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Abstract

The assumption of monotonicity, namely that outputs cannot decrease
when inputs increase, is critical for many reasoning tasks, including unit
selection, A/B testing, and quasi-experimental econometrics. It is also
vital for identifying Probabilities of Causation, which, in turn, enable
the estimation of individual-level behavior. This paper demonstrates how
monotonicity can be detected (or refuted) using observational, experi-
mental, or combined data. Using such data, we pinpoint regions where
monotonicity is definitively violated, where it unequivocally holds, and
where its status remains undetermined. We further explore the conse-
quences of monotonicity violations, especially when a maximum percent-
age of possible violation is specified. Finally, we illustrate applications for
personalized decision-making.

1 Introduction

Many reasoning tasks in healthcare, marketing, and economics are plagued with
indeterminacies in the sense that point estimates of some probabilities cannot
be obtained even with infinite data. Instead, ranges of values can be derived,
but these are often too wide to be useful.

A common thread among these tasks is that indeterminacies are alleviated or
eliminated when monotonicity is assumed (i.e. that outputs can never decrease
when inputs increase). For example, that no patient can be harmed by a certain
treatment, or that no customer will churn when offered an incentive. A formal
definition of this notion will be given in Section 2 together with formulas that
connect this to the observed data.

To illustrate the role of monotonicity, we first discuss the problem of unit
selection [Li and Pearl 2019]. Here the goal is to maximize the gain f asso-
ciated with a set of units (e.g. patients, customers, or voters) each of them
may either benefit from, be harmed by, or remain unaffected by an action un-
der consideration (e.g. treatment, advertisement, or policy). The overall gain,
f(β, γ, θ, δ), depends on four parameters: the gain of selecting a unit benefiting
from treatment (β), the gain of selecting a unit always having a positive out-
come regardless of treatment (γ), the gain of selecting a unit always having a
negative outcome regardless of treatment (θ), and the gain of selecting a unit
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harmed by treatment (δ). Li showed that when monotonicity does not hold,
the overall gain f cannot be point estimated from experimental data alone, as
practiced in A/B testing. Moreover, A/B testing, which has been the mainstay
of marketing, product development, and other business optimizations, may be
grossly sub-optimal, leading to regrettable decisions. Fortunately, the assump-
tion of monotonicity renders optimizations based on A/B testing equivalent to
optimizing f(β, γ, θ, δ) over its four parameters. Given data from several sources
our paper identifies when this equivalence holds.

Z X Y

Figure 1: Typical structure for IV methods where Z is an instrument for the
relationship between X and Y , shown to be marred by unobserved confounders
(bidirectional arrow).

A second task demanding the assumption of monotonicity is Instrumental
Variable (IV) analysis1. The purpose of IV analysis is to estimate the Average
Treatment Effect (ATE) in situations where unobserved confounders exist be-
tween treatment X and outcome Y , as shown in Figure 1. When monotonocity
can be assumed between the instrument, Z, and the treatment variable, X, the
ATE can be identified in certain subpopulations, called “compliers”2, and is
given by:

LATE = E[Yx − Yx′ |complier] =
E[Y |z]− E[Y |z′]
E[X|z]− E[X|z′]

(1)

where Yx is the value Y would have had X been x (treatment) and Yx′ is the
value Y would have had X been x′ (non-treatment). Naturally, this is vital
in disciplines where confounding is difficult to deal with, such as experimen-
tal econometrics [Imbens and Angrist 1994] and social sciences [Morgan and
Winship 2014].

Monotonicity is required to assure the validity of Eq. (1). Absent mono-
tonity, the denominator of (1) may blow up LATE, which further distances
LATE from ATE. For a formal definition of IV and its various extensions using
graphs see [Pearl 2009, Chapter 7] and [Pearl 2011].

A third task where monotonicity plays an important role is Causes of Ef-
fects (CoE) analysis, which aims to estimate the probability that one event is
a “cause” of an observed outcome. Examples are assigning credit and blame in
legal situations, medical diagnosis, and system troubleshooting. These appli-
cations invoke counterfactual reasoning and therefore the desired probabilities
cannot be determined from either experimental or observational data. Counter-
factual probabilities in common use are Probability of Necessity (PN), Probably

1IV analysis is also possible if effect homogeneity holds instead of monotonicity. However,
[Hernán and Robins 2020] note that, “homogeneity is often an implausible condition,” whereas,
“monotonicity [appears] credible in many settings.”

2A unit is called a complier if treatment is taken if and only if it is assigned to that unit.
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of Sufficiency (PS), and Probability of Necessity and Sufficiency (PNS). In med-
ical applications, for example, PNS is the fraction of patients who would survive
with treatment and die in the absence of treatment [Pearl 1999]. PNS is es-
sential in personalized medicine and personalized decision making [Mueller and
Pearl 2022] because it measures the benefit and harm at the individual level.

Tian and Pearl [Tian and Pearl 2000] derived tight bounds on Probabilities
of Causation on the basis of experimental and observational data. Mueller,
Li, and Pearl [Mueller, Li, and Pearl 2022] further narrowed those bounds by
appealing to the causal structure when such is available. These bounds are
often too loose to be useful. If monotonicity can be assumed, however, the
bounds collapse to a point [Pearl 1999] based on experimental data alone, even
without considering the causal structure. If an identifiable causal structure can
additionally be assumed on top of monotonicity then PN and PNS are identified
with just observational data.

Given its ubiquity in interpreting experimental studies, the need arises to
determine when monotonicity is violated, when it can be presumed to hold, and
when it definitely holds. In some cases monotonicity is self-evident, for example,
in advertising a new product. The control group, not given the information
about the product, has no way of purchasing it. Monotonicity must hold because
P (Yno ad = purchase) = 0. In general, however, monotonicity cannot be assured
a priori. In medicine, for example, a person might have a 5% chance of being
harmed by treatment and a 10% chance of benefiting from it, which may result
in a lawsuit if an autopsy proves the former.

This paper shows how data can be assessed for monotonicity. A necessary
test indicates when monotonicity is possible and a sufficiency test indicates when
monotonicity is assured (Section 2). An accompanying interactive plot visualizes
how necessity and sufficiency depend on experimental and observational data
available (Section 3).

2 Monotonicity Tests, Sufficiency and Necessity

Let us denote the variables X ∈ {x, x′} and Y ∈ {y, y′} as binary treatment
and recovery, respectively. The values x and x′ may represent treatment and no
treatment, and the values y and y′ may represent recovery and no recovery. We
will further use yx to denote the counterfactual sentence, “Variable Y would
have the value y, had X been x.” Extensions to multi-valued variables are
straightforward [Pearl 2009].

Using these binary variables, monotonicity is defined as,

P (y′x, yx′)
def
= P (harm) = 0. (2)

A properly conducted Randomized Controlled Trial (RCT) yields unbiased
estimates of P (yx) and P (yx′), from which we can obtain the Average Treatment
Effect (ATE), defined as the difference:

ATE
def
= P (yx)− P (yx′). (3)

3



In contrast, observational studies provide estimates of the joint distribution
P (X,Y ), from which we can obtain P (x), P (y), P (y|x), and P (y|x′). Note that
an RCT does not directly inform us about P (harm), nor about the other three
response types:

PNS
def
= P (benefit)

def
= P (yx, y

′
x′), (4)

P (immune)
def
= P (yx, yx′), (5)

P (doomed)
def
= P (y′x, y

′
x′). (6)

As a consequence, in contrary to a prevailing myth, ATE does not represent
the proportion of people benefiting from treatment. Note also that the four
probabilities above must sum to 1 and that ATE is related to P (harm) and
PNS3 via:

P (harm) = PNS−ATE. (7)

Eq. (7) tells us immediately that under monotonicity, PNS coincides with
ATE, or, in other words, ATE constitutes a point estimate of PNS. More gen-
erally, it allows us to compute P (harm) from PNS and ATE, which we will use
to define the level of monotonicity violation.

Given these definitions, the question of whether monotonicity is testable can
be answered by examining the bounds on P (harm) and asking what conditions
would guarantee an upper bound of 0. Given both observational and experi-
mental studies, the bounds on the probability of harm, derived from Eq. (7)
and [Tian and Pearl 2000] (which derives tight bounds on PNS), are:

max


0,

P (yx′)− P (yx),
P (y)− P (yx),
P (yx′)− P (y)

 ⩽ P (harm) ⩽ min


P (yx′),
P (y′x),

P (x, y′) + P (x′, y),
P (yx′)− P (yx) +
P (x, y) + P (x′, y′)

 .

(8)
We see that, when P (yx) ⩾ P (yx′) (or ATE is non-negative), a sufficient

condition for monotonicity to hold is that at least one of the arguments to the
min function be 0. We can summarize this in a theorem.

Theorem 1. (Monotonicity Sufficiency Test) Y is monotonic relative to X if

P (yx′) = 0, or (9)

P (yx) = 1, or (10)

P (x, y′) = P (x′, y) = 0, or (11)

P (yx)− P (yx′) = P (x, y) + P (x′, y′). (12)

3Eq. (7) can be obtained by expanding ATE, subtracting P (yx′ ) = P (yx, yx′ )+P (y′x, yx′ )
from P (yx) = P (yx, yx′ ) + P (yx, y′x′ ) to obtain ATE = P (yx, y′x′ ) − P (y′x, yx′ ) = PNS −
P (harm).
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Note that the left side of Eq. (12) is the ATE. When P (yx) < P (yx′) (ATE
is negative), monotonicity must fail because Eq. (7) shows that P (harm) must
turn positive.

Unfortunately, conditions (9), (10), (11), and (12) are in the form of equali-
ties and therefore can only materialize in rare cases. In contrast, lack of mono-
tonicity is easier to verify. For this purpose we devise a necessary test for
monotonicity, which identifies the requirements for monotonicity to be possible.
This test is more informative and is derived by checking if all arguments to the
max function in the lower bound of P (harm) are non-positive:

P (yx′) ⩽ P (yx), and

P (y) ⩽ P (yx), and

P (yx′) ⩽ P (y).

This can be put into a more succinct form [Pearl 2009, p. 294], as shown in
Theorem 2.

Theorem 2. (Monotonicity Necessity Test) Y is monotonic relative to X only
if

P (yx) ⩾ P (y) ⩾ P (yx′). (13)

This is useful for two reasons. First, it can quickly eliminate the possibil-
ity of monotonicity by checking for three simple parameters in the data. Sec-
ond, non-monotonicity implies the existence of subpopulations whose reaction
to treatment is substantially different, which, in turn, informs us where the
mechanism responsible for that variability could be.

3 Interactive Plot

In a linked website4, we provide an interactive plot that visualizes regions of data
which are necessary or sufficient for monotonicity, as we navigate the terrain of
experimental and observational data available. Figure 2 provides a snapshot of
this interactive plot. The white regions represent conditions that are required
for monotonicity to hold. In other words, finding data outside this region implies
the existence of units which can be harmed by treatment. Figure 2 shows this
“necessary” region which, in the absence of observational data, is lying below
the dashed diagonal line (P (yx) ⩾ P (yx′)). Colored bands indicate data regions
where monotonicity definitely does not hold and the color in each band indicates
the minimum fraction of violation realizable in that band.

Figure 3 shows how the “necessary region” changes when observational data
are added. For example, having obtained the additional information of P (x) =
P (y|x) = P (y|x′) = 0.5, the necessary region shrinks to 0.5 ⩽ P (yx) ⩽ 0.75 and
0.25 ⩽ P (yx′) ⩽ 0.5. The transparent gray region indicates areas where P (yx)

4Available online at https://lbmaps.web.app/mns.html
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Figure 2: Assuming no observational data, it is necessary for (P (yx), P (yx′))
to be in the white region for monotonicity to hold. The color bands represent
the minimum degree to which monotonicity is violated for each (P (yx), P (yx′))
combination.

6



Figure 3: Chart showing the impact of observational data on minimum prob-
ability of harm. The square in the middle, labeled “Compatible region”, indi-
cates values of P (yx) and P (yx′) which are compatible with the observational
data P (x) = P (y|x) = P (y|x′) = 0.5. Incompatibility implies experimental
imperfections. The white square, labeled “Necessary region”, indicates where
monotonicity may hold. The colors in each band indicate the minimum proba-
bility of harm (Eq. (2)).
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Figure 4: Chart showing maximum probability of harm with no observational
data. To guarantee monotonicity (P (harm) = 0), (P (yx), P (yx′)) must be on
the bottom or right edge of the chart (marked in red).

and P (yx′) are incompatible with the observational data. This could happen, for
example, when the population recruited for the experiments is totally different
than the one used in the observational study, perhaps due to selection bias.
Techniques for detection [Mueller 2023] and overcoming selection bias, under
certain conditions, are reported in [Bareinboim, Tian, and Pearl 2014].

In comparison, to identify the vanishingly small regions of sufficiency (where
monotonicity must hold), we have to look at the lines marked in red in Figure
4. The rarity of this condition is clear since the region is confined to the edges
of the purple band (P (yx′) = 0 or P (yx) = 1). With observational data of
P (x) = P (y|x) = P (y|x′) = 0.5, this region shrinks to a single point at the
bottom right of the possible region, as seen in Figure 5.

4 ϵ-Bounds on Benefit

As demonstrated with the edges of the plots above and Theorem 1, proving
monotonicity from experimental and observational data is uncommon. How-
ever, allowing for some units or individuals to be harmed, or only part of the
population to be monotonic, may result in a more informed distribution of the
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Figure 5: Chart showing the impact of observational data on maximum prob-
ability of harm. (P (yx), P (yx′)) is only possible in the center square region if
P (x) = P (y|x) = P (y|x′) = 0.5 and it is sufficient for monotonicity at only one
point, the bottom right corner of this compatible region.
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beneficiaries, which can be utilized in policy making. We call the new bounds in-
duced by such allowance ϵ-bounds. Theorems 3 and 4 reflect this less restrictive
form:

Theorem 3. (Sufficiency Test for ϵ-Limited Harm) If the following conditions
hold, then ϵ must be the maximum proportion of units harmed:

P (yx′) ⩽ ϵ, or (14)

P (yx) ⩾ 1− ϵ, or (15)

P (x, y′) + P (x′, y) ⩽ ϵ, or (16)

P (yx)− P (yx′) ⩾ P (x, y) + P (x′, y′)− ϵ. (17)

Theorem 4. (Necessary Test for ϵ-Limited Harm) If ϵ is the maximum pro-
portion of units harmed, then the following conditions must hold:

P (yx′) ⩽ P (yx) + ϵ, and

P (y) ⩽ P (yx) + ϵ, and

P (yx′) ⩽ P (y) + ϵ.

The proof of Theorems 3 and 4 follow directly from the bounds expressed in
Eq. (8).

4.1 ϵ-Bounds on PNS

Assumptions of ϵ-limited harm can be used to narrow the bounds on the PNS.
From Eq. (7), PNS can be expressed in terms of ATE and P (harm):

PNS = ATE + P (harm). (18)

Assuming the inequality 0 ⩽ P (harm) ⩽ ϵ gives:

ATE ⩽ PNS ⩽ ATE+ ϵ,

P (yx)− P (yx′) ⩽ PNS ⩽ P (yx)− P (yx′) + ϵ. (19)

Tian and Pearl (2000) derived tight bounds on PNS [Tian and Pearl 2000].
These bounds resemble those in Eq. (8), with x and x′ swapped, and are
expressed as:

max


0,

P (yx)− P (yx′),
P (yx)− P (y),
P (y)− P (yx′)

 ⩽ PNS ⩽ min


P (yx),
P (y′x′),

P (x, y) + P (x′, y′),
P (yx)− P (yx′) +
P (x, y′) + P (x′, y)

 . (20)
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The lower bound of PNS in (20) already includes ATE as an argument to its
max function, so Eq. (19) cannot help with the lower bound. However, Eq.
(19) can potentially lower the upper bound of PNS in (20) by adding the right
side of (19) as an argument to the min function in (20):

max


0,

P (yx)− P (yx′),
P (yx)− P (y),
P (y)− P (yx′)

 ⩽ PNS ⩽ min



P (yx),
P (y′x′),

P (x, y) + P (x′, y′),
P (yx)− P (yx′) +
P (x, y′) + P (x′, y),

P (yx)− P (yx′) + ϵ


. (21)

Note that any reduced bounds on PNS due to limited harm must come from
domain-specific knowledge outside the experimental and observational data5.

5 Examples

The following three examples demonstrate the value of refuting and confirming
monotonicity in a mental health context.

5.1 Harmful Effects

A man is suing a pharmaceutical company claiming that he remained depressed
because of their anti-depressant drug. While the company claims that the drug
cannot worsen depression, the plaintiff asserts that he would’ve been cured on
his own but the drug prolonged his depression. He presents the following data
from an independent third party’s observational study. Does he have a case?

P (x) = 0.6, (22)

P (y|x) = 0.3, (23)

P (y|x′) = 0.5. (24)

This data shows that 30% of people choosing to take the drug recovered,
while 50% of people choosing not to take the drug recovered. The pharmaceu-
tical company conducts a Randomized Controlled Trial (RCT), suggesting that
the reason people choosing their drug fared worse was because their willingness
to incur the large expense of the drug was due to more severe depression where
psychotherapy was ineffective. The RCT results showed the drug to be 11%
effective in all categories measured, demonstrating that the above observational
results were, in fact, biased due to confounding:

P (yx) = 0.58,

P (yx′) = 0.47.

5The ϵ obtained from data will merely replicate Tian-Pearl bounds. Applying argminϵ to
Theorem 3 will provide a ϵ that will not narrow PNS bounds beyond the Tian-Pearl bounds
of (20).
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The pharmaceutical company’s experts further state that none of the drug’s
chemical mechanisms would make it possible for depression to be extended due
to the drug itself. Our analysis, however, gives a different story.

Since P (y) = P (y|x) · P (x) + P (y|x′) · P (x′) = 0.38, the data fails the
Monotonicity Necessity Test of Theorem 2. Specifically, 0.38 = P (y) ̸⩾ P (yx′) =
0.47. After plugging the data into Eq. (8), the lower bound is P (yx′)− P (y) =
0.47−0.38 = 0.09. Therefore, P (harm) ⩾ 9%, contrary to the company’s claim.

The interactive plot confirms this. After check-marking “Necessary” and
“Observational data” and adjusting the probability sliders to match probabili-
ties (22), (23), and (24), the coordinates (P (yx), P (yx′)) = (0.58, 0.47) point to
the upper part of the purple band. Therefore, the pharmaceutical company is
wrong and there is a risk of people staying depressed due to their drug.

The man has a strong claim in his lawsuit. Furthermore, market research
may determine that, among potential customers, half of them would not pur-
chase if they knew some people would remain depressed because of the drug.
The anxiety induced by this knowledge could also make the drug less effective.

5.2 Confirming No Harm Claim

An ethical pharmaceutical company wants to proclaim that their drug to combat
depression does not harm users. They believe that none of their users would
simultaneously be cured without the drug and remain with depression after
using the drug. However, they want to be responsible and confirm this before
announcing anything. An RCT and observational study is conducted for this
purpose, yielding the following:

P (x) = 0.55,

P (y|x) = 0.4,

P (y|x′) = 0.6,

P (yx) = 0.67,

P (yx′) = 0.27.

One of the conditions of the sufficient test, Eq. (12), is true:

P (x, y) + P (x′, y′) = P (y|x) · P (x) + P (y′|x′) · P (x′)

= P (y|x) · P (x) + [1− P (y|x′)] · [1− P (x)]

= 0.4

= ATE = P (yx)− P (yx′).

Therefore, the pharmaceutical company can assure their customers of mono-
tonicity. The interactive plot confirms this sufficient condition with the coordi-
nates (P (yx), P (yx′)) = (0.67, 0.27) pointing to the bottom right of the purple
band.
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5.3 Improved Probability of Benefit

Remaining on our depression-drug theme, a third pharmaceutical company
wishes to market their anti-depression drug as having a minimum 50% efficacy
level for curing depression. They define efficacy as the proportion of people
benefiting. The RCT they conducted for FDA approval yielded the following
results:

P (yx) = 0.55,

P (yx′) = 0.46.

With only a paltry difference between experimental probabilities, P (yx) and
P (yx′), the ATE is 0.55− 0.46 = 0.09, which naively suggests low efficacy. Far
below the hoped-for 50%. Even though this average treatment effect is low, the
proportion of individuals benefiting may still be high. This is apparent when
combing the RCT results above with the following observational study results:

P (x) = 0.35,

P (y|x) = 0.95,

P (y|x′) = 0.7,

P (y) = 0.95 · 0.35 + 0.7 · 0.65 = 0.7875.

It appears as though individuals are good at assessing whether they should
consume this drug. Both the group choosing the drug and the group avoiding
the drug fared better than both the treatment and control arms of the RCT.
We can now compute bounds on PNS using Eq. (20), which represents the
proportion of individuals benefiting from this drug:

max{0, 0.09,−0.2375, 0.3275} ⩽ PNS ⩽ min{0.55, 0.54, 0.5275, 0.5625},
0.3275 ⩽ PNS ⩽ 0.5275.

These results do not allow the pharmaceutical company to lay a legitimate claim
to minimum 50% efficacy. However, they can claim potentially up to 52.75%
efficacy. This is a vague claim, but may sway some hopeful depression sufferers
to buy the drug.

Psychiatrists report that they believe many of their depressed patients are
not getting better because of the drug, despite their belief that the drug is
effective for an abundance of their other patients. The pharmaceutical company
investigates and determines that the molecular mechanism does allow for some
patients to be harmed by the drug. However, this mechanism only allows for
a maximum of 24% of depressed people to be harmed. While this 0.24-limited
harm is not ideal, the ATE is still positive, so psychiatrists and patients are
largely amenable to continuing with the medication.

Unfortunately for the pharmaceutical company, 0.24-limited harm affects
the PNS bounds. Using Eq. (21):

0.3275 ⩽ PNSϵ ⩽ min{0.5275, 0.09 + 0.24},
0.3275 ⩽ PNSϵ ⩽ 0.33,
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where PNSϵ is the probability of benefit incorporating ϵ-limited harm. PNS is
now shrunken to nearly a point estimate. The pharmaceutical company can no
longer claim even a possibility of 50% efficacy.

6 Conclusion

Many reasoning tasks, such as unit selection, A/B testing, quasi-experimental
econometrics, and, more generally, identification of Probabilities of Causation,
benefit substantially from an assumption of monotonicity. In this paper, we
have shown how monotonicity can be detected (or refuted) from observational,
experimental, or combined data. We then identify when monotonicity is def-
initely violated, when it definitely holds, and when it is undetermined. We
further show the consequences of monotonicity violations when the degree of
violation is limited. Examples taken from healthcare were discussed.
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