be
constructed by assigning the value of a node to be the maximum value of
the function along the path from the initial state to that node (Mero 1984).
In either case, since A * expands paths in nondecreasing order of cost, once
it expands a goal node, it will have found a lowest-cost path to a goal.

A less-widely known property of A * is that it makes the most efficient
use of a given heuristic function in the following sense: Among all algo­
rithms that use a given consistent heuristic function hen) and that find an
optimal solution, A * expands the fewest number of nodes, up to tie­
breaking among nodes of equal cost (Dechter & Pearl 1985a). The actual
number of nodes expanded by A * depends on the accuracy of the heuristic
function. For example, if the heuristic function exhibits constant absolute
error, the number of nodes expanded is a linear function of the solution
depth (Pohl 1970), whereas if the heuristic is subject to constant relative
error (a much more realistic assumption), the number of node expansions
is exponential in the solution depth (Gaschnig 1979). In general, the num­
ber of nodes expanded by A * is an exponential function of the typical
error in the heuristic estimate (Pearl 1984).

The main drawback of A *, and indeed of any best-first search, is its
memory requirement. Since the entire Open list must be saved, A * is
severely space-limited in practice and is no more practical than breadth­
first search on current machines. This limitation is removed by an algo­
rithm called iterative-deepending-A *.

Iterative-Deepening-A *

In the same way that depth-first iterative-deepening defeated the space
complexity of breadth-first search, iterative-deepening-A * (IDA *) dras­
tically reduces the memory requirement of A * without sacrificing opti­
mality of the solutions found (Korf 1985). Each iteration of the algorithm
is a complete depth-first search that keeps track of the cost, fen) =

g(n)+h(n), of each node generated. As soon as this cost exceeds some ,

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s
pr

ov
id

ed
 b

y
U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

-
L

os
 A

ng
el

es
 U

C
L

A
 o

n
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

458 PEARL & KORF

threshold, that branch is cut off, and the search backtracks to the most
recently generated node. The cost threshold starts with the heuristic esti­
mate of the initial state and in each successive iteration is increased to the
minimum value that exceeded the previous threshold.

Since at any point IDA* is performing a depth-first search, the memory
requirement of the algorithm is linear in the solution depth. In addition,
it can easily be shown that if the cost function never overestimates, the
first solution found by IDA* will be optimal. Finally, by an argument
similar to that presented for depth-first iterative-deepening, it can be shown
that IDA* expands the same number of nodes, asymptotically, as A*,
provided that the number of nodes grows exponentially with solution
depth and that the number of duplicate nodes in the search tree is relatively
small. In practice, both of these assumptions are realistic. These facts,
together with the optimality of A *, show that in practice IDA * is asymptot­
ically optimal in terms of time and space over all heuristic search algo­
rithms that find optimal solutions on a tree.

An additional benefit of IDA* is that it is easier to implement and runs
faster per node than A *. This is because it is a simple depth-first search
and does not incur the overhead of managing an Open list. In experiments
IDA* has proven to be the only algorithm capable of finding optimal
solutions to the Fifteen Puzzle within practical time and space limits.

AND/OR GRAPHS

Another type of problem space is an AND/OR graph. In an AND/OR
graph, the nodes typically represent complete subproblems. The root node
of the tree represents the original problem to be solved, and the leaf or
terminal nodes of the graph represent solved problems. The edges represent
problem-reduction operators, which decompose a given problem into a set
of subproblems. If only one of the subproblems needs to be solved to solve
the main problem, the node is called an OR node. If all the subproblems
must be solved to solve the main problem, the node is called an AND
node. A problem space containing both AND and OR nodes is called an
AND/OR graph. A solution to an AND/OR graph is a subgraph that
contains the root node, one branch from every OR node, all the branches
from every AND node, and only goal states at the terminal nodes.

Generally, AND/OR graphs are suited to problems for which the final
solution is most conveniently represented as a tree or a graph, rather than
an ordered sequence of actions. Strategy-seeking tasks are typical examples
of this class of problems, where the AND links represent changes in the
problem situation caused by external, uncontrolled conditions and the OR
links represent alternative reactions to such changes. In planning, the

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s
pr

ov
id

ed
 b

y
U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

-
L

os
 A

ng
el

es
 U

C
L

A
 o

n
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

SEARCH TECHNIQUES 459

uncontrolled conditions could be possible outcomes of an uncertain event
or results of a given test. In games, those conditions are created by the
moves of the adversary. In program-synthesis, they may be the results of
computations on unspecified data.

Another important class of problems suitable for AND/OR graph rep­
resentations includes cases in which the solution required is a partially
ordered sequence of actions. In symbolic integration, for example, certain
legal transformations (e.g. integration by parts, long division, etc) split the
integrand into sums of expressions to be integrated separately in any order.
The set of applicable transformations will be represented as OR links
emanating from the node representing the integrand; the AND links rep­
resent individual summands within the integrand, all of which must eventu­
ally be integrated.

The tasks of logical reasoning and theorem proving also give rise to
AND /0 R structures. We begin with a set of axioms and a set of inference
rules that allow us, at each step, to deduce a new statement from a subset
of axioms and previously deduced statements. The new statement is added
to the database, and the process continues until the desired conclusion
(e.g. the theorem) is derived. The solution object pursued by the search is
a plan specifying, at each step, which of the inference rules is to be applied
to which subset of statements in the database and what the deduced
statement is. This plan is best structured as an unordered tree because
when a certain conclusion is derived from a given subset of statements the
internal order in which these statements were themselves derived is of no
consequence as long as they reside in the database at the appropriate time.
Thus the solution structure is a tree and the appropriate search space
would be an AND/OR graph.

AND/OR graphs are also suitable for representing problems for which
the solution sought is an ordered sequence of actions, as long as the search
for some subsequences that make up the solution can be conducted in any
order. A classical example is the Towers-of-Hanoi puzzle (Pearl 1984)
where the three main subgoals (i.e. clearing the largest disk, moving that
disk to a given peg, and placing the other disks on top of the largest one)
must be executed in a certain order but the search for their solutions can
be conducted in any order.

Like state-space graphs, AND/OR graphs lend themselves to systematic
search methods such as breadth-first, depth-first, and various forms of
heuristic best-first algorithms. The basic rationale behind heuristic search
methods is that the examination of various solution candidates (OR links)
should start with the candidate most likely to succeed, while the exam­
ination of subgoals within each candidate (AND links) should begin with
the one most likely to fail. Numerical estimates of these likelihoods are

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s
pr

ov
id

ed
 b

y
U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

-
L

os
 A

ng
el

es
 U

C
L

A
 o

n
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

460 PEARL & KORF

often used to guide the search so that a solution graph can be found after
exploring only a small portion of the AND/OR graph that underlies a
given problem. The algorithm AO*, for example, estimates the costs of the
solution graphs rooted at the various candidate nodes and is guaranteed to
find a cheapest solution if all cost estimates are optimistic (Bagchi &
Mahanti 1983).

GAME TREES

An important special case of an AND/OR tree is a two-player game tree,
the classic example of which is chess. In a game tree, the nodes represent
particular game situations, and the edges represent legal moves. The root
node represents the initial game situation, and the leaves represent situ­
ations that are won, lost, or drawn positions. The edges descending from
the root represent the legal moves of the first player to move, and thereafter
alternate levels of the tree represent moves for one player or the other.
Since the problem solver has control over the moves of only one player,
the game is represented as an AND/OR tree. From the perspective of one
of the players his moves represent OR nodes because the choice of only
one winning move guarantees a win. His opponent's moves represent AND
nodes since he must consider all his opponent's responses and secure a win
in each one. The task in a two-player game is to force the path that is
traversed through the state space to end in a winning state-in other
words, to find a solution subtree that has all wins at the leaves.

Game Searching Algorithms

Solving a game tree means labeling the root node as win, loss or, possibly,
draw. The labeling can be done recursively, starting from the leaves (where
the labels are determined externally) and backing up toward the root. This
is usually done by a depth-first algorithm that traverses the tree from left
to right but skips all nodes that cannot provide useful information. For
example, as soon as one successor of a node is found to be a win, that
node can be labeled a win without solving the rest of its children.

In practical games such as chess or checkers, the tree is too deep for
finding winning moves and, instead, moves are determined by heuristically
evaluating the strength of board positions a few moves ahead. The pre­
vailing strategy, called minimax, is to treat the estimated evaluation of
nodes on the search frontier as if these were true terminal payoffs given to
the player upon reaching these nodes. This assumption allows the recursive
assignment of values to any node in the tree, based on those of its
successors. The player's positions are valued at the maximum value of

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s
pr

ov
id

ed
 b

y
U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

-
L

os
 A

ng
el

es
 U

C
L

A
 o

n
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

SEARCH TECHNIQUES 461

their successors and the opponents' positions are valued at the minimum
of their successors.

By far the most popular algorithm for searching game trees is Alpha­
Beta pruning. Other search algorithms that have been implemented and
analyzed are SSS* and SCOUT.

Alpha-Beta is a depth-first algorithm that, in order to determine the
minimax value of the root of a game tree, traverses the tree in a pre­
determined order (e.g. left to right) and uses the information obtained to
cut off branches of the tree that could no longer influence the minimax
value of the root (Knuth & Moore 1975). Such cut-off branches consist of
options available at game positions that the player, having better choices,
will surely avoid. For example, in the tree shown in Figure 3, where squares
represent moves for MAX and circles represent moves for MIN, the
rightmost terminal node need not be evaluated since it cannot affect the
value of the root.

SSS* is a best-first search procedure that maintains upper bounds on
the values of partially developed candidate strategies, selecting the most
promising one for further development. A strategy specifies one response
of the player to each of the opponent's moves. The development process
continues until one game strategy is fully developed, at which point it
represents the optimal strategy (Stockman 1979). Like its A * counterpart
for single-player games, SSS* is optimal in terms of the average number
of nodes examined; but its superior pruning power is more than offset by
the substantial storage space and bookkeeping required.

SCOUT evaluates a position J by first computing the minimax value of
its leftmost successor J1 and assigning it to a temporary variable v. It then
scouts the remaining successors from left to right, testing whether any
attains a value higher than v, assuming MAX is to move at J. (Testing
such suppositions can be performed faster than actually evaluating Ji.) If
a successor Ji passes the test, its value is then computed and assigned to v

for use in subsequent scouting tests, otherwise; Ji is exempted from evalu-

Figure 3 Alpha-Beta pruning.

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s
pr

ov
id

ed
 b

y
U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

-
L

os
 A

ng
el

es
 U

C
L

A
 o

n
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

462 PEARL & KORF

ation. (In contrast, Alpha-Beta pursues the evaluation of Jj initially and
stops the evaluation only upon receiving evidence that Ji will not evaluate
to more than v.) When all successors have been either tested and evaluated
or tested and found unworthy of evaluation, the last value of v obtained
is returned as the value of J.

PERFORMANCE OF GAME SEARCIDNG ALGORITHMS A lower bound on the
number of nodes that must be examined by any game searching algorithm
can be established by the following argument. Evaluating a game with
value V amounts to verifying that, no matter how the opponent reacts,
the player can guarantee a payoff of at least V and, simultaneously, that
no matter how our player acts, the opponent can prevent him from getting
more than V. These two verification tasks require the display of two
adversary strategies with equal values, one for the player and one for the
opponent. Since each strategy branches out once in every two moves of
the game, the number of nodes contained in a typical strategy is roughly
the square root of the number of nodes in the game tree. Therefore, every
search strategy that evaluates a game tree must examine at least twice the
square root of the number of nodes in the entire game tree.

In practice, this lower bound of twice-the-square-root is rarely achieved,
because we do not know in advance which of the partially exposed stra­
tegies are in fact compatible. Many incompatible strategies are partially
searched, only to be abandoned when more of their leaves are exposed.
To guide the search toward finding two compatible strategies, one needs
to know, at each game configuration, the best next move for each player.
If no information is available regarding the relative merits of the pending
moves, roughly the 3/4-root of the number of nodes in the game tree will,
on the average, be explored. As the move-rating information becomes
more accurate, the number of nodes examined gradually approaches the
absolute square-root bound (Pearl 1984).

The average pruning power of various game-playing strategies is usually
measured by a parameter called the "effective branching factor." Formally,
if d stands for the maximal depth reached by an algorithm A, and IA(d)
stands for the average number of nodes generated during the search, then
the effective branching factor, EA, is defined by

BA = lim [IACd)]l/d.
d-oo

This definition extracts the basis of the dominant exponential term in
the expression of IA(d). Thus, the effective branching factor measures the
relative increase in average complexity due to extending the search depth
by one extra level or, equivalently, it measures the average number of
branches explored by an algorithm from a typical node of the search space.

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s
pr

ov
id

ed
 b

y
U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

-
L

os
 A

ng
el

es
 U

C
L

A
 o

n
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

SEARCH TECHNIQUES 463

Theoretical analyses of game-searching strategies usually assume
uniform, b-ary game-trees, searched to depth d, with random distinct
values assigned to nodes at the search frontier (Knuth & Moore 1975).
Based on this model, it can be shown (Pearl 1982) that the effective
branching factor of the Alpha-Beta pruning algorithm (as well as that of
SCOUT and SSS*) is given by

B=��b3/4
l-�b � ,

where �b is the unique positive root of the equation

�+x-l=O.

Moreover, this branching factor is the best achievable by any game­
searching algorithm.

Roughly speaking, only a fraction (b3/4) of the b legal moves available
from each game position will be explored by Alpha-Beta. Alternatively,
for a given search-time allotment, the Alpha-Beta pruning allows the
search depth to be increased by a factor log b/log B � 4/3 over that of an
exhaustivc minimax search.

Under perfect ordering of successors, Alpha-Beta examines a total of
2bd/2 - I game positions. Thus, we have:

1. B = b for exhaustive search;
2. B � b3/4 for Alpha-Beta with random ordering; and
3. B = bl/2 for Alpha-Beta with perfect ordering.

It is important to mention that the branching factor only captures the
asymptotic growth rate of a search strategy as the search depth increases
indefinitely; it does not reflect the size of nonexponential factors in JCd),
regardless of how large they are. However, an exact evaluation of the
average performances of three game-searching strategies shows (Pearl
1984) that the ratio J(d)/Bd is in fact fairly small; it remains below 5 over
wide ranges of b and d (b ::;:: 20, d ::;:: 20).

CONSTRAINT-SATISF ACTION PROBLEMS

In the Eight Puzzle, the goal state is given explicitly. In other problems,
however, the goal state is not given explicitly but rather is specified by a
set of constraints that must be satisfied by any goal state. Such a problem
is called a constraint-satisfaction problem (CSP). For example, the Eight­
Queens problem is to place eight queens on a chessboard so that no two
queens are attacking each other along a row, column, or diagonal. The

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s
pr

ov
id

ed
 b

y
U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

-
L

os
 A

ng
el

es
 U

C
L

A
 o

n
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

464 PEARL & KORF

task here is not to find a sequence of actions but rather to exhibit a
particular state that satisfies all the constraints simultaneously. Since this
problem is too difficult to be solved in a single step, it must be broken
down into a series of simpler steps. In the Eight-Queens problem, this
typically involves defining states that are partial assignments of queens to
board positions, and operators that consist of placing an additional queen
on the board. Thus, even though the sequence of operators required to
solve the problem is not of interest, the problem is still formulated as a
search through a problem space.

Formally, a constraint-satisfaction problem involves a set ofn variables
XI1 • • • , Xno each represented by its domain values, RI, • • • , Rn and a set of
constraints. A constraint Ci(Xil, ... , X�) is a subset of the Cartesian prod­
uct Ri x ... x R.- that specifies which values of the variables are com-I J
patible with each other. A solution is an assignment of values to all the
variables that satisfy all the constraints, and the task is to find one or all
solutions. A constraint is usually represented by the set of all tuples
permitted by it. A binary CSP is one in which all the constraints are
binary-i.e. involve only pairs of variables. A binary CSP can be associ­
ated with a constraint graph in which nodes represent variables and arcs
connect pairs of variables that are constrained explicitly.

For example, the constraint graph associated with the Eight-Queens
problem is a complete graph, because every queen placed on the board
influences the permitted positions available for any other queen. Many
CSPs, however, are characterized by sparse constraint graphs, the topology
of which can be instrumental in pruning the search for a solution. For
example, the task of choosing numerical values for the variables X, Y, and
Z, such that Z divides both X and Y, defines a chain-structured constraint
graph X-Z- Y. A nonbinary CSP can be represented by a hypergraph,
where the hyperarcs connect subsets of variables tied by an explicit con­
straint.

The topology of the constraint graph can sometimes be used to identify
easy solution methods. The best known and most useful result in this
direction is that binary CSPs whose constraint graph is a tree can be
optimally solved in O(nk2) time where n is the number of variables and k
is the number of values for each variable (Dechter & Pearl l 985b; Freuder
1982). Starting from the leaves toward the root, we simply delete from
every node those values that do not have at least one match for each of
its successors. If any of the nodes ends up empty, the problem has no
solution. Otherwise, we trace any of the remaining values, from the root
down, and issue a consistent solution.

The search space associated with a CSP has states being consistent
assignments of values to subsets of variables. A state (Xl = X], • • • ,Xi = Xi)

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s
pr

ov
id

ed
 b

y
U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

-
L

os
 A

ng
el

es
 U

C
L

A
 o

n
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

SEARCH TECHNIQUES 465

can be extended by any consistent assignment to any of the remaining
variables. States at depth n represent solutions to the problem, namely n­
tuples satisfying all the constraints. If the order by which variables are
instantiated is fixed, then the search space is limited to contain only states
in that specific order.

The most common algorithm for solving CSPs is a depth-first search
called backtracking. In its most primitive version, backtracking traverses
the variables in a predetermined order, provisionally assigning consistent
values to a subsequence (Xb • • • , Xi) of variables and attempting to append
to it a new instantiation such that the whole set is consistent. (An assign­
ment of values to a subset of the variables is consistent if it satisfies all the
constraints applicable to this subset.) If no consistent assignment can be
found for the next variable, Xi+ h a dead-end situation occurs, and the al­
gorithm backtracks to one of the earlier variables and changes its assignment.

Since backtracking is the main control strategy in many AI applications
(e.g. theorem proving in PROLOG, Truth Maintenance Systems), numer­
ous schemes have been devised for improving its performance. These
schemes, often termed "intelligent backtracking," "selective backtrack­
ing," and "dependency-directed backtracking," can be classified as fol­
lows:

1. Look-ahead schemes: affecting the decision of what variable to instan­
tiate or what value to assign to the next variable among all the consistent
choices available.

a. Variable ordering: An attempt is made to instantiate that variable
which would render the rest of the problem easy to solve. Usually,
the variable participating in the highest number of constraints is
selected (Freuder 1982; Purdom 1983).
b. Value ordering: An attempt is made to assign a value that max­
imizes the number of options available for future assignments
(Decbter & Pearl 1987; Haralick & Elliott 1980).

2. Look-back schemes: affecting the decision of where and how to go in
case of a dead-end situation. Look-back schemes are centered around two
fundamental ideas:

a. Go-back to source of failure: An attempt is made to detect and
change previous decisions that caused the dead end without changing
decisions irrelevant to the dead end.
b. Constraint recording; The reasons for the dead end are recorded
so that the same conflicts will not arise again in the continuation of
the search.

The best-known "go-back" scheme is Gaschnig's (Gaschnig 1979)
"backjumping." Backjumping marks each value of the dead-end variable

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s
pr

ov
id

ed
 b

y
U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

-
L

os
 A

ng
el

es
 U

C
L

A
 o

n
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

466 PEARL & KORF

with the age of the oldest ancestor forbidding that value and then jumps
back to the youngest among these ancestors. A simpler version of back­
jumping, still yielding remarkable performance improvement, jumps to
the youngest ancestor constraining (via a constraint arc) the dead-end
variable.

Constraint recording can be implemented either by preprocessing the
problem prior to search or by recording constraints dynamically as they
are discovered during the search. The most common preprocessing tech­
niques are arc consistency and path consistency (Freuder 1982; Mackworth
1977; Montanari 1974). Arc consistency involves deleting from the domain
of some variables those values that find no match in other, directly con­
nected variables. Path consistency consists of recording sets of forbidden
value pairs, if these pairs find no match at a third variable. Preprocessing
a CSP for full path consistency may be quite expensive, requiring at least
0(n3k3) operations, while many of the forbidden pairs discovered may not
be encountered in the actual search. For that reason, learning techniques
have been devised (Dechter 1986) that are more efficient in both time and
storage. These perform partial arc and path consistencies by recording
only those constraints that emanate from paths discovered during the
search.

Another method devised for improving the performance of backtrack­
ing, called the cycle-cutset method (Dechter & Pearl 1987), is based on
identifying a set of nodes that, once removed, would render the constraint­
graph cycle-free-i.e. tree-structured. The improvement relies on the fol­
lowing observation: If, in the course of a backtrack search, we remove from
the constraint graph the nodes corresponding to instantiated variables and
find that the remaining subgraph is a tree, then the rest of the search can
be completed in linear time. Thus, rather than continue the search blindly,
we invoke a tree-searching algorithm tailored to the topology of the
remaining subproblem.

This observation also offers a theoretical upper bound on the complexity
of CSPs. If c stands for the size of some cycle cutset found in the constraint
graph, and if we choose the cutset variables to be instantiated first, then
the complexity of the search is at most O(nkC). Thus, compared with the
exponential complexity O(k") usually associated with backtrack search,
this method may yield substantial savings when the constraint graph is
sparse.

CONCLUSIONS

Search techniques are extremely general problem-solving methods. All
that is required to formulate a search problem is a set of states, a set of
operators, an initial state, and a goal criterion. The cost of this generality,

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s
pr

ov
id

ed
 b

y
U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

-
L

os
 A

ng
el

es
 U

C
L

A
 o

n
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

SEARCH TECHNIQUES 467

however, is exponential complexity. In order to perform searches more
effectively, additional knowledge about the problem, such as heuristic
evaluation functions, must be brought to bear. Much of the research in
search techniques is focussed on devising algorithms to make use of this
additional knowledge, and analyzing the effect of such knowledge on the
complexity of those algorithms.

ACKNOWLEDGMENTS

This work was supported in part by NSF Grant DCR 85-01234 to the first
author, and by NSF Grant 1ST 85-15302, an NSF Presidential Young
Investigator Award, an IBM Faculty Development Award, and a grant
from the Delco Electronics Corporation to the second author. The authors
would like to thank Lillian Larijani for her comments on an earlier draft
of this manuscript, and Greg Korf for proofreading.

Literature Cited

Bagchi, A., Mahanti, A. 1983. Admissible
heuristic search in AND/OR graphs.
Theor. Comput. Sci. 2(24): 207-19

Dechter, R. 1986. Learning while searching
in constraint-satisfaction problems. In
Proc. AAAI-86, Philadelphia, pp. 178-83

Dechter, R., Pearl, J. 1985a. Generalized
best-first search strategies and the opti­
mality of A*. J. Assoc. Comput. Mach.
32(3): 505-36

Deehter, R., Pearl, J. 1985b. The anatomy
of easy problems: a constraint-satisfaction
formulation. In Proc. Int. Joint Conf.
Artif. Intell., Los Angeles, Calif., pp. 1066-
72

Deehter, R., Pearl, J. 1987. Network-based
heuristics for constraint-satisfaction prob­
lems. To appear in Artificial Intelligence

Deehter, R., Pearl, J. 1987. The cycle-cutset
method for improving search performance
in AI applications. In Proc. 3rd IEEE
Conf AI Applic., Orlando, Fla., pp. 224-30

Freuder, E. C. 1982. A sufficient condition
for backtrack-free search. J. Assoc. Com­
put. Mach. 29(1): 24--32

Gaschnig, J. 1979. Performance measurement
and analysis of certain search algorithms.
PhD thesis. Dept. Comput. Sci., Carnegie­
Mellon Univ., Pittsburgh, Pa.

Haralick, R. M., Elliott, G. L 1980.lncreas­
ing tree search efficiency for constraint sat­
isfaction problems. ATtif. Intell. 14: 263-
313

Hart, P. E., Nilsson, N. J., Raphael, B. 1968.
A formal basis for the heuristic deter­
mination of minimum cost paths. IEEE
Trans. Syst. Sci. Cybernet. 4(2): 100-7

Knuth, D. E., Moore, R. E. 1975. An analy­
sis of Alpha-Beta pruning. Artif. Intell.
6(4): 293-326

Korf, R. E. 1985. Depth-first iterative-deep­
ening: an optimal admissible tree search.
Artif. Intell. 27(1): 97-109

Mackworth, A. K. 1977. Consistency in net­
works of relations. Artif. Intell. 8(1): 99-
118

Mero, L. 1984. A heuristic search algorithm
with modifiable estimate. Artif. In/ell.
23(1): 13-27

Montanari, U. 1974. Networks of con­
straints: fundamental properties and
applications to picture processing. Inform.
Sci. 7: 95-132

Newel1, A., Simon, H. A. 1972. Human Prob­
lem Solving. Englewood Cliffs, NJ: Pren­
tice-Hail

Pearl, J. 1982. The solution for the branching
factor of the alpha-beta pruning algorithm
and its optimality. C.A.C.M. 25(8): 559-M

Pearl, J. 1984. Heuristics. Reading, Mass:
Addison-Wesley. 382 pp.

Pohl, I. 1971. Bi-directional search. In
Machine Intelligence 6, ed. B. Meltzer, D.
Michie, pp. 219--36. NY: American Elsevier

Pohl, I. 1970. First results on the effect of
error in heuristic search. In Machine Intel­
ligence 5, ed. B. Meltzer, D. Michie, pp.
219-36. NY: American Elsevier

Purdom, P. W. 1983. Search rearrangement
backtracking and polynomial average
time. Artif. Intell. 21(1,2): 117-33

Stockman, G. 1979. A minimax algorithm
better than alpha-beta? Artif. Intel!. 12(2):
179-96

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s
pr

ov
id

ed
 b

y
U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

-
L

os
 A

ng
el

es
 U

C
L

A
 o

n
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Annual Review of Computer Science
Volume 2, 1987

CONTENTS

ARTIFICIAL INTELLIGENCE

Common Lisp, Scott E. Fahlman 1

Using Reasoning About Knowledge to Analyze Distributed
Systems, Joseph Y. Halpern 37

The Emerging Paradigm of Computational Vision, Steven

W. Zucker 69

Nonmonotonic Reasoning, Raymond Reiter 147

Logic, Problem Solving, and Deduction, Drew V. McDermott 187

Planning, Michael P. Georgeff 359

Language Generation and Explanation, Kathleen R. McKeown
and William R. Swartout 401

Search Techniques, Judea Pearl and Richard E. Korf 451

Vision and Navigation for the Carnegie-Mellon Navlab,
Charles Thorpe, Martial Hebert, Takeo Kanade and
Steven Shafer 521

HARDWARE

Techniques and Architectures for Fault-Tolerant Computing,
Roy A. Maxion, Daniel P. Siewiorek and Steven A.

Elkind 469

SOFTWARE

Knowledge-Based Software Tools, David R. Barstow

Network Protocols and Tools to Help Produce Them,
Harry Rudin

THEORY

Computer Algebra Algorithms, Erich Kaltofen

Linear Programming (1986), Nimrod Megiddo

Algorithmic Geometry of Numbers, Ravi Kannan

Research on Automatic Verification of Finite-State
Concurrent Systems, E. M. Clarke and O. Griimberg

21

291

91

119

231

269

v

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s
pr

ov
id

ed
 b

y
U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

-
L

os
 A

ng
el

es
 U

C
L

A
 o

n
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

vi CONTENTS (continued)

APPLICATIONS

Computer Applications in Education: A Historical Overview,
D. Midian Kurland and Laura C. Kurland 317

INDEXES

Subject Index 557
Cumulative Index of Contributing Authors, Volumes 1-2 564

Cumulative Index of Chapter Titles, Volumes 1-2 565

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

87
.2

:4
51

-4
67

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s
pr

ov
id

ed
 b

y
U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

-
L

os
 A

ng
el

es
 U

C
L

A
 o

n
10

/2
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

