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ABSTRACT OF THE DISSERTATION
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by
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Professor Judea Pearl, Chair

Causal inference studies the causal relationships between factors by modeling the underlying
data generating process. A common goal in causal inference research is to answer what the
effects are of the treatments on the outcomes. Traditional causal inference techniques assume
data are independent and identically distributed (IID) and thus ignore interactions among
single units. However, a unit’s treatment may affect another unit’s outcome (interference),
a unit’s treatment may be correlated with another unit’s outcome, or a unit’s treatment and
outcome may be spuriously correlated through another unit. Those unit-level interactions
are referred to as generalized interference. To capture such nuances, this work proposes a
graphical model, “interaction models,” which can model the data generating process of data
with generalized interference using causal graphs. In this work, I focus on the estimation of
causal effects given data with generalized interference, and use interaction models to conduct
a systematic analysis of the bias caused by different types of interactions among units. I
start with assuming linearity and present the graphical framework, interaction models. The
framework applies to a more general setting where interactions can occur between any units.

I derive theorems to detect, quantify, and remove the interaction bias. Those results rely
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on knowing the exact interaction patterns between units. Next, I show how this assumption
can be relaxed and present results for when the exact interaction pattern is unknown, where
bounding or unbiasedly estimating the causal effects might be possible. I then show how
the interaction model framework and the bias analysis results can be generalized for non-
parametric models. Finally, I will discuss a special setting where interactions only occur

between separated “blocks,” so non-1ID data can be reduced to block-IID data.
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CHAPTER 1

Introduction

1.1 Causality

Understanding cause-effect relationships is an important task in many scientific disciplines,
including engineering, epidemiology, economics, social science and medicine. Engineers want
to find out the reason of a defective product. Medical researchers want to find out the
effect of a drug. Politicians want to find out the effect of a policy. Such questions are
important in our daily lives, too. For instance, I want to know what might have caused
my migraine today. Some causal questions can be answered through controlled experiments.
However, if controlled experiments are not possible due to cost or ethical concerns, some
causal knowledge can be obtained from past experience. For instance, if among most of the
occurrences of my migraine, I stayed up late the night before, I may conjecture that staying

up late was the cause of my migraine.

Humans subconsciously use causal assumptions to answer causal questions. With the aid
of internet and modern computing resources, we are able to learn not only from personal ex-
perience, but also from the experience of other people across the world. However, intelligent
machines usually cannot infer causal directions or derive causal conclusions by only looking
at the data. This is because the data only convey correlation between migraine and staying
up late, but do not imply causation without further assumptions. This limitation cannot be

overcome by using more data. A recent intelligent chatbot, ChatGPT, learns from massive



text datasets including billions of words and characters!, and can answer questions from
various domains. Such technology, although much more powerful than humans in finding

correlation patterns, still stumbles when it comes to causal reasoning.

Numerous causal reasoning frameworks and approaches have been developed and im-
proved over the past three decades. Those works have provided solutions to different aspects
of causal reasoning including identification (reducing causal effects to observed quantities),
discovery (learning causal structures), counterfactual (answering “what if things had been
different”), missing data, external validity, assessment of direct and indirect effects, etc.
[Peal9]. However, one important aspect that has not been systematically studied is the

violation of IID assumptions (introduced next), and is the main focus of this work.

1.2 Independent and Identically Distributed (IID)

Many of the algorithms and techniques used in empirical sciences, including causal reasoning
and machine learning, rely on the Independent and Identically Distributed (IID) assumption
[Sch22, Pea09, IR15, Rub78]. Data are IID when each sample is generated through the same
data-generating process, and the manner in which each sample is generated is independent of
other samples. The graphical model framework uses graphs to represent causal relationships
among variables, and assumes IID to explain the data observed. The potential outcomes
framework assumes SUTVA (Stable Unit Treatment Value Assumption), which disallows the
outcome of any unit to be affected by the treatment of other units. The IID assumption is
convenient because it simplifies both the the modeling process (information about interaction
patterns need not be collected, stored or modeled) as well as the underlying mathematics (by
facilitating tractable solutions to hard problems [Ca022]). However, IID does not hold true
in many real-world datasets. Typical examples include interactions among users in social

media and spreading patterns of infectious diseases such as covid or habits such as smoking

!'The number came from the answer by ChatGPT itself.



[FSY?22, CMM22, Caol4].

1.2.1 Real-World Examples of IID Violation

Coupon Effectiveness Problem: A company plans to send coupons at different discount
rate for their product to customers. Suppose they want to analyze the effect of a discount
rate on sales volume. Specifically, they want to know if sending a coupon of certain discount
rate to an average potential customer would increase the customer’s chance of purchase.
Assuming that observational data are available in the form of (DiscountRate, Purchase)
pairs from 50 customers. The conventional way would be to construct a causal model,
DiscountRate — Purchase and estimate the causal effect of interest by regressing Purchase

on DiscountRate, using the 50 data pairs.

However in reality, there might be interactions between customers. Suppose customer i
received a coupon, purchased the product, and advertised it on the social network. Customer
7, seeing ¢’s post, purchased the product without receiving a coupon. In another scenario,
customers k£ and [ live together, and k received a coupon. k£ and [ both used k’s coupon
for purchase. Such scenarios might make us wrongly conclude that the discount rate of the
coupon is not so attractive, since many customers still purchased the product without a

coupon. As a result, we would misestimate the causal effect.

Vaccination Problem: Suppose we are interested in studying the effectiveness of Covid-
19 vaccines. Specifically, we are interested in the causal effects of vaccine doses, V', on the
severity of sickness S. A naive method would involve building a causal model on V', S,
and other related factors, and estimating the causal effect of V' on S using available data.
However, this method may result in inaccurate estimation primarily because individuals
in the sample are not isolated from each other in the pandemic setting. Below are a few
instances of IID violation ([ETP22]).

Case 1: The vaccination V' of a unit i, (V;), decreases their viral load, L;, which in turn



decreases the transmission rate of the virus, and hence decreases the severity of sickness S

of another unit j, (Sj), who comes into contact with i. V; causally affects S;.
Vi — Sj

Case 2: V; is affected by the area A that i lives in, and a contact ;7 who lives in vaccine
deprived areas and areas with a higher incidence of Covid-19 infection is more likely to get

sick. V; and S; are confounded.
‘/; < Sj

Case 3: 5;, determines whether or not ¢ is quarantined and thus affects whether ¢ transmits

the disease to another unit j. S; causally affects S;.

Si—>Sj

Such interactions between units plague both observational and experimental studies. If
the latter is performed in a controlled environment where subjects are isolated from each
other, the results would not be valid for the target environment, where subjects affect each

other, and vice versa. Note that this problem is also not resolved by increasing sample size.

1.2.2 Generalized Interference

One line of existing work that analyzes interactions between units is interference [Cox58].
Interference holds when treatment of unit ¢ (discount rate of i’s coupon, vaccination dose of
i, ...) causally affects the outcome of another unit j (j’s purchase, sickness of j, ...). This
is modeled by the existence of a causal pathway from i’s treatment to j’s outcome. However,
interference is not the only type of interaction between units that can cause biased estimates.
In Case-2 above, V; and S; are confounded and V; is not a cause of S;. Another example
is an instance where unit i’s treatment affects their own outcome through an attribute of

unit j ie., V; = W,; — S;, for some W, ¢ {S;,V;}. In both these cases units interact

4



with each other in a way that might bias the estimation of causal effects although they may
not typically be classified as interference. In spite of the prevalence of such interactions in
applications related to health care, infectious diseases, social networks, and ad placements,
they have not been systematically studied. It is this deficiency that this work attempts to
overcome. In particular, I aim to model and develop methods for handling interactions not

limited to interference, which I call “generalized interference.”

1.3 Problem Setting and Preliminaries

The scenarios exemplified above raises several questions regarding the computation of causal
effects given data with generalized interference. How can we model different types of inter-
actions among units in the population? Under what conditions can we safely ignore unit
interactions with the guarantee that assuming IID (and applying existing estimation tech-
niques) will result in negligible bias? If assuming IID would yield a biased estimate, then

how can we get rid of this bias?

1.3.1 Average Causal Effect

In this work, I am primarily interested in the estimation of ACE for data with generalized
interference. Average causal effect (ACE), also named as Average Treatment Effect (ATE)?
[Rub77, Hol88] is often used to represent the size of causal effects. The ACE of a treatment
X on an outcome Y represents how much Y is expected to change if X is intervened to
change from one value to another value. Given a causal model M, the average causal
effect (ACE) of X = ¢ vs X = ¢ (¢t and ¢ are constants) on Y for k units is defined as
ACExy = %Zi(Y;Xi:t — Yix,=). ACE is defined under the assumption that Y; depends

only on factors of unit i (including X;) [Hol88].

2For consistency, I use ACE to refer to both ACE and ATE.



1.3.2 Linear and Non-Parametric Models

I will start the discussion by developing the framework for acyclic linear structural causal
models (SCMs) [Wri21, Pea09], since the generalized interference problem is simpler in the
linear case. Formally, linear SCMs are represented by a system of linear equations X =
AT X + € where X is a vector of observed variables, € is a vector of latent variables, and A is
an upper triangular matrix of direct effects, whose ¢jth element, A, gives the magnitude of
the direct causal effect of v; on v;. In linear models, the error term € is commonly assumed to
be normally distributed with covariance matrix £. This means that the covariance matrix of
the observed data ¥ := X X7 fully characterizes the observational distribution. This matrix
can be linked to the underlying structural parameters through the system of polynomial
equations ¥ = X X7 = (I — A)"T&(I — A)™!, and the problem of causal effect estimation

reduces then to finding the elements of A that are uniquely determined by the above system.

For the linear case, without loss of generality, I assume ¢t = ¢ + 1. In linear models,
ACE of X on'Y can be identified as [y x, the linear regression slope of Y on X, if there is
no backdoor (non-directed open paths) between X and Y [PGJ16, Peal7].

Later in the discussion, I will generalize the framework to non-parametric models. In
real-world applications, relationships between variables might not be perfectly linear. For
example, certain drug can interact with a vaccine to boost or weaken its performance. In a
non-parametric model, the value of a variable Y is determined by the values of its parents
by a function f, i.e., Y = f(Pa(Y)). Contrary to linear models, non-parametric models do

not assume any function f needs to follow any parametric forms.

1.3.3 Partial Interference

Recent years have witnessed a rise in papers on interference that employ graphical models

([OV14], [SS18], [NPB20], etc.). These works rely on partial interference which divides units

3If t # ¢+ 1, the ACE is multiplied by the constant (t — ¢).



into equal-sized blocks under the assumption that interactions occur only within a block
but not across different blocks. Partial interference is useful in simplifying non-IID data to
“block-1ID" data. Such methods do not generalize to cases where units are allowed to interact
with anyone, or when each block does not have the same structure. Nonetheless, assuming
partial interference strengthens causal identification power that goes beyond current state of
the art. I will present a causal identification method under the partial interference setting

in Chapter 6.

1.4 Thesis Outline

This thesis is organized as follows. In Chapter 2, I define generalized interference, and
introduce a new graphical framework, the interaction models, for modeling generalized in-
terference. In Chapter 3, I define the non-IID version of average causal effects, named True
Average Causal Effects (TACE), and present theorems for generalized interference bias de-
tection, quantification, and removal for TACE. In Chapter 4, I discuss the case where specific
interaction patterns are unavailable, and present results for bounding and estimating TACE.
In Chapter 5, I derive an extension of the interaction models and generalize bias analysis
results to the non-parametric setting. In Chapter 6, I propose a partial-interference-based
causal identification method to utilize equality information between units that can be ap-
plied to solve many diverse problems in addition to non-IID data. Finally, in Chapter 7, I

recapitulate major contributions and conclude the thesis.



CHAPTER 2

Linear Interaction Models

2.1 Introduction

In this chapter, I first formally define generalized interference, which is the type of 11D
violation that this work focuses on. Existing causal models usually make the IID assumption,
where each unit is assumed to be the “same.” Such models are incapable of modeling
interactions between units, which is required in order to approach the non-IID problem. I will
next present a new graphical model, named interaction models, for this purpose. Interaction
models are first developed assuming linearity, where the total effects are simple summations
of different components, so that the effects can be naturally separated. In Chapter 5, I will

discuss how the linearity assumption can be relaxed.

2.2 Generalized Interference

In a traditional causal model M (G, S) ([Pea09], Definition 7.1.1), G is the causal graph (e.g.,
Figure 2.1) and S is the set of structural equations of variables (e.g., Equations 2.1-2.3)". T
refer to the variables in a traditional causal model as generic variables. X,C,Y in Figure 2.1
are generic variables. The structural equations 2.1-2.3 represent causal relationships among
the variables. An explicit variable is similar to a generic variable except that it represents

an attribute/event of one specific unit (or sample or individual). For example, “treatment

'In the remaining text, unless specified, the independent random error variables such as Ux, Uy will be
omitted for simplicity.



b

(X)” is a generic variable, and “the treatment of unit ¢ (X;)” is an explicit variable.

X
N
1 ¢ =Uc (2.1)
Y
X = f(C,Ux) (2:2)
Figure 2.1: Traditional Y = g(X,Uy) (2.3)
causal DAG.

When IID is violated, the corresponding variable (treatment/outcome/etc.) of different
units in the sample may have different data generating processes. The type of non-IID
violation that I focus on in this work is named as generalized interference, which I formally

define as follows.

Definition 1 (Generalized Interference). Generalized interference between two units i,j in
a sample is defined as an explicit variable of i being caused by an explicit variable of 7 or

vice versa.

A traditional interference is defined as the treatment of a variable causes the outcome
of another variable. In generalized interference, the interaction is generalized to be between
any variables of two different units, not limited to the treatment and the outcome. Such
interactions usually make units non-IID. For example, if the sickness of ¢ is affected by the
viral load of j (L), then the sickness of i (S;) and the sickness of j (S;) are correlated
through the common factor L;. As a result, S; and S§; are not independent. They are also

likely not identical, unless we assume 5; is also affected by some L, in the same way.

Note that generalized interference is not the only way non-IID can be violated. The
data generating processes of the corresponding variable of two units (e.g., S; and S;) can
be different even without interactions. Two units might have different characteristics (e.g.,

health conditions) that cause their corresponding variables to have different probability dis-



tributions. However, this is beyond the scope of this work, while in this work I limit the

attention to non-IID caused by generalized interference.

2.3 Graphical Modeling of Generalized Interference

In this section, I define a graphical model derived from traditional causal models for modeling

generalized interference.

Definition 2 (Interaction model M*(G*, S*)). An interaction model, M*(G*, S*), is a causal
model where G* is the interaction network and S* is the set of structural equations defining
the data generating process of the observed explicit variables. An interaction network, G*,
15 a directed acyclic graph with each node representing an explicit variable and each directed

edge A; — B; representing A; causes B;.

Cl ‘\Cb 03 04
I X, = Uy, (2.4)

Yi=X1+Y,+3C+ Uy, (2.5)
Figure 2.2: Interaction network with 4 units Yy, =2X, — C) + X3+ Uy, (2.6)
and 12 explicit variables (X;, Y;, C; for i =

1,2,3,4).

An example of interaction model M*(G*, S*), is the interaction network, G*, portrayed
in Figure 2.2 and the structural equations S* (part of) specified beside it; Uy, denotes the
unobserved exogenous error of an explicit variable V;. Observe that interaction networks
allow edges between explicit variables of the same unit (e.g., X; — Yj), as well as two

distinct units (e.g., C; — Y3).

We are now ready to define an isolated interaction model for an interaction model M*.

It is the “ideal” model constructed from M* by eliminating all interactions between units.
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Definition 3 (Isolated interaction model IM*(IG*,15*)). IM*(IG*,15%) is the Isolated

interaction model of an interaction model M*(G*, S*) if IM satisfies the following conditions:

1. IG* = G’ where G' is the graph obtained by removing from G* all edges A; — Bj,
iF 7
2. I5* = 5" where S’ is the set of equations obtained by removing from each equation

X; = f(Pa(X;))? in S* all terms containing any Y;, Vj # 1.

For example, the interaction model M*(G*, S*) has Figure 2.2 as G*, and Equations
(2.4-2.6) as part of S*. The isolated model for M* is denoted IM*(IG*,15*). IG* is given
in Figure 2.3 below. And 1.S* for Equations (2.4-2.6) are given by Equations (2.7-2.9).

Xl X2 Xg X4

Cy Cy Cs Cy
D % N X X, = Uy, (2.7)
Y.l Y.Q };3 );4 Yl = Xl + 301 -+ [jy1 (28)

Yo =2Xo + U 2.9
Figure 2.3: Interaction network with 4 units. ? ? 2 (2.9)

2.4 Symmetry Assumptions

In real-world applications, we will have at our disposal limited (usually just one) observations
corresponding to a unit which in turn will make it hard to draw useful conclusions if the
model is completely arbitrary. In traditional causal inference techniques this is not a problem
since they assume IID, which is assuming for each variable, the distribution is the same and
independent for all units. In general, it is nearly impossible to obtain meaningful results
given data on units that behave completely differently. So it might be reasonable to assume

that the unit model for each unit would behave the same way if the units were isolated from

2Pa(X;) denotes the parents of X; in G*.
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each other. While we do not make strong assumptions such as IID, we need to make weaker
symmetry restrictions (definitions 4, 5), in order to quantify bias and identify ACE. We

only require some of the variables are IID instead of all.

Definition 4 (Balanced interaction model M*(G*,S*)). Let M*(G*, S*) be an interaction
model with isolated model IM*. M* is a balanced interaction model if IM* has the same

unit-model (IM;(IG},1S})) for every unit i.

Let G* be the graph in Figure 2.2 and S* be the set of equations (2.4-2.6) corresponding
to M*(G*,S*). IG* in Figure 2.3 is the graph and [.S* are the equations (2.7), (2.8) and
(2.9) that correspond to I M*, which is the isolated model of M*. The unit-graph for unit 1 is
different from unit 2. Also, the structural equations for Y; and Y5 of the isolated interaction

model (Equations (2.8) and (2.9)) are different. Hence, M* is not a balanced interaction

model.
Ci = UCiai € {172}
X, Xy X1 Xy X;=Ci+Uyx,,i€{1,2}
Cl CQ C’1 02
Y1 =2X, - C + Y, + Uy,
b 2 y Yo =2X5 — Cy + Uy,
Y1 Y, Y1 Y,

(a) X satisfies ASDC. (b) X does not satisfy ASDC.  (c¢) Structural equations for (a)

Figure 2.4: Two balanced interaction networks and the structural equations for (a)

For another example, the interaction model M* is balanced where G* is the graph in

Figure 2.4(a), and S* is the set of equations given in Figure 2.4(c).

Remark 1. Note that a balanced interaction model M* does not imply that data generated by
it are IID. Being balanced only requires all units share the same causal relationships within

each unit itself, but permits interactions and effects from other units. For example, the
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parents of explicit variables Y; and Yj, © # j can be different in G* i.e., Y; can be caused
by a set of variables Sy corresponding to unit, k, and Y; can be caused by a distinct set of
variables Ty,. However, for M* to be balanced it is required that for all distinct units i and

J, all'Y; have the same relationship with i’s explicit variables as Y; with j’s variables.

We further note that if M™* is balanced then all the unit-models IM;(IG},1S}) in
Definition 4 are identical (with no edges between IG; and IG7), and can be succinctly
represented by a (single) causal model M (G, S) where G and S can be constructed from any

IG7 and IS} by replacing explicit variables with generic variables.

In addition to the assumption that the isolated components being the same, it would be
helpful if we also have symmetrical assumptions on the underlying distributions of specific
sets of variables. For example, it is reasonable to assume all units’ treatments have the same
distribution, i.e., for any treatment X = x, all units have an equal chance of getting the

treatment X = x.

Definition 5 (Ancestral same-distribution condition (ASDC)). In the interaction network
G* a balanced interaction model, generic variable W to satisfies the ancestral same-distribution
condition (ASDC) if for all unit i, 1) Pa(W;) satisfies ASDC, and 2) Pa(W;) C V), and 3)
for any different unit j # i, Pa(W;) and Pa(W;) have the same set of generic variables, and
their evogenous errors Uy, and Uw, have the same distribution. (When i=j, the condition

is automatically satisfied.)

For example, in Figures 2.4(a) and 2.4(b), X satisfies ASDC in the former (assuming
the condition on exogenous errors is satisfied) but not in the latter, since in the latter

Pa(Xy) # Pa(X5). ASDC implies IID as stated in the following lemma.

Lemma 1. If W satisfies ASDC, then any two explicit variables W; and W; are IID (Inde-
pendent and Identically Distributed.)

13



Remark 2. The descendants of an ASDC variable need not be IID. For example, in Figure
2.4(a), X satisfies ASDC, and Y; and Y; are descendants of X; and X;. Y; and Y; have

different sets of parents, making their distributions different, so 'Y is non-1ID.

Finally, I define the notion of a generic network, which is the expected causal DAG if all

interactions are removed.

Definition 6 (Generic Network). The generic network for a balanced interaction model
M*(G*, S*) is defined as the the shared unit-graph for the isolated model IM* of M, with

the nodes relabeled as the corresponding generic variables.

For example, given the balanced interaction model M* with interaction network as Figure

2.5 left, the generic network is defined as the causal DAG in Figure 2.5 right.

X Xo X
Ch Co C

Y Y5 Y

Figure 2.5: A balanced interaction network (left) and its corresponding generic network

(right).

2.5 Discussion and Summary

In this chapter, I defined the notion generalized interference, which is the problem focus
of this work. I defined a new graphical model, named interaction models, for handling

generalized interference in data.

One of the most studied concepts related to interactions among units is interference
[Cox58]. Majority of literature in empirical fields assume no-interference. In fact, SUTVA

is a common assumption in causal inference [Rub78]. Recent years have witnessed a rise in
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papers on interference that employ graphical models. These include [OV14] that was the first
to model interference using DAGs, [SS18] that modeled interference using chain graphs which
permits modeling unknown interactions between units and [BMS20] that proposed structure
learning methods for chain graphs. These works rely on partial interference which divides
units into equal-sized blocks under the assumption that interactions occur only within a
block but not across different blocks. In addition, partial interference requires corresponding
units in different blocks to satisfy the ‘“dentical” condition in IID. Thus partial interference
methods assume “block I1D,” which is weaker than “unit IID” assumed by traditional causal
methods. However, in many domains such as infectious diseases, it is unrealistic to assume
that the samples in the dataset can be divided into blocks that satisfy the requirements
for partial interference. For instance, if blocks pertain to families then all families may not
have the same number of members and individuals in the family are likely to interact with
people outside the family. The framework presented in this chapter is not limited to partial

interference.

Some related works demonstrating application values include [NPB20], which developed
methods for identification and estimation of multiple queries under conditions of interference
and homophily, and applied the results to the problem of ad-placements. [Sob06] was the
first to notice the effect of interference in the housing mobility problem, and proposes causal

estimands for this application.

[AS17], [SA17] modeled general interference (without assuming partial inference) by con-
structing a function to define a unit’s exposure level on the number of treated neighbors they
have. The methods are less restricted than partial interference methods, and allow units to
be affected by any number of neighbors. However, they are limited to interference and do

not handle other forms of interactions.
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CHAPTER 3

Interaction Bias of the Causal Effect

3.1 Introduction

In this chapter, I conduct a systematic analysis on the interaction bias resulting from using
ITD methods on generalized interfering data. I will start by formally define the query of
interest and the interaction bias. Next, I will present theoretical results on quantifying,
detecting and removing the interaction bias. Finally, I test the performance and coverage of

the proposed methods through simulations and a case study.

3.2 Quantity of Interest: True Average Causal Effect (TACE)

I generalize traditional ACE to the non-IID setting. Examine the interactions depicted in

Figure 3.1.

Figure 3.1: An example interaction: X; causes Y; through Y.

Unit ¢’s treatment X; affects its outcome through unit j’s outcome Y. This effect is not

part of the effect that is the interest of this work, since it results from interactions between
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units. Hence, X; — Y; — Y is considered a “spurious” causal path. In other words, I am
interested in computing the ACE of a unit’s treatment on their outcome, excluding the effects
transmitted via spurious paths from its neighbors/contacts. In an experimental setting,
interactions might be eliminated by isolating all subjects. In an observational setting or an
experimental setting where subjects are not isolated, the data are non-1ID. I am interested
in computing the average causal effect of treatment on outcome as if all units were isolated.

The formal definition of this quantity of interest is presented below.

Definition 7 (True Average Causal Effect (TACExy)). Let M* be an interaction model.
True average causal effect of X on'Y, denoted as TAC Exy, is defined as the ACE of X on

Y in the isolated interaction model IM* corresponding to M*.

TACE is the non-I1ID version of ACE and is the same as ACFE in a traditional causal
model where all samples are isolated. Again, without loss of generality, I assume the differ-
ence between the treatment value and the outcome value is 1, i.e. treatment is X = c+ 1

and the outcome is X = c.

3.3 Defining Interaction Bias for TACE

Many machine learning algorithms including those that employ causal techniques assume
that data are IID ([Sch22], section 3). In other words, the theoretical and performance
guarantees of these algorithms are based on data being IID. As such it would be useful
to determine conditions under which an algorithm meant for IID data can be applied on

non-IID data with the certainty that the resulting bias would be negligible.

Interaction bias is the bias induced by falsely assuming IID on datasets with interactions.

We now formally define the interaction bias for a balanced interaction model.

Definition 8 (Interaction Bias). Let balanced interaction model M* be the true model that

generated the (available) non-IID dataset D. Let () denote the query of interest and let Q*
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be its true value. Let I' denote an algorithm that outputs an unbiased estimate of Q) given
data that are IID and the causal graph that generated the IID data. Let GT denote the unit
default interaction graph for any unit in M*, with the explicit variables are relabeled as the
corresponding generic variables. Let Q be the estimate computed by T using GT and D as

~

input. Interaction bias is given by ||Q* — E[Q]]|.

For example, given the data D on two variables X and Y and assuming IID, with G' as
X — Y, the IID method would output Q as the regression of Y on X. However, if D is
generated from a non-IID process, then G' cannot perfectly characterize the data generating
process, and the estimation using G will be biased. The resulting bias is defined as the

interaction bias.

N o

Yo =2X, — X1 + X; (3.2)

Figure 3.2: Interaction bias might cancel Y, = 2X, (3.3)

out.

With certain parametrizations of the structural equations, the bias might appear to be 0,
while indeed it is an “accidental cancel out.” We do not want to count this case as unbiased
because it is unlikely to occur. The “unbiased” property discussed in this work will always

refer to unbiased almost everywhere, which we define below.

Definition 9 (Unbiased almost everywhere). 6 defines the parametrization (structural equa-
tion functions) of the interaction model. An estimator A is unbiased almost everywhere if

E[A] converges to the true value of A when sampled infinite times, except when 0 resides on

a set of Lebesque measure zero.

For example, given an interaction model with network Figure 3.3 and structural equations

(3.4)-(3.6), the interaction bias is calculated to be 0 by the definition (see appendix for the
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Figure 3.3: Interaction bias might cancel

out.

X Xs

.

i Wi Yo W,

Figure 3.4: Interaction bias is 0 not due

to accidental cancellations.

Y1 =2X,y

Yo =2X, — X1 + X5

Y3 =2X;
Yi =2X,
Yo =2Xo+ W

full derivation). However, if the parametrization (function) changes to Y, = 2X5 —2X; + X3,

then the interaction bias is not 0. This implies that the bias being 0 is an “accidental

cancel out,” since it occurs only for parametrizations satisfying certain constraints. Hence,

this interaction model is not considered unbiased almost everywhere.

On the contrary,

given an interaction model with network Figure 3.4 and structural equations (3.7)-(3.8), the

interaction bias is always 0 regardless of the parametrization. For example, changing the

structural equation to Yo = 2X, + 2W; still results in 0 interaction bias. So this model is

unbiased almost everywhere.
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3.4 Quantifying, Detecting and Removing Interaction Bias for

TACE

3.4.1 Quantifying Bias

I define the two main types of problematic graphical structures in a linear interaction network

that introduces bias in the estimation of TACFE.

X Xj
Y, Y

(a) X, causes Y; through a directed path (de- (b) X; and Y; are confounded (deflecting

flecting bias). bias).
Xi X Xi X
Ci
v, v,

(c) X; causes Y; through Y; (re- (d) X; and Y; have a confound- (e) X; causes Y; through Cj (re-

flecting bias). ing path (reflecting bias). flecting bias).

Figure 3.5: Deflecting and reflecting interaction types.

Definition 10 (Deflecting bias structure). A deflecting bias structure for TACExy in an

interaction network G* is an open path between X; andY; for i # j.

Deflecting bias structures are open paths from one unit to another unit. For example,
Figures 3.5(a) and 3.5(b) contain deflecting bias structures. The interaction network in
Figure 3.5(a) has a directed open path between X, and Y;, and the interaction network in

Figure 3.5(b) has a confounded open path between X; and Y;.
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Definition 11 (Reflecting bias structure). A reflecting bias structure for TAC Exy in an
interaction network G* is an open path between X; and Y; through some explicit variable W;

with i # j.

Reflecting bias structures are open paths that go from a unit through another unit and
back to the same unit. For example, Figures 3.5(c) and 3.5(d) contain a reflecting bias
structure. In each of them, there is an open path from X; to Y; through Y;. In some cases,
there can be a deflecting bias structure embedded in a reflecting bias structure, as in Figures
3.5(c) and 3.5(d). However, this is not necessary. Figure 3.5(e) contains only a reflecting

bias structure (X; — C; — Y;) but no deflecting bias structure.

Theorem 1. Let M*(G*,S*) be a balanced interaction model in which treatment variable X;
and outcome variable Y; are not confounded by any variable in V;, Vi. Let D be the available
data generated by M* and let Gt be the generic network. Let TAC Exy be identifiable in GT
and be given by By x, the regression coefficient of Y on X. Let o denote the true value of
TACExy in M*. If X satisfies ASDC' then the interaction bias is given by,

0'2 0'2
T X X Vdp)R - gm0 2 Vallp)#

1<i<n pe P[iji] 1<i<n pe P[ji]

[BlBrx] - o] =

where Pliji] is the set of reflecting bias structures between X; and Y; through any explicit
variable W; of unit j with i # j, P[ji] is the set of deflecting bias structures between X; and
Y; with © # j, and R, is the root of path p.

It follows from Theorem 1 that in a balanced interaction model in which no X; and Y;
are confounded by any variable in V;, the reflecting and deflecting structures are the only
two structures that will bias the identification of TACE. Note that although definition of
interaction bias (Definition 8) on TACE is for any unbiased estimator for ACE, I focus only
on the ordinary least squares estimator in this paper. This is because among the class of

unbiased linear estimators, the OLS estimator has the minimum variance [JW14].

Next I exemplify theorem 1.
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Figure 3.6: Interaction network with 4 units. The numbers represent edge coefficients.

(Cy, Cy, C3, Cy are omitted)

Example 1. Figure 3.6 shows an example of an interaction model with 4 units where
Xq,..., X5 are the treatments, and Yi,...,Ys the outcomes. The numbers on the edges
are the edge coefficients. C' satisfies ASDC, and C; for i = 1,2,3,5 are omitted from the

graph for simplicity.

Suppose we want to estimate the ACE of X on'Y as if the units were isolated: Input:
the interaction network G* as shown in Figure 3.6 (no parameter i.e., S* is not an input),
Output: the TACExy (should equal to 2). If we estimate AC Exy ignoring the connections
between units, our estimator will be By x, with Y = {Y1,.... Y5} and X ={Xy,..., Xs}. This
1s because ignoring the connections, the graph becomes X; — Y; separated for i = 1,....5,

so is essentially X —'Y [Pea09]. However, by Theorem 1,

0.3-04 1 1 1 10.6-020% 1
05— —2:04——-05-04— ——7C_ = 9,03

—9| = - .
rx =2 =1 20 20 20 20 0% 20

£0.

Hence, the result is biased, and does not give us what we want. I show later in Theorem 2

how to compute an unbiased estimate of TACE.

3.4.2 Detecting Bias

In this section, I provide a graphical criterion resulting from Theorem 1, to detect interaction

bias.
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Corollary 1. Let M*™*(G**,S) be a balanced interaction model in which X satisfies ASDC
and TACE is identified as Pyx = « in the generic network, then interaction bias exists iff

G™* contains a reflecting or deflecting bias structure.

X1 X2 XS
P c, X X5 X3
/2\‘ - »
Y, B, Y, Y, /\./\

Figure 3.7: Interaction network with 3

Figure 3.8: Interaction network with 3 units.
units. (Other A, B,C variables including

(C3 is omitted)
Ay, By, ... are omitted)

For example, Figure 3.7 contains both reflecting and deflecting bias structures. Figure 3.8
does not contain any bias structure. So Figure 3.7 has interaction bias and Figure 3.8 does
not. Note that the interactions in Figure 3.8 do not qualify as bias structures by Definitions

10 and 11.

3.4.3 Removing Bias

Theorem 2 presents a technique for computing an unbiased estimate of TACE in cases where
theorem 1 predicts significant bias. It proceeds by applying linear regression on a set of
samples B that satisfy the condition that no bias inducing structures exist between any two
distinct units ¢ and j. In particular, a subset of samples/units B is termed as a bias-free
subset for TAC Exy if no reflecting bias structures exist for any i € S and no deflecting
bias structures exist in G§ where G is the latent projection of G* on B (Definition 2.6.1,
[Pea09]). For example in figure 3.6, B comprises of units 2 & 5 and G% is Xo — Yy X5 — V5.
However, B is not unique for a given interaction network. Another candidate for B is units

2 & 4 and the associated G% is Xy — Yo Xy — Y,. An algorithm for constructing B is
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presented in Algorithm 1, with an example and discussion in the appendix. This algorithm
starts by randomly initializing B with a sample. Then it goes through the rest of the samples
and adds a sample to B if its inclusion does not create bias structures in the resultant graph,

G

Algorithm 1 Select a bias-free subset B from an interaction network G* and return the

largest subset from t iterations
Input: an interaction network G*, iterations ¢

Output: the largest bias-free subset B selected from t iterations
1: function FINDSUB(G*, t)
2: B=0

3: fori=1,...,tdo

4: Units = randomly sorted list 1,...,n

5: B = {Units|[1]} (The indices for Units start from 1)

6: for:=2,...,ndo

7 if Units[i] has no reflecting bias structure in G* then

8: if Units[i] has no deflecting bias structure in G* with an element in B
then

9: B = BU{Unit[i]}

10 B =BU{B}

11: return Largest B in B

Theorem 2. Let G* be an interaction network. Given the conditions in Theorem 1 and B
a bias-free subset for G*, TACExy = E[B;;X] where the regression coefficient is calculated

using only samples in set B.

Note that bias-free subset of samples B used in Theorem 2 is not always [ID. While I
insist that no reflecting or deflecting bias structures exist in G, I do not restrict other forms

of interactions among these samples. For example, in Figure 3.8, Units {1, 2, 3} constitute
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a bias-free subset. In this case, Y is not IID (Y; and Y, are dependent, Y, and Y3 are

dependent) and hence the bias-free subset is non-I1D.

Also note that to compute an unbiased estimate using Theorem 2, we have at our disposal
a smaller set of samples; so the variance of estimation will be larger. There is a trade off
between ignoring interaction (large bias, small variance), and using theorem 2 (no bias, large
variance). It remains future work to quantify the variance of the estimator in Theorem 2 for
different interaction models, but in Section 3.5, I provide simulation results and case analysis

study to empirically show its performance.

Applicability of theorems 1 & 2 to real world problems: A natural question that
arises at this juncture is whether we need an entire interaction network to apply these
results to real world problems. Theorem 1 quantifies bias and in doing so reveals to us
if and how various factors such as sample size and strength of connections (value of path
coefficients) influence bias. This in turn allows us to use available information about the
problem from prior experience, domain knowledge or external sources to determine if bias
would be negligible or not. Specifically, bias becomes smaller as the number of bias-structure-
free samples increases. In fact, if the numbers of deflecting and reflecting structures are fixed,
the bias terms diminishes as n increases, indicated by the 1/n for the reflecting bias term
and 1/n(n — 1) for the deflecting bias term. It is also evident that if the values of path
coefficients are high, Val(p) would be high and this will result in increased bias. Finally, if
the interaction connections are sparse (fewer edges between units), the reduction in the total
number of paths could potentially lower bias but more importantly the number of samples
in the bias-free set B used in theorem 2 will tend to be larger, which in turn will help in

computing better quality estimates.
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3.5 Experiments

3.5.1 Simulations

Simulated Model I randomly generate balanced interaction network with n units (i.e., the
sample size is n), with C; — X; — Y; and X; — M, for all i = 1,...,n. For all ordered pairs
of distinct units 7, j, I randomly add deflecting bias structures in the form of X; < C; = Y;
with probability dRate. For all units ¢, I randomly add reflecting bias structures in the form

of X; — Mj, — Y; with probability r Rate for a random k # 1.

Experiment: Bias of REG It follows from theorem 1 that larger sample sizes and
smaller path values on the bias structures result in smaller bias. I perform two simulations
to show how bias varies as a function of sample size and path values.I simulate data such that
for each variable, the exogenous error term follows a Gaussian distribution with mean 0 and
standard deviation 1. For each set of parameters, I randomly generate an interaction network,
and simulate the data 10000 times. Each time, I record the result from a naive regression of
Y on X (REG). As a comparison, I also record the result from Theorem 2 (THM-2). I run
the algorithm (provided in the appendix) to randomly select bias-free subsets for 10 times
and select the largest subset.

Simulation 1: X; — Y;’s edge coefficient is 100, the edge coefficients of C; — X;, X; —
M;, M; — Y; are all set to 10, the numbers of deflecting bias structures and additional
reflecting bias structures are both 100.

Simulation 2: Number of units n = 1000, X; — Y;’s edge coefficient is 100, the numbers of
deflecting bias structures and additional reflecting bias structures are both 100. The results
are plotted in Figure 3.9. As seen in the plots, as n increases or the path values on the
bias structures decreases (both with all other parameters fixed), Sy x from a naive regression
approaches TACE. Such results coincide with Theorem 1. The By x computed by THM-2

is very close to TACE and the two lines almost overlap.
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Figure 3.9: Left: Byx vs. number of units n. Right: Syx vs. path value on the bias

structures. TACE = 100.

3.5.2 Case Study

Settings I am interested in analyzing the effect of tutoring time on students’ grades. In
particular, I wish to compute the effect provided through the tutoring program only, but
not through “side effects” from other units, such as learning from classmates, although such
interactions are encouraged in this scenario. For instance, unit ¢ might help unit 57 understand
the course materials better which in turn might improve j’s grade. If unit ¢ helped unit j
improve their understanding and unit j states this in the peer review, then it would boost
1’s grade. To construct an interaction network and apply the proposed results, we ask the
students to fill out a survey including 1) their tutoring time, 2) their grade, 3) whom they

helped, 4) who helped them, 5) peer review score.

Construction of the Interaction Network Three generic variables are T (tutoring
time in hours), U (understanding of course materials), and R (grade). For each unit i,
T, — U; — R;. In addition, if ¢ helped j, add U; — U; (deflecting bias structure). If
¢ first helped j and j mentioned this in the peer review and thus boosted i’s grade, add
Uy — U; = R; (reflecting bias structure). I assume no additional back-and-forth help

happens.
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Figure 3.10: Left: estimated TACE distribution from THM-2. Right: estimated TACE
distribution from REG.

Simulation Let there be 500 students, assume each student on average help 5 other
students, and the other student has a 0.5 chance of helping back. Let TACE = 2, and the
Ui — U; and U; — R; edges both have the value 2. I randomly generate an interaction

network and simulate data based on these parameters.

Results I apply THM-2 to select a bias-free subset, and compute fgr using data from
that subset. I get the result 1.963, with the size of the subset 72. As a result, the effect of
tutoring time on students’ grades not through other units is estimated to be 1.963, which is
close to the ground truth TACE (2). I further repeat the experiment 1000 times to show
the distribution of the results. Each time a random structure is generated and random data
are simulated. THM-2 is on average able to select a bias-free subset of size 76, and the
average recovered TAC'E = 2.0002. The result from REG had a significantly high bias with
TACE averaging at 194.11. Also since every time the data are regenerated, the model is
different, and REG uses all the data, it has a larger variance. The two plots in Figure 3.10
show the distribution of results from THM-2 and REG. The histograms of the results of Gy x
computed by THM-2 and REG are shown in Figure 3.10.

28



3.6 Discussion and Summary

In this chapter, I derived theorems to quantify the interaction bias for average treatment
effects in linear models, when generalized interference are present. I provided sufficient
and necessary graphical conditions to detect interaction bias. Additionally, I developed a
method to compute an unbiased estimate of causal effect in cases where blindly assuming
I1D is expected to yield a significant bias. Finally, I tested the performance of the proposed

method through simulation studies.

[JPV20] proposed a quasi-coloring method to estimate direct effect under interference
using experimental data. However, it does not easily generalize to observational studies.
Other papers along a similar direction include [FZ20], which proposed experiment design
to minimize interaction bias and selection bias at the same time, and [LH14], which pro-
posed a two-stage randomization design to minimize interference bias. [TFS21] proposed
a g-computation method, which is the first to model general interference using graphical
models (chain-graphs), but requires the interference effects to be symmetrical between units.
[SAH21] and [HHOS8| defined queries similar to TACE, named EATE and PADE, respec-
tively. These queries generalize traditional ACE to allow a unit’s outcome to be affected
by treatments of other units. However, they do not allow outcomes to be affected by other

units’ variables other than treatments.

[HHO8] defined six types of queries in the problems involving interference. Work in in-
terference that focuses on different queries/problems include a few as follows. [VTH12]
is the first to decompose the spillover effect (the effect of a unit’s treatment on another’s
outcome ([Qual2])) to contagion and infectiousness effects using counterfactual mediation
analysis. [STA17] presented decomposition for units with unknown and symmetrical inter-
action patterns and analyzed different interference paths. In linear models, the contagion
and infectiousness effects reduce to the directed paths from X, to Y;. Moreover, their work

does not handle reflection bias. [HLW21] was the first to define and provide estimands
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for the average indirect effect. [VTH14] developed methods for sensitivity analysis under

interference.

Other types of interactions include the contagion effects, which are defined as a unit’s
outcome affecting another unit’s outcome [VA13]. Work on this line usually used longitudinal
data, including [Bur87, Lyoll, VOT12]. Homophily effects are defined as the behavior of
connected units are similar [JPV20]. Work in this line include [MSCO01, JPV20]. The existing

work above does not model interactions using graphical models.
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CHAPTER 4

Uncertain Interaction Models

4.1 Introduction

In Chapters 2 and 3, I presented results that models generalized interference using interac-
tion models that represent general interaction patterns between units, and is not limited to
interference. However, one limitation with interaction models and many other approaches
(such as those in [AS17, JPV20]) is that the interaction patterns need to be known in ad-
vance. This level of detail is not easily available in real-world datasets. For example, in a
drug trial, it may not be feasible to track down each participant; in an online study, it is
difficult to know if participants communicated with others in the study. The question of
interest is, how can we perform causal analysis given non-IID data when there is uncertainty

in the interaction pattern?

The main results of this chapter are as follows. I derive theorems to quantify interaction
bias when some interaction paths exist with uncertainty (Thm. 3). I reduce or remove
bias when some interaction paths exist with uncertainty (Thm. 4). I present a polynomial
algorithm for the bias-reduction/removal method. (Algo. 2). Finally, I derive results for

bounding ACE when some interaction paths exist with uncertainty. (Thm. 5 & Cor. 2).
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4.2 Bias Reduction for Graph with Uncertain Interactions

While the interaction modeling has the benefit of modeling general arbitrary interactions,
they rely on knowing the full interaction graph structure, which is often unavailable. In this
section I will generalize those results to handle uncertainty in the interaction patterns among

units.

Definition 12 (Uncertain Paths). An uncertain path between two distinct nodes A and B

in a DAG is an open path between A and B that exists with probability 6, 0 < 6 < 1.

4 Cy Cs

P

!
|
/
/ |
/ |
Y,

Y Ys Y3

Figure 4.1: An uncertain interaction graph

A definite path on the other hand is one that exists with probability 1.

Definition 13 (Uncertain Interaction Graphs). An uncertain interaction graph is an inter-

action graph with uncertain paths.

Figure 4.1 shows an uncertain interaction graph, where uncertain paths are represented

as dashed arrows, and definite paths are represented as solid arrows.

There are multiple ways in which units can interact, such as two units’ outcomes are
confounded, a unit’s treatment affects its outcome through another unit’s variables, etc. In
this chapter I focus on interference, since it is one of the most common and most studied
type of interactions. Interference is defined as the phenomenon that one unit’s treatment
affects another unit’s outcome. I assume that the only form of interaction in the interaction

model is via interference paths, defined below.
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Definition 14 (Interference Paths). Given an interaction graph, an interference path is a

directed path from X; to'Y;, 1 # j.

I next impose a few additional restrictions on the graph so it is not too arbitrary to draw

useful conclusions.

Definition 15 (Balanced Graph for Uncertain Interference (b-GY, for short)). An interac-

tion graph, GV, is termed as a balanced graph for uncertain interference if

1. 1t 1s the interaction graph of a balanced interaction model M*,

2. the only type of bias structures in M* are directed paths from X; toY; where all inter-

mediate nodes belong to either unit i or j.

3. only definite edges exist between any two nodes A; and B; of unit i, for any i. Uncertain

edges may exist only between nodes of distinct units 1, 7, for any ¢ and j.

4. the sum of the values of interference paths from X; to'Y; (if such exists) is the same

as that from Xy toY; (if such exists), for all i # j and k # 1.

Figure 4.2: A balanced graph for uncertain interference.

Note that each interaction graph with or without uncertainty corresponds to an under-
lying interaction model that encodes the data generating process. Figure 4.2 is a b-GY, if
the interaction model it corresponds to is balanced. Condition 1 is satisfied. Condition 2
is satisfied since the only such path with an intermediate node is from X, to Y;, with M,

being an intermediate node, and it belongs to unit 2. Condition 3 is satisfied since the only
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uncertain edges My — Y7 and Xy, — Y3 are both between distinct units. As for Condition 4,
we can calculate the sum of the values on the three interference paths. The edge coefficients

are labeled in Figure 4.2, and they all equal to 6. Thus, Condition 4 is also satisfied.

Figure 4.3: A balanced graph for uncer- Figure 4.4: A balanced graph for uncer-

tain interference. tain interference with Ny = 0.
X X X, (
! ? ° M, =2X, + Uy
M M. M.
/ * My =2X5 +Upy,
Y M; =2X35+ Uy,
Y, Y, Y, S* (unavailable)
Y1 — 5X1 —|— Uyl
Figure 4.5: The underlying true interac- Y, = 5X, + Ty,
tion graph (unavailable).
\Y:z =5X3 + Uy,

As is mentioned in the preliminaries, the interaction bias (Definition 6) is the bias resulted
from incorrectly assuming IID to estimate the unit “true” ACE (TTACExy). Theorem 3

below quantifies the interaction bias in an uncertain interaction graph.

Theorem 3. Suppose M*, D, G' refer to the true model, available data and generic network
as specified in definition 6 such that Q = TACExy and Q = Byx. X; and Y; are not
confounded by any variable of i, for all i. Let GU be the b-GY corresponding to M*. For all
1% § pairs, let Ng be the number of pairs of units that have definite interference paths from

1 to 7 and let Ny be the number of pairs of units that have uncertain interference paths from
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i to j with probability 6. Let the sum of the values of the interference paths from X; to'Y; be
p,t for all i # j. The expected interaction bias is given by

B[ - Q) = s

PN+ ON).

Figure 4.3 is a b-GY with Ny =1 (X3 — Y5) and Ny = 3 (X3 — My — Y7, X; — Ys, and
Xy — Y3). n = 3 since there are 3 units. The underlying true interaction model (unavailable)
is shown in Figure 4.5, with the structural equations on the right. The interference effect [p|
is equal to 2, calculated from the structural equations. TACExy is 5. We can also see that
the true 6 is 2/3, i.e., out of the 3 uncertain paths, there are 2 that really exist. Although
in real-world applications, € is usually unavailable, so we need an estimate from expert
knowledge about the frequency of interference in this sample. Figure 4.4 shows another
b-GY that corresponds to Figure 4.5. In Figure 4.4, there is no definite interference paths.

This is in fact an interesting special case, which I will elaborate more in the next section.

The debias method in [ZMP22] selects a bias-free subset of units and uses it to unbiasedly
compute TACE given the full interaction graph. When there is uncertainty, if we treat all
uncertain interference paths as definite existence, we might end up selecting too small a
subset, especially when there are many uncertain interference paths. One solution is to
select a larger subset to maybe include some interactions, while still bound the interaction

bias at a reasonable level. Theorem 4 below shows such a method.

Theorem 4. Consider the setting in Theorem 3. Suppose we are additionally given a bias
threshold T, and the interference effect is bounded by a constant I' times the TACE (i.e.,
Ip| < T|Q|). If a subset B of units satisfies

1 / !

'.e., p is equal to the causal effect of X; on'Yj.
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then using the samples in 3, the expected interaction bias will be at most 7|Q|. For alli # j
pairs with i, j € B, N}, denotes the number of pairs with definite interference paths from i to
J in G*, and Ny denotes the number of pairs with interference paths from i to j in G* with

probability 6.

If such a subset is found, then the bias is bounded. For example, if the threshold 7 = 0.1,
the bias will be as large as 10% of the true ACE, computed using the data from the selected
subset. This theorem becomes a debias method if 7 = 0, since that simply implies that the
bias has to be 0. Algorithm 2 is a polynomial greedy algorithm that selects such a subset

given threshold 7.

Algorithm 2 Select a subset B from an uncertain interaction graph GY that makes the

interaction bias < 7

Input: an interaction graph GY, probability of uncertain paths 6, interference/ TACE
ratio bound constant I', bias threshold 7

Output: a subset B resulting in < 7 bias

1: function FINDSUB(GY, 7)

2: Units = randomly sorted list 1,...,n

3: B = Units|1]

4: fori=2,...,ndo

5: if BU {Unitsli]} satisfies 1/((|B + 1])|B|)(N, + 6N,)I' < 7 then
6: B = BU{Units[i|}

7: return B

Algorithm 2 goes through all the units, and select units one at a time, until the condition

is no longer satisfied, and the selected subset is returned.
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4.3 Causal Effect Estimation with Unknown Interference Struc-

tures

Next, I present a theorem for unbiased estimation of TACE. Unbiased estimation is possible
if the relationship between the interference path strength and the TACE is given, and where

the interference paths occur need not be known.

Theorem 5. Consider the setting described in Theorem 3. Suppose we know the relationship
between p (the interference path strength) and QQ (TACE) is p = vQ, where v is a constant,

then @) 1s unbiasedly estimated as

E[Byx]

Applying Theorem 5 to generate bounds In this chapter there are two types of effects
under consideration. First, the effect of X; on Y; (unit specific effect) and second, the effect
of treatment applied to other units such as X, j # i on Y; (interference). In many situations
such as when treatment is vaccination and outcome is disease, (i) the magnitude of unit-level
treatment effects (TACE) can be safely assumed to be higher than those due to interference

(p); mathematically, this translates to |Q| > |p| and 0 < v < 1.

Corollary 2. Consider the setting described in Theorem 5, if we further assume 0 < v < 1

and |Q| > |p| and 0 <y < 1 then @ can be bounded as

E[By .
e <@ < Blfial.

n(n—1)

Note that from Corollary 2, () is always less than F [B; x]. This implies that when the unit
specific effect and the interference effect have the same sign, then assuming IID (F [5; x])

always “overestimates” the true unit specific effect (Q).
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Remark 3. Note that there are several interesting special cases with the the results presented

i Theorems 3, 4, and 5.

1. Ny = Ny = 0. In this case, there is no interference path (definite or uncertain) in
the model, which results in a model without interaction structures. In Theorem 3,
the interaction bias is 0. In Theorem 4, the inequality always hold since the L.h.s. s
0, while T is positive, so we can select any subset B where |B| > 1. In Theorem 5,

Q=F [ﬁ; x|, which is consistent with an interference-free setting.

2. Nqg= 0. In this case, there is no definite interference path. This special case is useful
when we do not have any information about which units interact with which units in

some real-world applications. All those theorems still apply.

3. Ny = 0. In this case, there is no uncertain interference path. This means we have all
the information regarding which units interact with which units. The theorems reduce

to the results in [ZMP22], where there is no uncertainty in the interaction network.

4.4 Discussion and Summary

This chapter focused on the problem of interference (non-generalized) when there is uncer-
tainty regarding the interaction patterns. I showed that bias due to interference can be
quantified using the interference strength and expected number of interactions. I developed
an algorithm that computes true average causal effect such that bias is guaranteed to be less
than a given quantity 7. Finally, I bound the average causal effect when it is guaranteed

that unit level causal effect is higher than interference.

To my knowledge, there is no existing work that systematically discusses uncertainty in
interaction patterns. There exists work that exploits model uncertainty for traditional causal
diagrams under the IID assumption. Some uncertain DAGs include patterns in [VP91] and

partial ancestral graphs (PAGs) in [Ric96]. Both graphical frameworks have uncertain edges
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in the graph, representing unknown edge orientations. In addition, PAGs are used to repre-
sent equivalence classes of maximal ancestral graphs (MAGs) [RS02]. MAGs are abstractions
of DAGs that keep only the conditional independence and ancestral relationships. Formally,
MAGs are mazimal and ancestral. There is an edge between two nodes A and B in the MAG
if and only if there exists no set that can separate A and B in the DAG (maximal), and
A — B is in the MAG if and only if A is an ancestor of B in the DAG (ancestral). [JZB18]
introduced a causal identification method for PAGs. Causal discovery methods including the
PC algorithm [SGS00] and the IC algorithm [Pea09] learn patterns and the FCI algorithm
[SGS00] learns a PAG.
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CHAPTER 5

Non-Parametric Interaction Models

5.1 Introduction

In the previous chapters, I presented linear interaction models and discussed bias analysis
under the linear setting. The linearity assumption simplifies the generalized interference
problem, since the interaction effects are always added to the total effects and can be natu-
rally separated. In this chapter, I relax this assumption and extend interaction models for
the non-parametric case. I perform bias analysis from applying estimation techniques meant
for IID data such as Horvitz-Thompson estimator [HT52] on non-IID data. I also present
an assumption weaker than linearity that can help mitigate bias. Finally, I present results
on unbiased estimation design and empirically evaluate the debiasing procedure for different

setups.

5.2 Defining Non-Parametric TACE

The main query of interest is the causal effect through units themselves, where hypothetically
there is no influence from other units. For example, I am interested in the effect of a
vaccine on a disease through a person’s own immune system, but not through obtaining
immunity from people around them. I first define unit default interaction model, which is
the “default” causal model that we expect a unit to have if no interaction with other units
exists. I disconnect interacting units by replacing the variables in the interacting terms

in the structural equation with their default value. In linear models, removing interacting

40



effects from a variable means removing the terms that cause interactions, so default values
are always 0. In non-parametric models, default values can be any real number that the
variable can take on, determined by specific settings. For instance, given that the sickness of
a patient is equal to their own immune strength multiplied by their close contact’s sickness.
If we assume the default model for the sickness of a patient is equal to its immune strength,
under no interaction, then the default value for their close contact’s sickness is set to a

non-zero value 1.

Note that the default value for each generic variable need not be the same across all
units, although I assume it is the case to keep the notations simple. Let Pa(V;) denote the

parents of V; in the interaction network.

Definition 16 (Unit Default Interaction Model). DM (DG}, DS}) is the unit default inter-
action model for unit i with respect to an interaction model M*(G*,S*) with a set of default

generic variable values dv if it is constructed from M* in the following way:
1. DG} = G where G} is the subgraph of G* containing only variables of i,

2. DS* = 5" where S’ is the set of equations for variables of i, obtained by substituting
each equation V; = f(Pa(V;)) in S* any W;, Vg # i, with the corresponding constant

m dv.

Given the equations (5.1)-(5.4), the interaction network in Figure 5.1, and default value
X =1, the unit default models are as follows. For unit 1, the unit default model remains
unchanged since it is not affected by another unit. However, for unit 2, the unit default
model is given below and is obtained by replacing X; with its default value 1.
Xy = Uy,

Yo =2Xy — 1+ Uy,

In order to utilize data from non-IID units, I will limit our attention to a type of model

with some symmetry information shared among the units. 1 define balanced interaction model
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X1 I\\I Xo X, = Uy, (5.1)
Yi b4 hd 1/2 XQ = UX2 (52)
Figure 5.1: A simple interaction network. Y; =2X, + Uy (5:3)
Yo =2Xy — X5 + Uy, (5.4)
X1 =Uy, (5.5) X1 =Uy, (5.9)
Xy = Uy, (5.6) Xy = Uy, (5.10)
Y: =2X, + Uy, (5.7) Y: =3X, + Uy, (5.11)
Yo =2X0X, + Uy, (5.8) Yo =2Xo — X5 + Uy, (5.12)

for the non-parametric case. The intuition behind this definition is that if hypothetically
all interactions were removed, then the units would behave in the same way (have the same
data generating process). Balanced model does not necessarily mean that interactions are

non-existent. All it means is that the underlying unit default models are identical.

Definition 17 (Balanced interaction model M*). An interaction model M* is balanced with

default values dv if the unit default interaction model with dv for each unit is identical.

Since unit default interaction models are identical in balanced models, I will denote the

equations using superscript D. For example, I use Y? = 2X7P instead of Vi ~ Y; = 2X;.

Note that the choice of default value affects whether an interaction model is balanced.
The model with interaction network Figure 5.1 and structural equations (5.1)-(5.4) is not
balanced when dv : X = 1, since the unit default models for Y; and Y, are different. However,
given dv : X = 0, the model is balanced. The structural equations of the unit default model
is given by

XP =Uyo

YP =2XP + Uyo.
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The interaction network of the unit default model is X? — YP.

Given the same interaction network, and the structural equations (5.5)-(5.8), the model
is balanced when dv : X = 1, but is not balanced otherwise. Given the same interaction

network, and the structural equations (5.9)-(5.12), the model is not balanced given any dv.

X4 X5 X3 Xy
201 [%&3 P@
i Y, Y Y

Figure 5.2: Interaction network with 4 units and 12 explicit variables (X;, Y;, C; for i =

1,2,3,4).

XX X3 X XP
Xjﬁ\l‘% >CS [ 8 \ @
i Y» ¥z oY yP

Figure 5.3: Interaction network with 4 units and 12 explicit = Figure 5.4: The shared

variables (X, Y;, C; for i = 1,2,3,4). unit default model.
Y= XY, — 4 (5.13)
Yo = X5+ X3 — 4 (5.14)
YP = (XP)* -4 (5.17)
Yy = X2 —2C, (5.15)
YV, =X; -4 (5.16)

Certain interaction networks might belong to a balanced model regardless of the default
value. For example, Figure 5.2 cannot be the interaction network of a balanced model, since
the unit default models are not the same. There is an edge C; — Y7, while there is no such
edge for units 2, 3, or 4. Figure 5.3 can be balanced, depending on the structural equations

and default values. If the structural equations are Eqgs. (5.13)-(5.16) (the equations for C
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and X are omitted and assumed to be identical in the unit models), and the default values
are dv : C' = 2,X = 0,Y = 1, then the model is balanced. The unit default interaction

network is Figure 5.4, and the structural equation for Y is Eq. (5.17).

Assuming IID, an unbiased estimator for average causal effects under no confoundedness
is the HT estimator [HT52, AM13]. The average causal effect of X = 1 vs. 0 on Y is
estimated by

XY Y, (1-X)Y

my mo ’

where my and mg are the numbers of X; = 1 and X; = 0 in this sample (I will keep using
this notion throughout the manuscript). m; + mo = n. This estimand is essentially taking
the difference between the average value of Y; where X; = 1 and the average value of Y;
where X; = 0. I will use this estimator as the default for estimating ACE assuming the data
are IID, assuming no confounder exists between X; and Y; for all i. I define the query of

interest, which is the average causal effect as if the units were isolated, as follows.

Definition 18 (True Average Causal Effect (TACExy)). Let M* be a balanced interaction
model with default values dv. True average causal effect of X = 1 vs 0 on Y, denoted as
TACFExy, is defined as the ACE of X on Y in the identical unit default model with dv

corresponding to M*.

For example, given Figure 5.3 as the interaction network, Eqs. (5.13)-(5.16) as the
structural equations, and the default values dv : C' = 2, X = 0,Y = 1, the true average
causal effect of X =1 vs X =0 on Y is given by

2ilxi=yYi X lx—yYi = (12
mi mo

TACExy = —4) — (0> —4) =1,

where 1,4 is the indicator function that is equal to 1 if A is true and 0 if A is false.
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5.3 Quantifying and Detecting Bias: the General Case

Theorem 6 (Interaction Bias in Non-Param. Models). Let M* be an interaction model
balanced with default values dv. X satisfies ASDC. The average causal effect of X on'Y 1is

estimated as Qy|do(x) in GT. The interaction bias is given by

|E[Qyao(x)) — TAC Exy|
1 1
=B,y o {E > E|mi,me, X; =1 —= Y E[Yjlmi,mg, X, = 0]

1<j<n 1<j<n

— (BE[YP|XP =1] - E[YP|XP =0])

Y

where n is the total number of units (n = my + myg).

If the model is non-parametric, i.e., no assumption is made of the function forms (linearity,

etc.) of M*, the graphical criterion for detecting bias is as follows.

Theorem 7. Let M* be an interaction model balanced with default values dv. X satisfies
ASDC. The average causal effect of X on'Y 1is estimated as Qy|do(x) in GT. There is no
interaction bias iff Y is ASDC.

Figure 5.5: Interaction network with 3 units.

Yy = 3XoWoWy + 1 (5.19) Yy = 3Xo Wy + Wi (5.22)
Yy = 3X3Ws + 1 (5.20) Yy = 3X3Ws + 1 (5.23)
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Example 2. [ use an example to illustrate this theorem. An interaction model has inter-
action network Figure 5.5, and structural equations (5.18)-(5.20), dv : W = 1. This model
is balanced with shared unit default structural equation YP = 3XPWP 4+ 1. The interaction

bias given a distribution of my and my where my = 2 and my = 1 is calculated as follows.

|E[Qyao(x)] — TAC Exy|
1 1
_‘g Z E[Y;|m1:2,m0:1,XJ:1]—§ Z E[Y}-|m1:2,m0:1,Xj:()]

1<5<3 1<5<3

—(EYP|XP =1] - EYP|XP = O])’

—(E[3W1 + W1Wy| + E[3WoWs5 + 1] + E[3W5 + 1])

1
13

. %(E[WJ/VQ] + B[] + E[1]) - (3E[WD])‘

:‘E[WDWD’] — E[W?P]

£ 0.

The notion WP" is used to distinguish from WP so they are not (mistakenly) assumed
to be the same variable. However WP and WP" are IID. Since Y is not ASDC, interaction

bias exists and this is also confirmed by Theorem 7.

5.4 Restricted Additivity

In this section, I define a parametric assumption called restricted additivity, which will
provide stronger results by aiding in mitigating bias. Note that this assumption is weaker
than both linearity and IID, since it still allows interactions between units and non-linear

terms.

Definition 19 (Restricted Additivity). Given an interaction model M*, let Ty, denote the
set of terms in the structural equation of V;. M* satisfies restricted additivity ¢f VV;, Vt € Ty,
one of the following holds true:

1. t contains only explicit variables of unit i that correspond to ASDC' generic variables
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2. t contains only one explicit variable E;. E; corresponds to a Non-ASDC' generic variable
E.

3. t contains only one explicit variable E; with j # i and no other variable.

For example, given the structural equation of an explicit variable V; as V; = A;B; + C; +
D;Ey. Then, Ty, = {A;B;,C;, D;E}. Note that the term ¢t = D;Ej, where ¢t € Ty, contains
a variable Fj that is not in ¢, and there is another variable D; in ¢t. So the interaction
model with this V; does not satisfy restricted additivity. Note that any linear model satisfies
restricted additivity. In addition, variables that undergo log transformation might make the
model satisfy restricted additivity, although the model might not satisfy it before variable
transformation. As long as the model with the given variables satisfies restricted additivity,

the theories presented in this section apply.

Restricted additivity is essentially requiring that all non-ASDC variables or variables
belonging to a different unit linearly affect their children. As a result, the components that
affect each variable can be separated into the sum of two parts, the ASDC part (which is the
same for each unit) and the non-ASDC part. For example, given Figure 5.5, and structural
equations (5.18)-(5.20), the interaction model does not satisfy restricted additivity. When the
structural equations are (5.21)-(5.23), this interaction model satisfies restricted additivity.

In this case, similarly, the interaction bias is calculated as follows.
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|E[Qyao(x)] — TAC Exy|

1 1
:‘g Z E[Y]|m1:2,mg:1,X]:1]—§ Z E[Y}-|m1:2,m0:1,X]~: ]

1<5<3 1<5<3
—(BEYP|XP =1] - EYP|XP = 0])’
1
:‘g(E[BWI + W3] + E[3W;y + Ws] + E[3Ws + 1])

_ %(E[Wf] + E[Wa) + E[1]) — 3E[WP])

:‘E[WD] — EWP]| =0.
There is no interaction bias, which is consistent with Theorem 8.
Theorem 8. Let M(G,S) be an interaction model balanced with default values dv. X satis-
fies ASDC. The conditional average causal effect of X on'Y is estimated as Qy‘do(X) in GT.

Assume restricted additivity. There is interaction bias iff there are deflecting or reflecting

bias structures between X and Y in G.

Compared to Theorem 7, which disallows any form of interaction for the model to be
bias-free, this only forbids the two bias structures. Often persimmible structures include
Y1 + Wy — Y5, ete. For example, Figure 5.5 is unbiased under restricted additivity (if the

conditions for Theorem 8 is met), but is biased without assuming restricted additivity.

5.5 Debiasing

Theorem 9. A subset of units B is a bias-free subset for the causal effect of X on'Y iff the
latent projection [Pea09] on B does not have interaction bias by Theorem 7 (by Theorem 8
if restricted additivity is satisfied).

For example, no such subset can be selected for the model in Figure 5.5 not assuming

restricted additivity, since no two Y; is ASDC. If restricted additivity is assumed, then {1,
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2, 3} constitutes such a subset. I provide a polynomial algorithm for selecting a bias-free

subset in the appendix.

5.6 Experiments

In this section, I present several simulated experiments to illustrate and support the theoret-
ical results. In the interest of space, I have only retained crucial information in this paper.

Fine-grained information is available in the appendix.

5.6.1 The Size of Interaction Bias

In the following experiments, I will demonstrate results related to the theorems for bias
quantification and bias detection (Theorems 6, 7, 8). I show that interaction bias exists
under the proposed graphical criteria, and illustrate how the bias size changes with varies
factors. For the analysis of bias, I will run a “naive” method that estimates TACE as if the
data were generated by an IID model, i.e., compute Qy|do(X) =EY|X =1] - E[Y|X = 0]

from the sample.

5.6.1.1 Bias due to Blindly Assuming ITD

The goal of this experiment is to test how well the naive method would perform in the pres-
ence of bias inducing structures. In Theorem 8, consider the case where restricted additivity
holds, deflecting bias and reflecting bias structures cause interaction bias. I compare the bias
of blindly assuming IID with three types of interactions including deflecting bias structures,
reflecting bias structures, and non-bias interactions. I simulate data based on interaction
models with interactions shown in Figure 5.6, where from left to right are deflecting bias
only, reflecting bias only, and non-bias interaction only. I generated different structures with

those interactions randomly added to different places of the structures.

49



Y Ys Y Ys Y Ys

Figure 5.6: Three types of interactions.

Setup: The same default model is used for all three cases (ITACE = 6), and the same
number of corresponding interactions are added. I run the experiment for 1000 iterations to
reduce sampling variance. In each iteration, I resample data for each of the three interaction

models, and estimate the TACE of X on Y using the naive method.

100 A mm deflecting bias
reflecting bias
non-bias interaction

— TACE

80

oCcurences

0 2 4 6 8 10 12 14
estimate

Figure 5.7: Comparison of the estimation assuming IID for three interaction types.

Results: 1 plot a histogram of the results from the 1000 iterations and is shown in Figure
5.7. The means and variances of the estimates of the three models are listed in the following

table.
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def. model ref. model non-bias model

Mean 5.57 7.92 5.97
Var. 5.10 2.42 3.68

The mean of the non-bias interaction case is close to TAC'E. The means of the deflecting

case and the reflecting case are both biased, where the reflecting case has a larger bias.

5.6.1.2 Size of Interaction Bias

The goal of this experiment is to test how interaction bias size changes with other factors. I
first assume a restricted additivity setting, and show how the bias varies with bias (deflecting

or reflecting) structure strength and density.

Deflecting bias case: I simulate data from a balanced interaction model, where deflecting
bias structures exist in the form of X; — Y for ¢ # j. « denotes the bias strength and is
equal to 1, —3, or 5 in our experiment. The experiment is run for 1000 iterations and
averaged to reduce uncertainty. The plot below shows how bias (Y-axis) varies with sample

size (X-axis), with the number of interactions fixed at 50.

As seen in the graph, the bias is larger when the bias structure has a stronger bias. Also,
as the sample size increases, the interaction network has less interaction density (since the

total number of interactions is fixed by our setting), and the bias becomes smaller.

Reflecting bias case: similarly, I simulate data from a balanced interaction model, where

reflecting bias structures exist in the form X; — M; — Y; with 7 # j. The plot is as follows.

The effect of reflecting biases is in general larger than deflecting biases, while they both
become smaller as the bias strengths and the interaction densities decrease. Next, I show

the results for a general non-parametric setting without assuming restricted additivity.
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Figure 5.8: Deflecting bias size vs. sample size with total interaction number fixed.

General case: without the restricted additivity assumption, any interaction that causes
Y to be non-ASDC will result in interaction bias. So in this experiment, I do not distinguish
between deflecting and reflecting bias structures, and instead I use interaction structures
that would not cause bias if they were in the restricted additivity setting. The interactions
are of the form Y; <— C; — Y, with ¢ # j. The bias strength « is equal to 0.1, -0.3, or 0.5
in our experiment. The plot below shows how the interaction bias varies with different bias

strengths and sample sizes (with the total number of interactions fixed).

The general non-parametric case is different from the restricted additivity cases we have
seen above. Although note that the bias still becomes smaller as the interactions become
less dense, the value of the parameter « is not necessarily positively correlated with the bias
size. The reason for this is that the interactions can affect the estimate in arbitrary ways, so
it is likely non-monotonic. Note that an extreme case happens when a = 0.5, where there is
no bias. This is due to an “accidental” but not “structural” cancel out, since it happens only

for certain parameter choices. Such cases are ruled out when assuming unbiased everywhere.
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Figure 5.9: Reflecting bias size vs. sample size with total interaction number fixed.

5.6.2 Debias

The goal of the following experiments is to test the performance of the proposed debias

method (Theorem 9).

5.6.2.1 Assuming Restricted Additivity

Setup: I simulate data from a balanced interaction model (TACE = 3) with both de-
flecting and reflecting bias structures. I run both a naive method that estimates as if the
data were IID using the original dataset (denoted ORI), and our proposed method selecting
a bias-free subset (denoted SUBS). I repeat the experiment for 1000 iterations and record
all the results. The experiment is done for two different settings: 1. all units have equal
chance of being involved in an interaction, and 2. some units have higher chance and some
units have lower chance. Setting 1 is a simple setting that is likely to happen in designed

experiments, while setting 2 is a more real-world setting (e.g., some people are more isolated
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Figure 5.10: General case: interaction bias size vs. sample size with total interaction number

fixed.

and some people are more social).

Results: The results are in the plots and tables below.

Table 5.1: Restricted additivity & setting 1. Table 5.2: Restricted additivity & setting 2.

ORI SUBS ORI SUBS
mean 3.75  3.00 mean 3.74 2.90
var. 5.15 12.46 var. 959 5.14

In both settings, SUBS has better mean than ORI, which is consistent with the results in
this paper, since SUBS is expected to be bias-free while ORI is not. However, for setting 1
where all units have the same interaction chance, SUBS has a larger variance than ORI. The
large variance is mainly due to sample size issues. In setting 1, SUBS on average selected

22.363 units for each iteration, while ORI had many more available units: it used all 100
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Figure 5.11: Comparison of ORI and SUBS, without restricting sample sizes.

units. So I also tested the results estimated if they had the same sample size. The results

are in the following plots and tables.

From the results comparing ORI and SUBS with the same sample size, we see that
SUBS subsumes ORI in both settings, and for both mean and variance. Note that the
current version of SUBS is a basic one that greedily selects units, which is unlikely to select
the largest bias-free subset. It is straightforward to develop efficient algorithms that can
select subsets such that more number of samples are used. This would make it comparable
to the sample size and substantially improve the performance. One candidate algorithm

is provided in the appendix. In addition, as I have shown, if the units vary a lot in the
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Figure 5.12: Comparison of ORI and SUBS, with same sample size.

possibility of involved in an interaction, SUBS is also able to select more units (~ 44 vs.

~ 22 in the experiments).

5.6.2.2 General Non-parametric with Interactions

For the non-parametric case, the bias terms are multiplied instead of added, and the TACE

is set to 6. The results are in Tables 5.5 and 5.6. The histograms are in the appendix.

I omit the comparison of the results obtained if the sample size were the same since SUBS

already has better variance in this case even with smaller sample sizes.
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Table 5.3: Restricted additivity & setting 1, Table 5.4: Restricted additivity & setting 2,

with same sample size.

ORI SUBS
mean 3.64 2.97
var. 23.12 11.51

Table 5.5: Non-parametric & setting 1.

ORI SUBS
mean 1602.86 5.98
variance 318153430.56  5.82

5.7 Summary

with same sample size.

ORI SUBS
mean 3.78 3.02
var. 22.79 5.34

Table 5.6: Non-parametric & setting 2.

ORI SUBS
mean 5H87.52 5.98
variance 2632262981.40 4.81

The main points of this chapter are as follows. I first developed non-parametric interaction

framework for analyzing bias induced by non-IID data in estimating causal effects. I showed

that in non-parametric models bias is inevitable given non-IID data. Next, I derived for

restricted additivity models, the graphical condition where blindly applying IID methods

would result in bias, which is existence of deflecting or reflecting bias structures. Between

these, reflecting bias e.g., X; — Y; — Y] is the more harmful one. I then developed debiasing

procedures for both the non-parametric setting and the restricted additivity setting. Finally,

I ran simulated experiments to test the proposed debiasing procedures for various setups.

57



CHAPTER 6

Causal Identification under Partial Interference

6.1 Introduction

While interactions among subjects can complicate causal identification, sometimes it may be
defensible to assume that certain causal effects apply equally to each subject. For example,
a person getting vaccinated reduces the chance of them getting a contagious disease, and
in turn reduces the chance of people around them getting the disease. However, the effect
of vaccination on one’s own chance of getting the disease might be assumed to be same. A
person who smoke can affect the health condition of people who live together with them,
such effect might be the same as how this person is affected by other smokers. I refer to such

equality of effects as equality constraints in the following text.

Currently there is no known efficient algorithm that is able to systematically exploit such
equality constraints for identification.! While in the past few decades significant progress has
been made in developing efficient identification algorithms for linear causal models [BP12,
FDD12, CKB17, WRD18, KCB19, KCB20], such techniques can only systematically handle
two types of assumptions encoded in a causal diagram: (i) the absence of a direct effect

between certain variables; and (ii) the absence of association between error terms.

As a result, the current literature handling equality constraints has mostly worked with

ad-hoc structures on a case-by-case basis. For example, [KS19] discuss the gain-score method

1One could use methods from computer algebra [GSS10], but these are often computationally intractable,
making it practically infeasible for models larger than 4 or 5 nodes.
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for solving certain models; [Chal3, Chal9] provides a more general method in which difference-
in-differences is a special case, but still restricted to few cases; and while [CPC18] demon-
strate that benchmarking in sensitivity analysis can be reduced to an identification problem

with equality constraints, they only do so for specific model structures.

In this chapter, I show how to utilize equality in causal effects to handle causal iden-
tification with non-IID (interacting) subjects. The proposed identification method can be

applied to real-world applications other than the non-IID settings.

6.2 Interference

A common assumption made when dealing with non-1ID data is partial interference. Partial
interference is a specific type of interference that splits the population into “blocks” (usually
with the same number of units per block) such as, for instance, a household [Sob06, Ros07,
HHO08, TV12]. [OV14] demonstrate how interference in such cases can be represented and
solved graphically. Partial interference assumes that interactions only occur between two
units that belong to the same block. In addition, partial interference requires corresponding
units in different blocks to satisfy the “identical” condition in IID. Thus partial interference

methods assume “block IID,” which is weaker than “unit IID” assumed by traditional causal

Figure 6.1: The assumption that x; and x5 have equal effects on y3 allows the identification

of Aziys, Azoys, and Ag,y,. Bidrected edges between other z; and y; omitted for clarity.
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methods.

Existing approaches handling interference usually do not handle unobserved confounders,
which complicates identification and, in some cases, makes it impossible. Luckily, if equality
constraints can be defended, they can help identification even under the presence of con-
founding. For instance, perhaps one could argue that the effect of the treatment on the
outcome should be equivalent for subjects within the block. Alternatively, one could also
surmise that effects of one subject on another subject (known as spillover effects) are similar

within the block.

Figure 6.1 graphically depicts the interference structure within a block [OV14], where
three subjects are interfering with one another. In this case, x1, x2, and x3 represent treat-
ments for different subjects, and ¥, y2, and y3 represent their outcomes; z and t are two
instrumental variables (e.g, randomized incentive for taking the treatment) applied to the
whole block (e.g, the household). Here, if one posits that the effects of z; and x5 on y3 are
A and A

the same, this enables the identification of A, y,,

Z2Y39 T3Y3 -
Of course, such strict equality may not always be assumed. In these cases, one could relax

the degree of equality, and obtain bounds on the causal effects instead of point identification.

6.3 Problem Setup

For the example presented in the previous section, the identification of causal effects of in-
terest only becomes possible when equality amongst certain structural parameters is known
a priori. In this section, I formally define the problem of identification using equality con-

straints.

I first define C-identifiability, denoting identifiability of model parameters of a linear
SCM, M, given a set of external constraints C', beyond those already induced by the causal

graph G.
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Figure 6.2: Numerical example of C-identifiability. In this model, \,. and \,. are not
identified just with the constraints provided by the DAG. However, they become identified
if the constraint cA,. + Ape = 0 is added.

Definition 20 (C-identifiability). Let M be a linear SCM (as specified by G) and let C' be
a set of additional constraints on the parameters of M. A causal quantity 6 is said to be

C-identifiable if 0 is uniquely computable from C' and the covariance matrixz of M.

In this paper, I consider the problem of C-identifiability specifically when C'is composed
of equality constraints on two structural parameters where one parameter is a multiple of
the other. I restrict attention to two edges because this is the type of equality constraint of

interest in the applications cited, and also the main focus of our results in Section 6.5.
Formally, we have the following definition.

Definition 21 (External Equality Constraint). An external equality constraint for a model

M s a constraint of the form
091 + 92 = 07 (61)
where ¢ is a constant, and 6, and 65 are structural parameters of M.

Here, the two structural parameters #; and 65 can be two directed edges, two bidirected
edges, or one directed edge and another bidirected edge. In fact, benchmarking in sensitivity
analysis involves constraints where directed edges are equal to bidirected edges. I discuss

that in detail in Section 6.6.

[ use an example to illustrate the idea of C-identification. Suppose we are given the SCM

of Figure 6.2. If we do not know the value of any of the edges, and we are given only the
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graph as well as the correlations among the three variables, then neither \,. nor \y. can be
identified. To demonstrate, Age, Ape, Eaps Epe could be 0.4,0.25,0.4,0.41 respectively, and this
model implies the same correlations as those of the SCM of Figure 6.2 (this can be easily
checked using Wright’s rules). However, if we know the equality constraint between A.¢, Ape,
i.e., =5/3X\sc + Ape = 0, then we can uniquely solve for A,. and Ap.. Thus, A, and Ay are

not identifiable but are both C-identifiable with C' being —5/3\,. + Ay = 0.

As we see, the goal is to find cases where the provided external equality constraints can
supplement the limited information we have from the graph G alone, and thus help with
the identification of more structural parameters of the model. As I discuss next, I tackle
this problem by finding the linear constraints induced by the graph G and combining them
with the external equality constraints C'. This allows the construction of a system of linear

equations that can solve for the parameters of interest.

6.4 Searching for Graph-Induced Linear Constraints

Given a DAG G and the covariance matrix of the modeled variables, some relationships
between structural parameters can be deduced. H