Uncertainty in Artificial Intelligence 4
R.D. Shachter, T.S. Levitt, L.N. Kanal, J.F. Lemmer (Editors)
© Elsevier Science Publishers B.V. (North-Holland), 1990 69
TECHNICAL REPORT
R-65
June 1987

CAUSAL NETWORKS: SEMANTICS AND EXPRESSIVENESS*

Thomas VERMA and Judea PEARL

Cognitive Systems Laboratory

Computer Science Department

University of California Los Angeles

Los Angeles, CA 90024

Internet: verma@cs.ucla.edu, pearl@cs.ucla.edu

Dependency knowledge of the form "x is independent of y once z is known" in-
variably obeys the four graphoid axioms, examples include probabilistic and da-
tabase dependencies. Often, such knowledge can be represented efficiently with
graphical structures such as undirected graphs and directed acyclic graphs
(DAGs). In this paper we show that the graphical criterion called d-separation is
a sound rule for reading independencies from any DAG based on a causal input
list drawn from a graphoid. The rule may be extended to cover DAGs that
represent functional dependencies as well as conditional dependencies.

1. INTRODUCTION

In several areas of research it is beneficial to reason about dependency knowledge. For ex-
ample, in database design it is useful to reason about embedded-multivalued-dependence
(EMVD) of attributes [2]. Similarly, in decision analysis and expert systems design it is
useful to reason about probabilistic independence of variables [5,9]. These examples give
two well known formalizations of the intuitive relation "knowing Z renders X and Y in-
dependent” which shall be denoted I (X,Z,Y). Naturally, such a relation would have dif-
ferent properties for different formalizations, but it is interesting to note that most sensible
definitions share the four common properties listed below:

symmetry I1X,Z,YYeI1(Y,Z,X) (1.a)
decomposition IX,Z,YW)=I1X,Z,Y) (1.b)
weak union IX,Z,YW)=IX,ZY ,W) (1.c)
contraction IX,ZY WY& IX,Z,Y)=IX,Z,YW) (1d)

where X, Y and Z represent three disjoint subsets of objects (e.g. variables or attributes)

* This work was partially supported by the National Science Foundation Grant #IRI-8610155. ‘‘Graphoids:
A Computer Representation for Dependencies and Relevance in Automated Reasoning (Computer N
Information Science).”

70

and the notation YW is a shorthand for ¥\ W. These four properties, in addition to others,
hold for EMVDs()) as well as for probabilistic dependencies [4)- Three place relations
which obey the four properties listed above are calied graphoids(. Those relations which
obey the following additional axiom:

intersection IX,ZY W)& IX,ZW.Y)=>IX,Z,YW) (2)

are called positive graphoids since this axiom holds for probabilistic dependencies when
the distributions are constrained to be strictly positive (non-extreme distributions).

A naive approach for representing a dependency model, i.e., particular instance of a
dependency relation, would be to enumerate all triplets (X,Z,Y) for which /(X,Z,Y)
holds. This could require an exponential amount space since the relation / ranges over
subsets of objects. In fact, any general representation scheme will require exponential
space, on average, to represent a dependency model given that it is a graphoid, probabilistic
dependency or EMVD [14].

The graphical representation schemes presented in this paper are appealing for three
reasons. First, the graphs have an intuitive conceptual meaning. Second, the representa-
tions are efficient in terms of time and space [11]. Third, there exist various efficient algo-
rithms that make implicit use of these representation schemes [6,7,8,9,12,13].

2. UNDIRECTED GRAPHS

The meaning of a particular undirected graph is straight forward, each node in the graph
represents a variable, and a link in the graph means that the two variables are directly
dependent. With this semantics, a set of nodes Z would separate two other sets X and Y,
if and only if every path between a node in X and a node in Y passes through Z. This
representation can fully represent only a small set of dependency models defined by the fol-
lowing properties [10]:

symmetry I1X,Z2,Y)YeIY,Z,X) (3.a)
decomposition IX,Z,YW)=I(X,Z,Y) @3.b)
strong union 1X,Z,Y)Y=IX,ZW.,Y) (3.c)
intersection IX.ZY WY& IX,ZW,Y)=>IX,Z,YW) (3.d)
transitivity IX,Z,YY=IX,Z,Yor IXY,Z,Y)VYye XYZ (3e)

It is not always necessary nor feasible to have an exact representation of a depen-
dency model; in fact, an efficient approximation called an I-map is often preferred to an
inefficient perfect map. A representation R is an I-map of a dependency model M iff every
independence statement represented by R is also a valid independence of M. Thus, R may
not represent every statement of M, but the ones it does represent are correct. The ra-
tionale behind the use of I-maps is that an ignored independence will cause a redundant
consultation thus only cost some time whereas use of an incorrect independence will cause

<;) The notation / (X ,Z, Y') is equivalent to the standard EMVD notationZ —>X | Y.
@ Historically the term semi-graphoids was used for graphoids, and graphoids was used for positive -
graphoids.

71

relevant information to be ignored thereby corrupting the integrity of the system. (This ra-

tionale presupposes a specific type of use for the dependency knowledge, thus will not ap-
ply in general).

The set of undirected graphs that are I-maps of a given positive graphoid forms a
complete lattice under the I-mapness relation. This means that every positive graphoid has
a unique most representative I-map graph. Furthermore there is a polynomial algorithm
which will find it [10]. Thus, for example, every non-extreme probability distribution P
has a unique edge-minimal undirected graph I-map of P (i.e. no edge can be removed
without destroying the I-mapness of this graph).

This is not the case for EMVD relations nor for probabilistic distributions in gen-
eral. In fact, with out the intersection property there is no unique edge-minimal I-map for a
given model, and, moreover, there is no effective method of constructing even one of the
minimal I-maps. Hence undirected graphs are only useful as I-maps of positive graphoids.

3. DIRECTED-ACYCLIC GRAPHS (DAGS)

The dependency model represented by a particular DAG has a simple causal interpretation.
Each node represents a variable and there is a directed arc from one node to another if the
first is a direct cause of the second. Under this interpretation, graph-separation is not as
straight forward as before since two unrelated causes of a symptom may become related
once the symptom is observed [8]. In general, a set of nodes Z is defined to d-separate two
other sets X and Y if and only if every trail from a node in X to a node in Y is rendered
inactive by Z. A trail is a path which follows arcs ignoring their directionality, and is ren-
dered inactive by a set of nodes Z in exactly two ways; either there is a head-fo-head node
on the trail which is notin Z and none of its descendents are in Z or some node on the trail
is in Z but is not head-to-head. A node on the trail is head-to-head if the node before it and
after it on the trail both point to it in the graph. One node is a descendent of another if
there is a directed trail from the latter to the former.

There is a procedure that produces an edge-minimal I-map DAG for any graphoid.
It employs an algorithm which takes a causal input list (or simply causal list) of a depen-
dency model and produces a perfect map of the list’s graphoid closure. A casual list of a
dependency model contains two things: an ordering of the variables, and a function that as-
signs a tail boundary to each variable x. For each variable x let U, denote the set of all
variables which come before x in the given ordering. A tail boundary of a variable x,
denoted B,, is any subset of U, that renders x independent of U, ~B,. A unique DAG can
be generated from each casual list by associating the tail boundary of the variable x in the
list with the set of direct parents of any node x in the DAG. An equivalent specification of
a casual list is an ordered list of triplets of the form 7 (x, B, R), one triplet for each variable
in the model, where R is U,-B, .

For a particular dependency model over n variables there are »n! orderings, and for
each ordering there can be up to 2#*~172 different sets of tail boundaries since, in the worst
case, eve% subset of lesser variables could be a boundary. Thus, there can be as many as
n12"#=12 cagual lists for any given dependency model. But if a model posses a perfect
map DAG, then one of the causal lists is guaranteed to generate that DAG by the following
theorem.

72

Theorem 1: If M is a dependency model which can be perfectly represented by some DAG
D, then there is a causal list Ly which generates D.

Proof: Let D be a DAG which perfectly represents M. Since D is a directed acyclic graph
it imposes a partial order ¢ on the variables of M. Let © be any total ordering consistent
with ¢ (i.e. a <¢b => a <gb). For any node x in D, the set of its parents P (x) constitutes
a tail boundary with respect to the ordering 6, thus the pair Lo = (8, P (x)) is a causal list of
M, and this is the very list which will generate D. QED.

Although it is possible to find a perfect map when it exists, testing for existence may be in-
tractable. However, it is practical to find an edge-minimal I-map. The next theorem shows
that any causal list of a graphoid can be used to generate an I-map of that graphoid. If the
boundaries of a causal list are all subset minimal, then the graph it generates will be edge-
minimal. Finding a minimal boundary is linear (in the number of variables) due to the
weak union property. Hence an edge-minimal I-map of any graphoid can be found in poly-
nomial time.

Theorem 2: If M is a graphoid, and Lg is any causal list of M, then the DAG generated by
Lgis anI-map of M.

Proof: Induct on the number of variables in the graphoid. For graphoids of one variable it
is obvious that the DAG generated is an I-map. Suppose for graphoids with fewer than k
variables that the DAG is also an I-map. Let M have k variables, n be the last variable in
the ordering ©, M —n be the graphoid formed by removing # and all triplets involving »
from M and G ~n be the DAG formed by removing n and all its incident links from G .
Since n is the last variable in the ordering, it cannot appear in any of boundaries of Lg, and
thus Lg—n can be defined to contain only the first n—1 variables and boundaries of Lg and
still be a causal list of M —n. In fact the DAG generated from Lg—n is G —n. Since
M —n has k—1 variables, G —n is an I-map of it. Let M; be the dependency model
corresponding to the DAG G, and Mg_, correspond to G —n, (i.e. M contains all d-
separated triplets of G).

G is an I-map of M if and only if M; < M. Each triplet T of M; falls into one of four
categories; either the variable n does not appear in T or it appears in the first, second or
third entry of T. These will be treated separately as cases 1, 2, 3 and 4, respectively.

case-1: If n does not appear in T then T must equal (X,Z,Y) with X,Y and Z three dis-
joint subsets of variables, none of which contain n. Since T is in Mg it must also be in
Mg _, for if it were not then there would be an active path in G —n between a node in X
and a node in Y when Z is instantiated. But if this path is active in G —n then it must also
be active in G since the addition of nodes and links can not deactivate a path. Since G —n
is an I-map of M —n, T must also be an element of it, but M —n is a subset of M, s0 T is
inM

73

case-2: If n appears in the first entry of the triplet, then T = Xn,Z,Y) with the same con-
straints on X, Y and Z as in case-1. Let (n,B,R) be the last triple in Lg, By, By, Bz and
By be a partitioning of B and Ry, Ry, Rz and Ry be a partitioning of R such that
X "-':Bx URx, Y =BY URY and Z =BZ URZ as in ﬁgure 1.

Figure 1

By the method of construction, there is an arrow from every node in B to n, but since
(Xn,Z,Y) is in Mg every path from a node in Y to n must be deactivated by Z so By must
be empty or else there would be a direct link from Y to n (see figure 2a). The last triplet in
Lg can now be written as (n,By BBz, RxyRzYRy). Since X =By URx,Y =Ry and M isa
graphoid it follows (from (1.b) and (1.c)) that (n,XBoZ,Y)e M.

Figure 2a Figure 2b

Since there is an arrow from every node in B to n and » is separated from ¥ given Z in
G, B, must also be d-separated from Y given Z in G for if it were connected there would
be a path from a node in ¥ to a node in By which was active given Z. But there is an arrow
from every node in B to n, thus, such a path would also connect thenodeinY ton,and Y
would no longer be separated from n given Z (see figure 2b). Since Y is separated from
both By and X given Z in the DAG G it is separated from their union, so
(XBy,Z,Y)e Mg. Since n is not in this triplet, the argument of case-1 above implies that
(XBy,Z,Y)e M. Since (n,XByZ,Y)e M and M is a graphoid it follows (using (1.b) and
(1.d)thatT =Xn,Z,Y)e M

case-3: If n appears in the second entry then T = (X ,Zn,Y). Now it must be the case that
X and Y are separated in G given only Z for if they were not then there would be a path
between some node in X and some node in ¥ which would be active given Z. But they are
separated given Z and n, so this path would have to be deactivated by », but # is a sink
and cannot serve to deactivate any path by being instantiated. Hence there is no such path
and (X,Z,Y) holds in G. This statement along with (X,Zn,Y) imply that either
Xn,Z,Y)or (X,Z,Yn) holds in G by the weak transitivity property of DAGs. Either way

74

case-2 or case-4 would imply that the corresponding triplet must be in M, and either of
these would imply that T € M by the weak union property.

case-4: If n appears in the third entry, then by symmetry the triplet T is equivalent to one
with # in the first entry, and the argument of case-2 above shows that T € M. QED.

This theorem constructively proves that d-separation is sound. In other words a
DAG built from a causal list is an I-map since for any independence identified by d-
separation there exists a derivation of that statement from the the causal input list using the
graphoid axioms. The next corollary shows that for DAGs build from causal lists of gra-
phoids, no criterion could correctly read more independencies than d-separation.

Corollary 1: If Ly is any causal list of some dependency model M, the DAG generated
from Lg is a perfect map of the graphoid closure of Lg. In other words, a triplet is d-
separated in the DAG if and only if it can be derived from the causal input list using the
graphoid axioms.

Proof: By the previous theorem, the DAG is an I-map of the closure, and it remains to
show that the closure is an I-map of the DAG. Since every DAG dependency model is a
graphoid, the DAG closure of Lg contains the graphoid closure of it, thus, it suffices to
show that the DAG dependency model Mg contains Lg. If (n,B,R) is a triplet in Ly then
n is separated from R given B in the DAG, for if not then there would be a path from a
node in R to n which is active given B. But since every link into n is from B the path
must lead out of # into some node which was placed after n. Since every node in R was
placed before n, this path cannot be directed and must contain a head-to-head node at some
node which was placed after n. But this path is deactivated by B since it contains no nodes
placed after n, and thus, B would separate n from R in the graph. QED.

The following corollary is needed to assert the tractability of finding an edge-
minimal I-map for a graphoid.

Corollary 2: If each tail boundary in L is minimal, the resulting DAG is a minimal I-map
of M.

Theorem 2 and its corollaries together imply that d-separation is sound and complete for
the extraction of independence information from DAGs with respect to their causal lists
when those lists are drawn from graphoids. That is, a conclusion can be read from the
graph using d-separation if and only if it follows from application of the graphoid axioms
to the causal list. In bayesian networks [8], for example, any independence which can be
read from the graph via d-separation is sound with respect to the probability distribution
that it represents since the axioms of graphoids are sound for probabilistic dependence. But
the axioms of graphoids are not complete for the class of probabilistic dependencies, so
corollary 1 is not enough to ensure that d-separation is complete for DAGs built from the
more specific probabilistic dependency models. Completeness with respect to probability
has been shown in [3].

The last theorem, which is of a theoretical nature, states that it is possible to force any par-
ticular independence of a graphoid to be represented in an I-map.

Theorem 3: If M is any graphoid then the set of DAGs generated from all causal lists of M

75

is a perfect map of M if the criterion for separation is that d -separation must exist in one of
the DAGs.

Proof: If there is a separation in one of the DAGs then the corresponding independence
must hold in M since theorem 2 states that each of the DAGs is an I-map of M, thus the set
is also an I-map. It remains to show that M is an I-map of the set of DAGs. Let
T=X,Z,Y) be any triplet in M and X =(x,...,x,). The triplets
T" ={(x;,%1 - -X;4Z,Y) | 1<i Sn) must also be in M since they are implied by T using
the weak union axiom of graphoids. Furthermore T is in the graphoid closure of T* since
the triplets imply T by use of the contraction axiom. Thus any causal list containing the
triplets T * would generate a DAG containing T. Such a list need only have an ordering 6
such that the variables of Y and Z are less than those of X which are less than any other
variables and that the variables of X are ordered such that x; <g x; if and only if i <j. The
DAG generated by this causal list is in the set of DAGs and therefore the separation holds
in the set. QED.

Since there is an effective algorithm for generating an I-map DAG for any graphoid, DAGs
are a useful means for representing EMVD relations as well as probabilistic independence
reletions. Furthermore if the particular dependency model is stated as a causal list then it
can be perfectly represented by a DAG.

4. FUNCTIONAL DEPENDENCIES

The ability to represent functional dependencies would be a powerful extension from the
point of view of the designer. These dependencies may easily be represented by the intro-
duction of deterministic nodes which would correspond to the deterministic variables [13].
Graphs which contain deterministic nodes represent more information than d-separation is
able to extract; but a simple extension of d-separation, called D-separation, is both sound
and complete with respect to the input list under both probabilistic inference and graphoid
inference [4]. D-separation is very similar to d-separation, only differing in that a path is
rendered inactive by a set of nodes Z under D-separation just in case it would be inactive
under d-separation plus the case when a node on the path which is determined by Z.

5. CONCLUSIONS

This paper shows that d-separation is sound (i.e. correct) and briefly discusses D-separation
which is also sound. They both provide a reliable and efficient method for extracting in-
dependence information from DAGs. This information may be used explicitly, for exam-
ple to help guide a complex reasoning system, or implicitly as in bayesian propagation [8]
or the evaluations of Influence Diagrams [12,13]. These criteria also provide a sound
theoretical basis for the analysis of the properties of the corresponding graphical represen-
tations. For example, the validity of graphical manipulations such as arc reversal and node
removal [5,12,13,14] can now be affirmed on solid theoretical foundations.

ACKNOWLEDGMENT

We thank Dan Geiger and Azaria Paz for many valuable discussions, and James Smith for
checking the proof of Theorem 2.

76

REFERENCES

[1] Dawid, A.P., Conditional Independence in Statistical Theory, J.R. Statist. Soc. B.
(1979) 41(1): 1-33.

[2] Fagin, R., Multivalued Dependencies and a New Form for Relational Databases,
ACM Transactions on Database Systems (1977) 2(3): 262-278.

[3] Geiger D. and Pearl J. On the Logic of Causal Models, this volume.

[4] Geiger, D., Verma, T.S. and Pearl, J., Recognizing Independence in Influence Di-
agrams with Deterministic Nodes, To appear in Networks (1990).

B]] Howard, R.A. and Matheson, J.E., Influence Diagrams. In Howard, R.A. and
Matheson, J.E., (eds) Principles and Applications of Decision Analysis (Strategic
Decision Group, Menlo Park, CA, 1981) 2: 719-762.

[6] Pearl, J., Reverend Bayes on Inference Engines: A Distributed Hierarchical Ap-
proach, Proc. of the Natl. Conference on Al (Pittsburgh, 1982) 133-136.

[71 Pearl, J., A Constraint Propagation Approach to Probabilistic Reasoning. In Kanal,
L.N. and Lemmer, J. (eds) Uncertainty in Artificial Intelligence, (North-Holland,
Amsterdam, 1986) 357-369.

(8] Pearl, J., Fusion, Propagation and Structuring in Belief Networks, Artificial Intelli-
gence (1986) 29(3): 241-288.

[9] Pearl, J., Probabilistic Reasoning in Intelligent Systems (Morgan-Kaufmann, San
Mateo, 1988)

[10] Pearl, J. and Paz, A., GRAPHOIDS: A Graph-based Logic for Reasoning about
Relevance Relations. In B. Du Boulay et al. (eds) Advances in Artificial

] Intelligence-II (North-Holland, Amsterdam, 1987).

[11] Pearl, J. and Verma, T.S., The Logic of Representing Dependencies by Directed
Graphs, Proc. of the 6th Natl. Conference on Al (Seattle, 1987) 1: 374-379.

[12] Shachter, R., Intelligent Probabilistic Inference. In Kanal, L.N. and Lemmer, J.
(eds) Uncertainty in Artificial Intelligence, (North-Holland, Amsterdam, 1986)
371-382.

{13] Shachter, R., Probabilistic Inference and Influence Diagrams, Operations Research
(1988) 36: 589-604.

[14] Verma, T.S., Some Mathematical Properties of Dependency Models, Technical Re-

port R-102 (UCLA Cognitive Systems Laboratory, Los Angeles, 1987)

N Sagle

Nl n

