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ABSTRACT OF THE DISSERTATION
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by
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Causal inference studies the causal relationships between factors by modeling the underlying

data generating process. A common goal in causal inference research is to answer what the

effects are of the treatments on the outcomes. Traditional causal inference techniques assume

data are independent and identically distributed (IID) and thus ignore interactions among

single units. However, a unit’s treatment may affect another unit’s outcome (interference),

a unit’s treatment may be correlated with another unit’s outcome, or a unit’s treatment and

outcome may be spuriously correlated through another unit. Those unit-level interactions

are referred to as generalized interference. To capture such nuances, this work proposes a

graphical model, “interaction models,” which can model the data generating process of data

with generalized interference using causal graphs. In this work, I focus on the estimation of

causal effects given data with generalized interference, and use interaction models to conduct

a systematic analysis of the bias caused by different types of interactions among units. I

start with assuming linearity and present the graphical framework, interaction models. The

framework applies to a more general setting where interactions can occur between any units.

I derive theorems to detect, quantify, and remove the interaction bias. Those results rely

ii



on knowing the exact interaction patterns between units. Next, I show how this assumption

can be relaxed and present results for when the exact interaction pattern is unknown, where

bounding or unbiasedly estimating the causal effects might be possible. I then show how

the interaction model framework and the bias analysis results can be generalized for non-

parametric models. Finally, I will discuss a special setting where interactions only occur

between separated “blocks,” so non-IID data can be reduced to block-IID data.
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CHAPTER 1

Introduction

1.1 Causality

Understanding cause-effect relationships is an important task in many scientific disciplines,

including engineering, epidemiology, economics, social science and medicine. Engineers want

to find out the reason of a defective product. Medical researchers want to find out the

effect of a drug. Politicians want to find out the effect of a policy. Such questions are

important in our daily lives, too. For instance, I want to know what might have caused

my migraine today. Some causal questions can be answered through controlled experiments.

However, if controlled experiments are not possible due to cost or ethical concerns, some

causal knowledge can be obtained from past experience. For instance, if among most of the

occurrences of my migraine, I stayed up late the night before, I may conjecture that staying

up late was the cause of my migraine.

Humans subconsciously use causal assumptions to answer causal questions. With the aid

of internet and modern computing resources, we are able to learn not only from personal ex-

perience, but also from the experience of other people across the world. However, intelligent

machines usually cannot infer causal directions or derive causal conclusions by only looking

at the data. This is because the data only convey correlation between migraine and staying

up late, but do not imply causation without further assumptions. This limitation cannot be

overcome by using more data. A recent intelligent chatbot, ChatGPT, learns from massive

1



text datasets including billions of words and characters1, and can answer questions from

various domains. Such technology, although much more powerful than humans in finding

correlation patterns, still stumbles when it comes to causal reasoning.

Numerous causal reasoning frameworks and approaches have been developed and im-

proved over the past three decades. Those works have provided solutions to different aspects

of causal reasoning including identification (reducing causal effects to observed quantities),

discovery (learning causal structures), counterfactual (answering “what if things had been

different”), missing data, external validity, assessment of direct and indirect effects, etc.

[Pea19]. However, one important aspect that has not been systematically studied is the

violation of IID assumptions (introduced next), and is the main focus of this work.

1.2 Independent and Identically Distributed (IID)

Many of the algorithms and techniques used in empirical sciences, including causal reasoning

and machine learning, rely on the Independent and Identically Distributed (IID) assumption

[Sch22, Pea09, IR15, Rub78]. Data are IID when each sample is generated through the same

data-generating process, and the manner in which each sample is generated is independent of

other samples. The graphical model framework uses graphs to represent causal relationships

among variables, and assumes IID to explain the data observed. The potential outcomes

framework assumes SUTVA (Stable Unit Treatment Value Assumption), which disallows the

outcome of any unit to be affected by the treatment of other units. The IID assumption is

convenient because it simplifies both the the modeling process (information about interaction

patterns need not be collected, stored or modeled) as well as the underlying mathematics (by

facilitating tractable solutions to hard problems [Cao22]). However, IID does not hold true

in many real-world datasets. Typical examples include interactions among users in social

media and spreading patterns of infectious diseases such as covid or habits such as smoking

1The number came from the answer by ChatGPT itself.
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[FSY22, CMM22, Cao14].

1.2.1 Real-World Examples of IID Violation

Coupon Effectiveness Problem: A company plans to send coupons at different discount

rate for their product to customers. Suppose they want to analyze the effect of a discount

rate on sales volume. Specifically, they want to know if sending a coupon of certain discount

rate to an average potential customer would increase the customer’s chance of purchase.

Assuming that observational data are available in the form of (DiscountRate, Purchase)

pairs from 50 customers. The conventional way would be to construct a causal model,

DiscountRate→ Purchase and estimate the causal effect of interest by regressing Purchase

on DiscountRate, using the 50 data pairs.

However in reality, there might be interactions between customers. Suppose customer i

received a coupon, purchased the product, and advertised it on the social network. Customer

j, seeing i’s post, purchased the product without receiving a coupon. In another scenario,

customers k and l live together, and k received a coupon. k and l both used k’s coupon

for purchase. Such scenarios might make us wrongly conclude that the discount rate of the

coupon is not so attractive, since many customers still purchased the product without a

coupon. As a result, we would misestimate the causal effect.

Vaccination Problem: Suppose we are interested in studying the effectiveness of Covid-

19 vaccines. Specifically, we are interested in the causal effects of vaccine doses, V , on the

severity of sickness S. A naive method would involve building a causal model on V , S,

and other related factors, and estimating the causal effect of V on S using available data.

However, this method may result in inaccurate estimation primarily because individuals

in the sample are not isolated from each other in the pandemic setting. Below are a few

instances of IID violation ([ETP22]).

Case 1: The vaccination V of a unit i, (Vi), decreases their viral load, Li, which in turn
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decreases the transmission rate of the virus, and hence decreases the severity of sickness S

of another unit j, (Sj), who comes into contact with i. Vi causally affects Sj.

Vi → Sj

Case 2: Vi is affected by the area A that i lives in, and a contact j who lives in vaccine

deprived areas and areas with a higher incidence of Covid-19 infection is more likely to get

sick. Vi and Sj are confounded.

Vi ↔ Sj

Case 3: Si, determines whether or not i is quarantined and thus affects whether i transmits

the disease to another unit j. Si causally affects Sj.

Si → Sj

Such interactions between units plague both observational and experimental studies. If

the latter is performed in a controlled environment where subjects are isolated from each

other, the results would not be valid for the target environment, where subjects affect each

other, and vice versa. Note that this problem is also not resolved by increasing sample size.

1.2.2 Generalized Interference

One line of existing work that analyzes interactions between units is interference [Cox58].

Interference holds when treatment of unit i (discount rate of i’s coupon, vaccination dose of

i, . . . ) causally affects the outcome of another unit j (j’s purchase, sickness of j, . . . ). This

is modeled by the existence of a causal pathway from i’s treatment to j’s outcome. However,

interference is not the only type of interaction between units that can cause biased estimates.

In Case-2 above, Vi and Sj are confounded and Vi is not a cause of Sj. Another example

is an instance where unit i’s treatment affects their own outcome through an attribute of

unit j i.e., Vi → Wj → Si, for some Wj /∈ {Sj, Vj}. In both these cases units interact
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with each other in a way that might bias the estimation of causal effects although they may

not typically be classified as interference. In spite of the prevalence of such interactions in

applications related to health care, infectious diseases, social networks, and ad placements,

they have not been systematically studied. It is this deficiency that this work attempts to

overcome. In particular, I aim to model and develop methods for handling interactions not

limited to interference, which I call “generalized interference.”

1.3 Problem Setting and Preliminaries

The scenarios exemplified above raises several questions regarding the computation of causal

effects given data with generalized interference. How can we model different types of inter-

actions among units in the population? Under what conditions can we safely ignore unit

interactions with the guarantee that assuming IID (and applying existing estimation tech-

niques) will result in negligible bias? If assuming IID would yield a biased estimate, then

how can we get rid of this bias?

1.3.1 Average Causal Effect

In this work, I am primarily interested in the estimation of ACE for data with generalized

interference. Average causal effect (ACE), also named as Average Treatment Effect (ATE)2

[Rub77, Hol88] is often used to represent the size of causal effects. The ACE of a treatment

X on an outcome Y represents how much Y is expected to change if X is intervened to

change from one value to another value. Given a causal model M , the average causal

effect (ACE) of X = t vs X = c (t and c are constants) on Y for k units is defined as

ACEXY = 1
k

∑
i(YiXi=t − YiXi=c). ACE is defined under the assumption that Yi depends

only on factors of unit i (including Xi) [Hol88].

2For consistency, I use ACE to refer to both ACE and ATE.
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1.3.2 Linear and Non-Parametric Models

I will start the discussion by developing the framework for acyclic linear structural causal

models (SCMs) [Wri21, Pea09], since the generalized interference problem is simpler in the

linear case. Formally, linear SCMs are represented by a system of linear equations X =

ΛTX + ϵ where X is a vector of observed variables, ϵ is a vector of latent variables, and Λ is

an upper triangular matrix of direct effects, whose ijth element, λvivj gives the magnitude of

the direct causal effect of vi on vj. In linear models, the error term ϵ is commonly assumed to

be normally distributed with covariance matrix E . This means that the covariance matrix of

the observed data Σ := XXT fully characterizes the observational distribution. This matrix

can be linked to the underlying structural parameters through the system of polynomial

equations Σ = XXT = (I − Λ)−TE(I − Λ)−1, and the problem of causal effect estimation

reduces then to finding the elements of Λ that are uniquely determined by the above system.

For the linear case, without loss of generality, I assume t = c + 13. In linear models,

ACE of X on Y can be identified as βY X , the linear regression slope of Y on X, if there is

no backdoor (non-directed open paths) between X and Y [PGJ16, Pea17].

Later in the discussion, I will generalize the framework to non-parametric models. In

real-world applications, relationships between variables might not be perfectly linear. For

example, certain drug can interact with a vaccine to boost or weaken its performance. In a

non-parametric model, the value of a variable Y is determined by the values of its parents

by a function f , i.e., Y = f(Pa(Y )). Contrary to linear models, non-parametric models do

not assume any function f needs to follow any parametric forms.

1.3.3 Partial Interference

Recent years have witnessed a rise in papers on interference that employ graphical models

([OV14], [SS18], [NPB20], etc.). These works rely on partial interference which divides units

3If t ̸= c+ 1, the ACE is multiplied by the constant (t− c).
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into equal-sized blocks under the assumption that interactions occur only within a block

but not across different blocks. Partial interference is useful in simplifying non-IID data to

“block-IID” data. Such methods do not generalize to cases where units are allowed to interact

with anyone, or when each block does not have the same structure. Nonetheless, assuming

partial interference strengthens causal identification power that goes beyond current state of

the art. I will present a causal identification method under the partial interference setting

in Chapter 6.

1.4 Thesis Outline

This thesis is organized as follows. In Chapter 2, I define generalized interference, and

introduce a new graphical framework, the interaction models, for modeling generalized in-

terference. In Chapter 3, I define the non-IID version of average causal effects, named True

Average Causal Effects (TACE), and present theorems for generalized interference bias de-

tection, quantification, and removal for TACE. In Chapter 4, I discuss the case where specific

interaction patterns are unavailable, and present results for bounding and estimating TACE.

In Chapter 5, I derive an extension of the interaction models and generalize bias analysis

results to the non-parametric setting. In Chapter 6, I propose a partial-interference-based

causal identification method to utilize equality information between units that can be ap-

plied to solve many diverse problems in addition to non-IID data. Finally, in Chapter 7, I

recapitulate major contributions and conclude the thesis.
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CHAPTER 2

Linear Interaction Models

2.1 Introduction

In this chapter, I first formally define generalized interference, which is the type of IID

violation that this work focuses on. Existing causal models usually make the IID assumption,

where each unit is assumed to be the “same.” Such models are incapable of modeling

interactions between units, which is required in order to approach the non-IID problem. I will

next present a new graphical model, named interaction models, for this purpose. Interaction

models are first developed assuming linearity, where the total effects are simple summations

of different components, so that the effects can be naturally separated. In Chapter 5, I will

discuss how the linearity assumption can be relaxed.

2.2 Generalized Interference

In a traditional causal modelM(G,S) ([Pea09], Definition 7.1.1), G is the causal graph (e.g.,

Figure 2.1) and S is the set of structural equations of variables (e.g., Equations 2.1-2.3)1. I

refer to the variables in a traditional causal model as generic variables. X,C, Y in Figure 2.1

are generic variables. The structural equations 2.1-2.3 represent causal relationships among

the variables. An explicit variable is similar to a generic variable except that it represents

an attribute/event of one specific unit (or sample or individual). For example, “treatment

1In the remaining text, unless specified, the independent random error variables such as UX , UY will be
omitted for simplicity.
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(X)” is a generic variable, and “the treatment of unit i (Xi)” is an explicit variable.

X

Y

C

Figure 2.1: Traditional

causal DAG.

C = UC (2.1)

X = f(C,UX) (2.2)

Y = g(X,UY ) (2.3)

When IID is violated, the corresponding variable (treatment/outcome/etc.) of different

units in the sample may have different data generating processes. The type of non-IID

violation that I focus on in this work is named as generalized interference, which I formally

define as follows.

Definition 1 (Generalized Interference). Generalized interference between two units i, j in

a sample is defined as an explicit variable of i being caused by an explicit variable of j or

vice versa.

A traditional interference is defined as the treatment of a variable causes the outcome

of another variable. In generalized interference, the interaction is generalized to be between

any variables of two different units, not limited to the treatment and the outcome. Such

interactions usually make units non-IID. For example, if the sickness of i is affected by the

viral load of j (Lj), then the sickness of i (Si) and the sickness of j (Sj) are correlated

through the common factor Lj. As a result, Si and Sj are not independent. They are also

likely not identical, unless we assume Si is also affected by some Lk in the same way.

Note that generalized interference is not the only way non-IID can be violated. The

data generating processes of the corresponding variable of two units (e.g., Si and Sj) can

be different even without interactions. Two units might have different characteristics (e.g.,

health conditions) that cause their corresponding variables to have different probability dis-
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tributions. However, this is beyond the scope of this work, while in this work I limit the

attention to non-IID caused by generalized interference.

2.3 Graphical Modeling of Generalized Interference

In this section, I define a graphical model derived from traditional causal models for modeling

generalized interference.

Definition 2 (Interaction modelM∗(G∗, S∗)). An interaction model,M∗(G∗, S∗), is a causal

model where G∗ is the interaction network and S∗ is the set of structural equations defining

the data generating process of the observed explicit variables. An interaction network, G∗,

is a directed acyclic graph with each node representing an explicit variable and each directed

edge Ai → Bj representing Ai causes Bj.

X1

Y1

X2

Y2

X3

Y3

X4

Y4

C4C3C2C1

Figure 2.2: Interaction network with 4 units

and 12 explicit variables (Xi, Yi, Ci for i =

1, 2, 3, 4).

X1 = UX1 (2.4)

Y1 = X1 + Y2 + 3C1 + UY1 (2.5)

Y2 = 2X2 − C1 +X3 + UY2 (2.6)

. . .

An example of interaction model M∗(G∗, S∗), is the interaction network, G∗, portrayed

in Figure 2.2 and the structural equations S∗ (part of) specified beside it; UVi
denotes the

unobserved exogenous error of an explicit variable Vi. Observe that interaction networks

allow edges between explicit variables of the same unit (e.g., X1 → Y1), as well as two

distinct units (e.g., C1 → Y2).

We are now ready to define an isolated interaction model for an interaction model M∗.

It is the “ideal” model constructed from M∗ by eliminating all interactions between units.
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Definition 3 (Isolated interaction model IM∗(IG∗, IS∗)). IM∗(IG∗, IS∗) is the Isolated

interaction model of an interaction modelM∗(G∗, S∗) if IM satisfies the following conditions:

1. IG∗ = G′ where G′ is the graph obtained by removing from G∗ all edges Ai → Bj,

i ̸= j,

2. IS∗ = S ′ where S ′ is the set of equations obtained by removing from each equation

Xi = f(Pa(Xi))
2 in S∗ all terms containing any Yj, ∀j ̸= i.

For example, the interaction model M∗(G∗, S∗) has Figure 2.2 as G∗, and Equations

(2.4-2.6) as part of S∗. The isolated model for M∗ is denoted IM∗(IG∗, IS∗). IG∗ is given

in Figure 2.3 below. And IS∗ for Equations (2.4-2.6) are given by Equations (2.7-2.9).

X1

Y1

X2

Y2

X3

Y3

X4

Y4

C4C3C2C1

Figure 2.3: Interaction network with 4 units.

X1 = UX1 (2.7)

Y1 = X1 + 3C1 + UY1 (2.8)

Y2 = 2X2 + UY2 (2.9)

2.4 Symmetry Assumptions

In real-world applications, we will have at our disposal limited (usually just one) observations

corresponding to a unit which in turn will make it hard to draw useful conclusions if the

model is completely arbitrary. In traditional causal inference techniques this is not a problem

since they assume IID, which is assuming for each variable, the distribution is the same and

independent for all units. In general, it is nearly impossible to obtain meaningful results

given data on units that behave completely differently. So it might be reasonable to assume

that the unit model for each unit would behave the same way if the units were isolated from

2Pa(Xi) denotes the parents of Xi in G∗.
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each other. While we do not make strong assumptions such as IID, we need to make weaker

symmetry restrictions (definitions 4, 5), in order to quantify bias and identify ACE. We

only require some of the variables are IID instead of all.

Definition 4 (Balanced interaction model M∗(G∗, S∗)). Let M∗(G∗, S∗) be an interaction

model with isolated model IM∗. M∗ is a balanced interaction model if IM∗ has the same

unit-model (IM∗
i (IG

∗
i , IS

∗
i )) for every unit i.

Let G∗ be the graph in Figure 2.2 and S∗ be the set of equations (2.4-2.6) corresponding

to M∗(G∗, S∗). IG∗ in Figure 2.3 is the graph and IS∗ are the equations (2.7), (2.8) and

(2.9) that correspond to IM∗, which is the isolated model ofM∗. The unit-graph for unit 1 is

different from unit 2. Also, the structural equations for Y1 and Y2 of the isolated interaction

model (Equations (2.8) and (2.9)) are different. Hence, M∗ is not a balanced interaction

model.

X1

Y1

X2

Y2

C2C1

(a) X satisfies ASDC.

X1

Y1

X2

Y2

C2C1

(b) X does not satisfy ASDC.

Ci = UCi
, i ∈ {1, 2}

Xi = Ci + UXi
, i ∈ {1, 2}

Y1 = 2X1 − C1 + Y2 + UY1

Y2 = 2X2 − C2 + UY2

(c) Structural equations for (a)

Figure 2.4: Two balanced interaction networks and the structural equations for (a)

For another example, the interaction model M∗ is balanced where G∗ is the graph in

Figure 2.4(a), and S∗ is the set of equations given in Figure 2.4(c).

Remark 1. Note that a balanced interaction modelM∗ does not imply that data generated by

it are IID. Being balanced only requires all units share the same causal relationships within

each unit itself, but permits interactions and effects from other units. For example, the
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parents of explicit variables Yi and Yj, i ̸= j can be different in G∗ i.e., Yi can be caused

by a set of variables Sk corresponding to unit, k, and Yj can be caused by a distinct set of

variables Tk. However, for M∗ to be balanced it is required that for all distinct units i and

j, all Yi have the same relationship with i’s explicit variables as Yj with j’s variables.

We further note that if M∗∗ is balanced then all the unit-models IM∗
i (IG

∗
i , IS

∗
i ) in

Definition 4 are identical (with no edges between IG∗
i and IG∗

j), and can be succinctly

represented by a (single) causal modelM(G,S) where G and S can be constructed from any

IG∗
i and IS∗

i by replacing explicit variables with generic variables.

In addition to the assumption that the isolated components being the same, it would be

helpful if we also have symmetrical assumptions on the underlying distributions of specific

sets of variables. For example, it is reasonable to assume all units’ treatments have the same

distribution, i.e., for any treatment X = x, all units have an equal chance of getting the

treatment X = x.

Definition 5 (Ancestral same-distribution condition (ASDC)). In the interaction network

G∗ a balanced interaction model, generic variableW to satisfies the ancestral same-distribution

condition (ASDC) if for all unit i, 1) Pa(Wi) satisfies ASDC, and 2) Pa(Wi) ⊆ V(i), and 3)

for any different unit j ̸= i, Pa(Wi) and Pa(Wj) have the same set of generic variables, and

their exogenous errors UWi
and UWj

have the same distribution. (When i=j, the condition

is automatically satisfied.)

For example, in Figures 2.4(a) and 2.4(b), X satisfies ASDC in the former (assuming

the condition on exogenous errors is satisfied) but not in the latter, since in the latter

Pa(X1) ̸= Pa(X2). ASDC implies IID as stated in the following lemma.

Lemma 1. If W satisfies ASDC, then any two explicit variables Wi and Wj are IID (Inde-

pendent and Identically Distributed.)
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Remark 2. The descendants of an ASDC variable need not be IID. For example, in Figure

2.4(a), X satisfies ASDC, and Yi and Yj are descendants of Xi and Xj. Yi and Yj have

different sets of parents, making their distributions different, so Y is non-IID.

Finally, I define the notion of a generic network, which is the expected causal DAG if all

interactions are removed.

Definition 6 (Generic Network). The generic network for a balanced interaction model

M∗(G∗, S∗) is defined as the the shared unit-graph for the isolated model IM∗ of M , with

the nodes relabeled as the corresponding generic variables.

For example, given the balanced interaction modelM∗ with interaction network as Figure

2.5 left, the generic network is defined as the causal DAG in Figure 2.5 right.

X1

Y1

X2

Y2

C2C1

X

Y

C

Figure 2.5: A balanced interaction network (left) and its corresponding generic network

(right).

2.5 Discussion and Summary

In this chapter, I defined the notion generalized interference, which is the problem focus

of this work. I defined a new graphical model, named interaction models, for handling

generalized interference in data.

One of the most studied concepts related to interactions among units is interference

[Cox58]. Majority of literature in empirical fields assume no-interference. In fact, SUTVA

is a common assumption in causal inference [Rub78]. Recent years have witnessed a rise in
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papers on interference that employ graphical models. These include [OV14] that was the first

to model interference using DAGs, [SS18] that modeled interference using chain graphs which

permits modeling unknown interactions between units and [BMS20] that proposed structure

learning methods for chain graphs. These works rely on partial interference which divides

units into equal-sized blocks under the assumption that interactions occur only within a

block but not across different blocks. In addition, partial interference requires corresponding

units in different blocks to satisfy the ‘identical’ condition in IID. Thus partial interference

methods assume “block IID,” which is weaker than “unit IID” assumed by traditional causal

methods. However, in many domains such as infectious diseases, it is unrealistic to assume

that the samples in the dataset can be divided into blocks that satisfy the requirements

for partial interference. For instance, if blocks pertain to families then all families may not

have the same number of members and individuals in the family are likely to interact with

people outside the family. The framework presented in this chapter is not limited to partial

interference.

Some related works demonstrating application values include [NPB20], which developed

methods for identification and estimation of multiple queries under conditions of interference

and homophily, and applied the results to the problem of ad-placements. [Sob06] was the

first to notice the effect of interference in the housing mobility problem, and proposes causal

estimands for this application.

[AS17], [SA17] modeled general interference (without assuming partial inference) by con-

structing a function to define a unit’s exposure level on the number of treated neighbors they

have. The methods are less restricted than partial interference methods, and allow units to

be affected by any number of neighbors. However, they are limited to interference and do

not handle other forms of interactions.
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CHAPTER 3

Interaction Bias of the Causal Effect

3.1 Introduction

In this chapter, I conduct a systematic analysis on the interaction bias resulting from using

IID methods on generalized interfering data. I will start by formally define the query of

interest and the interaction bias. Next, I will present theoretical results on quantifying,

detecting and removing the interaction bias. Finally, I test the performance and coverage of

the proposed methods through simulations and a case study.

3.2 Quantity of Interest: True Average Causal Effect (TACE)

I generalize traditional ACE to the non-IID setting. Examine the interactions depicted in

Figure 3.1.

Xi

Yi

Xj

Yj

Figure 3.1: An example interaction: Xi causes Yi through Yj.

Unit i’s treatment Xi affects its outcome through unit j’s outcome Yj. This effect is not

part of the effect that is the interest of this work, since it results from interactions between
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units. Hence, Xi → Yj → Yi is considered a “spurious” causal path. In other words, I am

interested in computing the ACE of a unit’s treatment on their outcome, excluding the effects

transmitted via spurious paths from its neighbors/contacts. In an experimental setting,

interactions might be eliminated by isolating all subjects. In an observational setting or an

experimental setting where subjects are not isolated, the data are non-IID. I am interested

in computing the average causal effect of treatment on outcome as if all units were isolated.

The formal definition of this quantity of interest is presented below.

Definition 7 (True Average Causal Effect (TACEXY )). Let M∗ be an interaction model.

True average causal effect of X on Y , denoted as TACEXY , is defined as the ACE of X on

Y in the isolated interaction model IM∗ corresponding to M∗.

TACE is the non-IID version of ACE and is the same as ACE in a traditional causal

model where all samples are isolated. Again, without loss of generality, I assume the differ-

ence between the treatment value and the outcome value is 1, i.e. treatment is X = c + 1

and the outcome is X = c.

3.3 Defining Interaction Bias for TACE

Many machine learning algorithms including those that employ causal techniques assume

that data are IID ([Sch22], section 3). In other words, the theoretical and performance

guarantees of these algorithms are based on data being IID. As such it would be useful

to determine conditions under which an algorithm meant for IID data can be applied on

non-IID data with the certainty that the resulting bias would be negligible.

Interaction bias is the bias induced by falsely assuming IID on datasets with interactions.

We now formally define the interaction bias for a balanced interaction model.

Definition 8 (Interaction Bias). Let balanced interaction model M∗ be the true model that

generated the (available) non-IID dataset D. Let Q denote the query of interest and let Q∗
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be its true value. Let Γ denote an algorithm that outputs an unbiased estimate of Q given

data that are IID and the causal graph that generated the IID data. Let G† denote the unit

default interaction graph for any unit in M∗, with the explicit variables are relabeled as the

corresponding generic variables. Let Q̂ be the estimate computed by Γ using G† and D as

input. Interaction bias is given by ||Q∗ − E[Q̂]||.

For example, given the data D on two variables X and Y and assuming IID, with G† as

X → Y , the IID method would output Q̂ as the regression of Y on X. However, if D is

generated from a non-IID process, then G† cannot perfectly characterize the data generating

process, and the estimation using G† will be biased. The resulting bias is defined as the

interaction bias.

X1

Y1

X2

Y2

X3

Y3

Figure 3.2: Interaction bias might cancel

out.

Y1 = 2X1 (3.1)

Y2 = 2X2 −X1 +X3 (3.2)

Y3 = 2X3 (3.3)

With certain parametrizations of the structural equations, the bias might appear to be 0,

while indeed it is an “accidental cancel out.” We do not want to count this case as unbiased

because it is unlikely to occur. The “unbiased” property discussed in this work will always

refer to unbiased almost everywhere, which we define below.

Definition 9 (Unbiased almost everywhere). θ defines the parametrization (structural equa-

tion functions) of the interaction model. An estimator Â is unbiased almost everywhere if

E[Â] converges to the true value of A when sampled infinite times, except when θ resides on

a set of Lebesgue measure zero.

For example, given an interaction model with network Figure 3.3 and structural equations

(3.4)-(3.6), the interaction bias is calculated to be 0 by the definition (see appendix for the
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X1

Y1

X2

Y2

X3

Y3

Figure 3.3: Interaction bias might cancel

out.

Y1 = 2X1 (3.4)

Y2 = 2X2 −X1 +X3 (3.5)

Y3 = 2X3 (3.6)

X1

Y1

X2

Y2W1 W2

Figure 3.4: Interaction bias is 0 not due

to accidental cancellations.

Y1 = 2X1 (3.7)

Y2 = 2X2 +W1 (3.8)

full derivation). However, if the parametrization (function) changes to Y2 = 2X2−2X1+X3,

then the interaction bias is not 0. This implies that the bias being 0 is an “accidental

cancel out,” since it occurs only for parametrizations satisfying certain constraints. Hence,

this interaction model is not considered unbiased almost everywhere. On the contrary,

given an interaction model with network Figure 3.4 and structural equations (3.7)-(3.8), the

interaction bias is always 0 regardless of the parametrization. For example, changing the

structural equation to Y2 = 2X2 + 2W1 still results in 0 interaction bias. So this model is

unbiased almost everywhere.
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3.4 Quantifying, Detecting and Removing Interaction Bias for

TACE

3.4.1 Quantifying Bias

I define the two main types of problematic graphical structures in a linear interaction network

that introduces bias in the estimation of TACE.

Xi

Yi

Xj

Yj

(a) Xj causes Yi through a directed path (de-

flecting bias).

Xi

Yi

Xj

Yj

Cj

(b) Xj and Yi are confounded (deflecting

bias).

Xi

Yi

Xj

Yj

(c) Xi causes Yi through Yj (re-

flecting bias).

Xi

Yi

Xj

Yj

Ci

(d) Xi and Yi have a confound-

ing path (reflecting bias).

Xi

Yi

Xj

Yj

Cj

Zj

(e) Xi causes Yi through Cj (re-

flecting bias).

Figure 3.5: Deflecting and reflecting interaction types.

Definition 10 (Deflecting bias structure). A deflecting bias structure for TACEXY in an

interaction network G∗ is an open path between Xj and Yi for i ̸= j.

Deflecting bias structures are open paths from one unit to another unit. For example,

Figures 3.5(a) and 3.5(b) contain deflecting bias structures. The interaction network in

Figure 3.5(a) has a directed open path between Xj and Yi, and the interaction network in

Figure 3.5(b) has a confounded open path between Xj and Yi.
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Definition 11 (Reflecting bias structure). A reflecting bias structure for TACEXY in an

interaction network G∗ is an open path between Xi and Yi through some explicit variable Wj

with i ̸= j.

Reflecting bias structures are open paths that go from a unit through another unit and

back to the same unit. For example, Figures 3.5(c) and 3.5(d) contain a reflecting bias

structure. In each of them, there is an open path from Xi to Yi through Yj. In some cases,

there can be a deflecting bias structure embedded in a reflecting bias structure, as in Figures

3.5(c) and 3.5(d). However, this is not necessary. Figure 3.5(e) contains only a reflecting

bias structure (Xi → Cj → Yi) but no deflecting bias structure.

Theorem 1. Let M∗(G∗, S∗) be a balanced interaction model in which treatment variable Xi

and outcome variable Yi are not confounded by any variable in Vi, ∀i. Let D be the available

data generated by M∗ and let G† be the generic network. Let TACEXY be identifiable in G†

and be given by βY X , the regression coefficient of Y on X. Let α denote the true value of

TACEX,Y in M∗. If X satisfies ASDC then the interaction bias is given by,∣∣∣E[ ˆβY X ]− α
∣∣∣ = ∣∣∣ 1n ∑

1≤i≤n

∑
p∈P [iji]

V al(p)
σ2
Rp

σ2
X
− 1

n(n−1)

∑
1≤i≤n

∑
p∈P [ji]

V al(p)
σ2
Rp

σ2
X

∣∣∣,
where P [iji] is the set of reflecting bias structures between Xi and Yi through any explicit

variable Wj of unit j with i ̸= j, P [ji] is the set of deflecting bias structures between Xj and

Yi with i ̸= j, and Rp is the root of path p.

It follows from Theorem 1 that in a balanced interaction model in which no Xi and Yi

are confounded by any variable in Vi, the reflecting and deflecting structures are the only

two structures that will bias the identification of TACE. Note that although definition of

interaction bias (Definition 8) on TACE is for any unbiased estimator for ACE, I focus only

on the ordinary least squares estimator in this paper. This is because among the class of

unbiased linear estimators, the OLS estimator has the minimum variance [JW14].

Next I exemplify theorem 1.
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Figure 3.6: Interaction network with 4 units. The numbers represent edge coefficients.

(C1, C2, C3, C5 are omitted)

Example 1. Figure 3.6 shows an example of an interaction model with 4 units where

X1, . . . , X5 are the treatments, and Y1, . . . , Y5 the outcomes. The numbers on the edges

are the edge coefficients. C satisfies ASDC, and Ci for i = 1, 2, 3, 5 are omitted from the

graph for simplicity.

Suppose we want to estimate the ACE of X on Y as if the units were isolated: Input:

the interaction network G∗ as shown in Figure 3.6 (no parameter i.e., S∗ is not an input),

Output: the TACEXY (should equal to 2). If we estimate ACEXY ignoring the connections

between units, our estimator will be ˆβY X , with Y = {Y1, . . . , Y5} and X = {X1, . . . , X5}. This

is because ignoring the connections, the graph becomes Xi → Yi separated for i = 1, . . . , 5,

so is essentially X → Y [Pea09]. However, by Theorem 1,

|βY X − 2| = |0.3 · 0.4
5

− 1

20
· 0.5− 1

20
· 2 · 0.4− 1

20
· 0.5 · 0.4− 1

20

0.6 · 0.2σ2
C

σ2
X

− 1

20
· 2 · 0.3|

̸= 0.

Hence, the result is biased, and does not give us what we want. I show later in Theorem 2

how to compute an unbiased estimate of TACE.

3.4.2 Detecting Bias

In this section, I provide a graphical criterion resulting from Theorem 1, to detect interaction

bias.
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Corollary 1. Let M∗∗(G∗∗, S) be a balanced interaction model in which X satisfies ASDC

and TACE is identified as βY X = α in the generic network, then interaction bias exists iff

G∗∗ contains a reflecting or deflecting bias structure.

X1

Y1 B2

A2

X2

Y2

X3

Y3

C3

Figure 3.7: Interaction network with 3

units. (Other A,B,C variables including

A1, B1, . . . are omitted)

X1

Y1

X2

Y2

X3

Y3

C1 C2

Figure 3.8: Interaction network with 3 units.

(C3 is omitted)

For example, Figure 3.7 contains both reflecting and deflecting bias structures. Figure 3.8

does not contain any bias structure. So Figure 3.7 has interaction bias and Figure 3.8 does

not. Note that the interactions in Figure 3.8 do not qualify as bias structures by Definitions

10 and 11.

3.4.3 Removing Bias

Theorem 2 presents a technique for computing an unbiased estimate of TACE in cases where

theorem 1 predicts significant bias. It proceeds by applying linear regression on a set of

samples B that satisfy the condition that no bias inducing structures exist between any two

distinct units i and j. In particular, a subset of samples/units B is termed as a bias-free

subset for TACEXY if no reflecting bias structures exist for any i ∈ S and no deflecting

bias structures exist in G∗
S where G∗

S is the latent projection of G∗ on B (Definition 2.6.1,

[Pea09]). For example in figure 3.6, B comprises of units 2 & 5 and G∗
S is X2 → Y2 X5 → Y5.

However, B is not unique for a given interaction network. Another candidate for B is units

2 & 4 and the associated G∗
S is X2 → Y2 X4 → Y4. An algorithm for constructing B is
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presented in Algorithm 1, with an example and discussion in the appendix. This algorithm

starts by randomly initializing B with a sample. Then it goes through the rest of the samples

and adds a sample to B if its inclusion does not create bias structures in the resultant graph,

G∗
S.

Algorithm 1 Select a bias-free subset B from an interaction network G∗ and return the

largest subset from t iterations

Input: an interaction network G∗, iterations t

Output: the largest bias-free subset B selected from t iterations

1: function FindSub(G∗, t)

2: B = ∅

3: for i = 1, . . . , t do

4: Units = randomly sorted list 1, . . . , n

5: B = {Units[1]} (The indices for Units start from 1)

6: for i = 2, . . . , n do

7: if Units[i] has no reflecting bias structure in G∗ then

8: if Units[i] has no deflecting bias structure in G∗ with an element in B

then

9: B = B ∪ {Unit[i]}

10: B = B ∪ {B}

11: return Largest B in B

Theorem 2. Let G∗ be an interaction network. Given the conditions in Theorem 1 and B

a bias-free subset for G∗, TACEXY = E[ ˆβY X ] where the regression coefficient is calculated

using only samples in set B.

Note that bias-free subset of samples B used in Theorem 2 is not always IID. While I

insist that no reflecting or deflecting bias structures exist in G∗
S, I do not restrict other forms

of interactions among these samples. For example, in Figure 3.8, Units {1, 2, 3} constitute
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a bias-free subset. In this case, Y is not IID (Y1 and Y2 are dependent, Y2 and Y3 are

dependent) and hence the bias-free subset is non-IID.

Also note that to compute an unbiased estimate using Theorem 2, we have at our disposal

a smaller set of samples; so the variance of estimation will be larger. There is a trade off

between ignoring interaction (large bias, small variance), and using theorem 2 (no bias, large

variance). It remains future work to quantify the variance of the estimator in Theorem 2 for

different interaction models, but in Section 3.5, I provide simulation results and case analysis

study to empirically show its performance.

Applicability of theorems 1 & 2 to real world problems: A natural question that

arises at this juncture is whether we need an entire interaction network to apply these

results to real world problems. Theorem 1 quantifies bias and in doing so reveals to us

if and how various factors such as sample size and strength of connections (value of path

coefficients) influence bias. This in turn allows us to use available information about the

problem from prior experience, domain knowledge or external sources to determine if bias

would be negligible or not. Specifically, bias becomes smaller as the number of bias-structure-

free samples increases. In fact, if the numbers of deflecting and reflecting structures are fixed,

the bias terms diminishes as n increases, indicated by the 1/n for the reflecting bias term

and 1/n(n − 1) for the deflecting bias term. It is also evident that if the values of path

coefficients are high, V al(p) would be high and this will result in increased bias. Finally, if

the interaction connections are sparse (fewer edges between units), the reduction in the total

number of paths could potentially lower bias but more importantly the number of samples

in the bias-free set B used in theorem 2 will tend to be larger, which in turn will help in

computing better quality estimates.
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3.5 Experiments

3.5.1 Simulations

Simulated Model I randomly generate balanced interaction network with n units (i.e., the

sample size is n), with Ci → Xi → Yi and Xi →Mi for all i = 1, . . . , n. For all ordered pairs

of distinct units i, j, I randomly add deflecting bias structures in the form of Xi ← Ci → Yj

with probability dRate. For all units i, I randomly add reflecting bias structures in the form

of Xi →Mk → Yi with probability rRate for a random k ̸= i.

Experiment: Bias of REG It follows from theorem 1 that larger sample sizes and

smaller path values on the bias structures result in smaller bias. I perform two simulations

to show how bias varies as a function of sample size and path values.I simulate data such that

for each variable, the exogenous error term follows a Gaussian distribution with mean 0 and

standard deviation 1. For each set of parameters, I randomly generate an interaction network,

and simulate the data 10000 times. Each time, I record the result from a naive regression of

Y on X (REG). As a comparison, I also record the result from Theorem 2 (THM-2). I run

the algorithm (provided in the appendix) to randomly select bias-free subsets for 10 times

and select the largest subset.

Simulation 1: Xi → Yi’s edge coefficient is 100, the edge coefficients of Ci → Xi, Xi →

Mj,Mj → Yi are all set to 10, the numbers of deflecting bias structures and additional

reflecting bias structures are both 100.

Simulation 2: Number of units n = 1000, Xi → Yi’s edge coefficient is 100, the numbers of

deflecting bias structures and additional reflecting bias structures are both 100. The results

are plotted in Figure 3.9. As seen in the plots, as n increases or the path values on the

bias structures decreases (both with all other parameters fixed), βY X from a naive regression

approaches TACE. Such results coincide with Theorem 1. The βY X computed by THM-2

is very close to TACE and the two lines almost overlap.
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Figure 3.9: Left: βY X vs. number of units n. Right: βY X vs. path value on the bias

structures. TACE = 100.

3.5.2 Case Study

Settings I am interested in analyzing the effect of tutoring time on students’ grades. In

particular, I wish to compute the effect provided through the tutoring program only, but

not through “side effects” from other units, such as learning from classmates, although such

interactions are encouraged in this scenario. For instance, unit imight help unit j understand

the course materials better which in turn might improve j’s grade. If unit i helped unit j

improve their understanding and unit j states this in the peer review, then it would boost

i’s grade. To construct an interaction network and apply the proposed results, we ask the

students to fill out a survey including 1) their tutoring time, 2) their grade, 3) whom they

helped, 4) who helped them, 5) peer review score.

Construction of the Interaction Network Three generic variables are T (tutoring

time in hours), U (understanding of course materials), and R (grade). For each unit i,

Ti → Ui → Ri. In addition, if i helped j, add Ui → Uj (deflecting bias structure). If

i first helped j and j mentioned this in the peer review and thus boosted i’s grade, add

Ui → Uj → Ri (reflecting bias structure). I assume no additional back-and-forth help

happens.
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Figure 3.10: Left: estimated TACE distribution from THM-2. Right: estimated TACE

distribution from REG.

Simulation Let there be 500 students, assume each student on average help 5 other

students, and the other student has a 0.5 chance of helping back. Let TACE = 2, and the

Ui → Uj and Ui → Rj edges both have the value 2. I randomly generate an interaction

network and simulate data based on these parameters.

Results I apply THM-2 to select a bias-free subset, and compute βGT using data from

that subset. I get the result 1.963, with the size of the subset 72. As a result, the effect of

tutoring time on students’ grades not through other units is estimated to be 1.963, which is

close to the ground truth TACE (2). I further repeat the experiment 1000 times to show

the distribution of the results. Each time a random structure is generated and random data

are simulated. THM-2 is on average able to select a bias-free subset of size 76, and the

average recovered TACE = 2.0002. The result from REG had a significantly high bias with

TACE averaging at 194.11. Also since every time the data are regenerated, the model is

different, and REG uses all the data, it has a larger variance. The two plots in Figure 3.10

show the distribution of results from THM-2 and REG. The histograms of the results of βY X

computed by THM-2 and REG are shown in Figure 3.10.
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3.6 Discussion and Summary

In this chapter, I derived theorems to quantify the interaction bias for average treatment

effects in linear models, when generalized interference are present. I provided sufficient

and necessary graphical conditions to detect interaction bias. Additionally, I developed a

method to compute an unbiased estimate of causal effect in cases where blindly assuming

IID is expected to yield a significant bias. Finally, I tested the performance of the proposed

method through simulation studies.

[JPV20] proposed a quasi-coloring method to estimate direct effect under interference

using experimental data. However, it does not easily generalize to observational studies.

Other papers along a similar direction include [FZ20], which proposed experiment design

to minimize interaction bias and selection bias at the same time, and [LH14], which pro-

posed a two-stage randomization design to minimize interference bias. [TFS21] proposed

a g-computation method, which is the first to model general interference using graphical

models (chain-graphs), but requires the interference effects to be symmetrical between units.

[SAH21] and [HH08] defined queries similar to TACE, named EATE and PADE, respec-

tively. These queries generalize traditional ACE to allow a unit’s outcome to be affected

by treatments of other units. However, they do not allow outcomes to be affected by other

units’ variables other than treatments.

[HH08] defined six types of queries in the problems involving interference. Work in in-

terference that focuses on different queries/problems include a few as follows. [VTH12]

is the first to decompose the spillover effect (the effect of a unit’s treatment on another’s

outcome ([Qua12])) to contagion and infectiousness effects using counterfactual mediation

analysis. [STA17] presented decomposition for units with unknown and symmetrical inter-

action patterns and analyzed different interference paths. In linear models, the contagion

and infectiousness effects reduce to the directed paths from Xj to Yi. Moreover, their work

does not handle reflection bias. [HLW21] was the first to define and provide estimands
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for the average indirect effect. [VTH14] developed methods for sensitivity analysis under

interference.

Other types of interactions include the contagion effects, which are defined as a unit’s

outcome affecting another unit’s outcome [VA13]. Work on this line usually used longitudinal

data, including [Bur87, Lyo11, VOT12]. Homophily effects are defined as the behavior of

connected units are similar [JPV20]. Work in this line include [MSC01, JPV20]. The existing

work above does not model interactions using graphical models.
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CHAPTER 4

Uncertain Interaction Models

4.1 Introduction

In Chapters 2 and 3, I presented results that models generalized interference using interac-

tion models that represent general interaction patterns between units, and is not limited to

interference. However, one limitation with interaction models and many other approaches

(such as those in [AS17, JPV20]) is that the interaction patterns need to be known in ad-

vance. This level of detail is not easily available in real-world datasets. For example, in a

drug trial, it may not be feasible to track down each participant; in an online study, it is

difficult to know if participants communicated with others in the study. The question of

interest is, how can we perform causal analysis given non-IID data when there is uncertainty

in the interaction pattern?

The main results of this chapter are as follows. I derive theorems to quantify interaction

bias when some interaction paths exist with uncertainty (Thm. 3). I reduce or remove

bias when some interaction paths exist with uncertainty (Thm. 4). I present a polynomial

algorithm for the bias-reduction/removal method. (Algo. 2). Finally, I derive results for

bounding ACE when some interaction paths exist with uncertainty. (Thm. 5 & Cor. 2).
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4.2 Bias Reduction for Graph with Uncertain Interactions

While the interaction modeling has the benefit of modeling general arbitrary interactions,

they rely on knowing the full interaction graph structure, which is often unavailable. In this

section I will generalize those results to handle uncertainty in the interaction patterns among

units.

Definition 12 (Uncertain Paths). An uncertain path between two distinct nodes A and B

in a DAG is an open path between A and B that exists with probability θ, 0 < θ < 1.

X1

Y1

X2

Y2

X3

Y3

C3C2C1

Figure 4.1: An uncertain interaction graph

A definite path on the other hand is one that exists with probability 1.

Definition 13 (Uncertain Interaction Graphs). An uncertain interaction graph is an inter-

action graph with uncertain paths.

Figure 4.1 shows an uncertain interaction graph, where uncertain paths are represented

as dashed arrows, and definite paths are represented as solid arrows.

There are multiple ways in which units can interact, such as two units’ outcomes are

confounded, a unit’s treatment affects its outcome through another unit’s variables, etc. In

this chapter I focus on interference, since it is one of the most common and most studied

type of interactions. Interference is defined as the phenomenon that one unit’s treatment

affects another unit’s outcome. I assume that the only form of interaction in the interaction

model is via interference paths, defined below.
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Definition 14 (Interference Paths). Given an interaction graph, an interference path is a

directed path from Xi to Yj, i ̸= j.

I next impose a few additional restrictions on the graph so it is not too arbitrary to draw

useful conclusions.

Definition 15 (Balanced Graph for Uncertain Interference (b-GU , for short)). An interac-

tion graph, GU , is termed as a balanced graph for uncertain interference if

1. it is the interaction graph of a balanced interaction model M∗,

2. the only type of bias structures in M∗ are directed paths from Xi to Yj where all inter-

mediate nodes belong to either unit i or j.

3. only definite edges exist between any two nodes Ai and Bi of unit i, for any i. Uncertain

edges may exist only between nodes of distinct units i, j, for any i and j.

4. the sum of the values of interference paths from Xi to Yj (if such exists) is the same

as that from Xk to Yl (if such exists), for all i ̸= j and k ̸= l.

X1

Y1

X2

Y2

X3

Y3

M3M2M1 2

3
6 6

Figure 4.2: A balanced graph for uncertain interference.

Note that each interaction graph with or without uncertainty corresponds to an under-

lying interaction model that encodes the data generating process. Figure 4.2 is a b-GU , if

the interaction model it corresponds to is balanced. Condition 1 is satisfied. Condition 2

is satisfied since the only such path with an intermediate node is from X2 to Y1, with M2

being an intermediate node, and it belongs to unit 2. Condition 3 is satisfied since the only
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uncertain edges M2 → Y1 and X2 → Y3 are both between distinct units. As for Condition 4,

we can calculate the sum of the values on the three interference paths. The edge coefficients

are labeled in Figure 4.2, and they all equal to 6. Thus, Condition 4 is also satisfied.

X1

Y1

X2

Y2

X3

Y3

M3M2M1

Figure 4.3: A balanced graph for uncer-

tain interference.

X1

Y1

X2

Y2

X3

Y3

M3M2M1

Figure 4.4: A balanced graph for uncer-

tain interference with Nd = 0.

X1

Y1

X2

Y2

X3

Y3

M3M2M1

Figure 4.5: The underlying true interac-

tion graph (unavailable).

S∗ (unavailable)



M1 = 2X1 + UM1

M2 = 2X2 + UM2

M3 = 2X3 + UM3

Y1 = 5X1 +M2 + UY1

Y2 = 5X2 + 2X3 + UY2

Y3 = 5X3 + 2X2 + UY3

As is mentioned in the preliminaries, the interaction bias (Definition 6) is the bias resulted

from incorrectly assuming IID to estimate the unit “true” ACE (TACEXY ). Theorem 3

below quantifies the interaction bias in an uncertain interaction graph.

Theorem 3. Suppose M∗, D,G† refer to the true model, available data and generic network

as specified in definition 6 such that Q = TACEXY and Q̂ = βY X . Xi and Yi are not

confounded by any variable of i, for all i. Let GU be the b-GU corresponding to M∗. For all

i ̸= j pairs, let Nd be the number of pairs of units that have definite interference paths from

i to j and let Nθ be the number of pairs of units that have uncertain interference paths from
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i to j with probability θ. Let the sum of the values of the interference paths from Xi to Yj be

p,1 for all i ̸= j. The expected interaction bias is given by

E[
∣∣∣E[ ˆβY X ]−Q

∣∣∣] = 1

n(n− 1)
|p|(Nd + θNθ).

Figure 4.3 is a b-GU with Nd = 1 (X3 → Y2) and Nθ = 3 (X2 →M2 → Y1, X1 → Y2, and

X2 → Y3). n = 3 since there are 3 units. The underlying true interaction model (unavailable)

is shown in Figure 4.5, with the structural equations on the right. The interference effect |p|

is equal to 2, calculated from the structural equations. TACEXY is 5. We can also see that

the true θ is 2/3, i.e., out of the 3 uncertain paths, there are 2 that really exist. Although

in real-world applications, θ is usually unavailable, so we need an estimate from expert

knowledge about the frequency of interference in this sample. Figure 4.4 shows another

b-GU that corresponds to Figure 4.5. In Figure 4.4, there is no definite interference paths.

This is in fact an interesting special case, which I will elaborate more in the next section.

The debias method in [ZMP22] selects a bias-free subset of units and uses it to unbiasedly

compute TACE given the full interaction graph. When there is uncertainty, if we treat all

uncertain interference paths as definite existence, we might end up selecting too small a

subset, especially when there are many uncertain interference paths. One solution is to

select a larger subset to maybe include some interactions, while still bound the interaction

bias at a reasonable level. Theorem 4 below shows such a method.

Theorem 4. Consider the setting in Theorem 3. Suppose we are additionally given a bias

threshold τ , and the interference effect is bounded by a constant Γ times the TACE (i.e.,

|p| ≤ Γ|Q|). If a subset B of units satisfies

1

|B|(|B| − 1)
(N ′

d + θN ′
θ)Γ ≤ τ,

1I.e., p is equal to the causal effect of Xi on Yj.
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then using the samples in B, the expected interaction bias will be at most τ |Q|. For all i ̸= j

pairs with i, j ∈ B, N ′
d denotes the number of pairs with definite interference paths from i to

j in G∗, and N ′
θ denotes the number of pairs with interference paths from i to j in G∗ with

probability θ.

If such a subset is found, then the bias is bounded. For example, if the threshold τ = 0.1,

the bias will be as large as 10% of the true ACE, computed using the data from the selected

subset. This theorem becomes a debias method if τ = 0, since that simply implies that the

bias has to be 0. Algorithm 2 is a polynomial greedy algorithm that selects such a subset

given threshold τ .

Algorithm 2 Select a subset B from an uncertain interaction graph GU that makes the

interaction bias ≤ τ

Input: an interaction graph GU , probability of uncertain paths θ, interference/TACE

ratio bound constant Γ, bias threshold τ

Output: a subset B resulting in ≤ τ bias

1: function FindSub(GU , τ)

2: Units = randomly sorted list 1, . . . , n

3: B = Units[1]

4: for i = 2, . . . , n do

5: if B ∪ {Units[i]} satisfies 1/((|B + 1|)|B|)(N ′
d + θN ′

θ)Γ ≤ τ then

6: B = B ∪ {Units[i]}

7: return B

Algorithm 2 goes through all the units, and select units one at a time, until the condition

is no longer satisfied, and the selected subset is returned.
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4.3 Causal Effect Estimation with Unknown Interference Struc-

tures

Next, I present a theorem for unbiased estimation of TACE. Unbiased estimation is possible

if the relationship between the interference path strength and the TACE is given, and where

the interference paths occur need not be known.

Theorem 5. Consider the setting described in Theorem 3. Suppose we know the relationship

between p (the interference path strength) and Q (TACE) is p = γQ, where γ is a constant,

then Q is unbiasedly estimated as

Q =
E[ ˆβY X ]

1− 1
n(n−1)

γ(Nd + θNθ)
.

Applying Theorem 5 to generate bounds In this chapter there are two types of effects

under consideration. First, the effect of Xi on Yi (unit specific effect) and second, the effect

of treatment applied to other units such as Xj, j ̸= i on Yi (interference). In many situations

such as when treatment is vaccination and outcome is disease, (i) the magnitude of unit-level

treatment effects (TACE) can be safely assumed to be higher than those due to interference

(p); mathematically, this translates to |Q| > |p| and 0 < γ < 1.

Corollary 2. Consider the setting described in Theorem 5, if we further assume 0 < γ < 1

and |Q| > |p| and 0 < γ < 1 then Q can be bounded as

E[ ˆβY X ]

1− (Nd+θNθ)
n(n−1)

< Q < E[ ˆβY X ].

Note that from Corollary 2, Q is always less than E[ ˆβY X ]. This implies that when the unit

specific effect and the interference effect have the same sign, then assuming IID (E[ ˆβY X ])

always “overestimates” the true unit specific effect (Q).
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Remark 3. Note that there are several interesting special cases with the the results presented

in Theorems 3, 4, and 5.

1. Nd = Nθ = 0. In this case, there is no interference path (definite or uncertain) in

the model, which results in a model without interaction structures. In Theorem 3,

the interaction bias is 0. In Theorem 4, the inequality always hold since the l.h.s. is

0, while τ is positive, so we can select any subset B where |B| > 1. In Theorem 5,

Q = E[ ˆβY X ], which is consistent with an interference-free setting.

2. Nd = 0. In this case, there is no definite interference path. This special case is useful

when we do not have any information about which units interact with which units in

some real-world applications. All those theorems still apply.

3. Nθ = 0. In this case, there is no uncertain interference path. This means we have all

the information regarding which units interact with which units. The theorems reduce

to the results in [ZMP22], where there is no uncertainty in the interaction network.

4.4 Discussion and Summary

This chapter focused on the problem of interference (non-generalized) when there is uncer-

tainty regarding the interaction patterns. I showed that bias due to interference can be

quantified using the interference strength and expected number of interactions. I developed

an algorithm that computes true average causal effect such that bias is guaranteed to be less

than a given quantity τ . Finally, I bound the average causal effect when it is guaranteed

that unit level causal effect is higher than interference.

To my knowledge, there is no existing work that systematically discusses uncertainty in

interaction patterns. There exists work that exploits model uncertainty for traditional causal

diagrams under the IID assumption. Some uncertain DAGs include patterns in [VP91] and

partial ancestral graphs (PAGs) in [Ric96]. Both graphical frameworks have uncertain edges
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in the graph, representing unknown edge orientations. In addition, PAGs are used to repre-

sent equivalence classes of maximal ancestral graphs (MAGs) [RS02]. MAGs are abstractions

of DAGs that keep only the conditional independence and ancestral relationships. Formally,

MAGs are maximal and ancestral. There is an edge between two nodes A and B in the MAG

if and only if there exists no set that can separate A and B in the DAG (maximal), and

A→ B is in the MAG if and only if A is an ancestor of B in the DAG (ancestral). [JZB18]

introduced a causal identification method for PAGs. Causal discovery methods including the

PC algorithm [SGS00] and the IC algorithm [Pea09] learn patterns and the FCI algorithm

[SGS00] learns a PAG.
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CHAPTER 5

Non-Parametric Interaction Models

5.1 Introduction

In the previous chapters, I presented linear interaction models and discussed bias analysis

under the linear setting. The linearity assumption simplifies the generalized interference

problem, since the interaction effects are always added to the total effects and can be natu-

rally separated. In this chapter, I relax this assumption and extend interaction models for

the non-parametric case. I perform bias analysis from applying estimation techniques meant

for IID data such as Horvitz-Thompson estimator [HT52] on non-IID data. I also present

an assumption weaker than linearity that can help mitigate bias. Finally, I present results

on unbiased estimation design and empirically evaluate the debiasing procedure for different

setups.

5.2 Defining Non-Parametric TACE

The main query of interest is the causal effect through units themselves, where hypothetically

there is no influence from other units. For example, I am interested in the effect of a

vaccine on a disease through a person’s own immune system, but not through obtaining

immunity from people around them. I first define unit default interaction model, which is

the “default” causal model that we expect a unit to have if no interaction with other units

exists. I disconnect interacting units by replacing the variables in the interacting terms

in the structural equation with their default value. In linear models, removing interacting
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effects from a variable means removing the terms that cause interactions, so default values

are always 0. In non-parametric models, default values can be any real number that the

variable can take on, determined by specific settings. For instance, given that the sickness of

a patient is equal to their own immune strength multiplied by their close contact’s sickness.

If we assume the default model for the sickness of a patient is equal to its immune strength,

under no interaction, then the default value for their close contact’s sickness is set to a

non-zero value 1.

Note that the default value for each generic variable need not be the same across all

units, although I assume it is the case to keep the notations simple. Let Pa(Vi) denote the

parents of Vi in the interaction network.

Definition 16 (Unit Default Interaction Model). DM∗
i (DG

∗
i , DS

∗
i ) is the unit default inter-

action model for unit i with respect to an interaction model M∗(G∗, S∗) with a set of default

generic variable values dv if it is constructed from M∗ in the following way:

1. DG∗
i = G′

i where G
′
i is the subgraph of G∗ containing only variables of i,

2. DS∗ = S ′ where S ′ is the set of equations for variables of i, obtained by substituting

each equation Vi = f(Pa(Vi)) in S∗ any Wj, ∀j ̸= i, with the corresponding constant

in dv.

Given the equations (5.1)-(5.4), the interaction network in Figure 5.1, and default value

X = 1, the unit default models are as follows. For unit 1, the unit default model remains

unchanged since it is not affected by another unit. However, for unit 2, the unit default

model is given below and is obtained by replacing X1 with its default value 1.

X2 = UX2

Y2 = 2X2 − 1 + UY2 ,

In order to utilize data from non-IID units, I will limit our attention to a type of model

with some symmetry information shared among the units. I define balanced interaction model
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X1

Y1

X2

Y2

Figure 5.1: A simple interaction network.

X1 = UX1 (5.1)

X2 = UX2 (5.2)

Y1 = 2X1 + UY1 (5.3)

Y2 = 2X2 −X1 + UY2 (5.4)

X1 = UX1 (5.5)

X2 = UX2 (5.6)

Y1 = 2X1 + UY1 (5.7)

Y2 = 2X2X1 + UY2 (5.8)

X1 = UX1 (5.9)

X2 = UX2 (5.10)

Y1 = 3X1 + UY1 (5.11)

Y2 = 2X2 −X1 + UY2 (5.12)

for the non-parametric case. The intuition behind this definition is that if hypothetically

all interactions were removed, then the units would behave in the same way (have the same

data generating process). Balanced model does not necessarily mean that interactions are

non-existent. All it means is that the underlying unit default models are identical.

Definition 17 (Balanced interaction modelM∗). An interaction model M∗ is balanced with

default values dv if the unit default interaction model with dv for each unit is identical.

Since unit default interaction models are identical in balanced models, I will denote the

equations using superscript D. For example, I use Y D = 2XD instead of ∀i ∼ Yi = 2Xi.

Note that the choice of default value affects whether an interaction model is balanced.

The model with interaction network Figure 5.1 and structural equations (5.1)-(5.4) is not

balanced when dv : X = 1, since the unit default models for Y1 and Y2 are different. However,

given dv : X = 0, the model is balanced. The structural equations of the unit default model

is given by

XD = UXD

Y D = 2XD + UY D .
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The interaction network of the unit default model is XD → Y D.

Given the same interaction network, and the structural equations (5.5)-(5.8), the model

is balanced when dv : X = 1, but is not balanced otherwise. Given the same interaction

network, and the structural equations (5.9)-(5.12), the model is not balanced given any dv.

X1

Y1

X2

Y2

X3

Y3

X4

Y4

C4C3C2C1

Figure 5.2: Interaction network with 4 units and 12 explicit variables (Xi, Yi, Ci for i =

1, 2, 3, 4).

X1

Y1

X2

Y2

X3

Y3

X4

Y4

C4C3C2C1

Figure 5.3: Interaction network with 4 units and 12 explicit

variables (Xi, Yi, Ci for i = 1, 2, 3, 4).

XD

Y D

CD

Figure 5.4: The shared

unit default model.

Y1 = X2
1Y2 − 4 (5.13)

Y2 = X2
2 +X3 − 4 (5.14)

Y3 = X2
3 − 2C4 (5.15)

Y4 = X2
4 − 4 (5.16)

Y D = (XD)2 − 4 (5.17)

Certain interaction networks might belong to a balanced model regardless of the default

value. For example, Figure 5.2 cannot be the interaction network of a balanced model, since

the unit default models are not the same. There is an edge C1 → Y1, while there is no such

edge for units 2, 3, or 4. Figure 5.3 can be balanced, depending on the structural equations

and default values. If the structural equations are Eqs. (5.13)-(5.16) (the equations for C
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and X are omitted and assumed to be identical in the unit models), and the default values

are dv : C = 2, X = 0, Y = 1, then the model is balanced. The unit default interaction

network is Figure 5.4, and the structural equation for Y D is Eq. (5.17).

Assuming IID, an unbiased estimator for average causal effects under no confoundedness

is the HT estimator [HT52, AM13]. The average causal effect of X = 1 vs. 0 on Y is

estimated by ∑
nXiYi
m1

−
∑

n (1−Xi)Yi
m0

,

where m1 and m0 are the numbers of Xi = 1 and Xi = 0 in this sample (I will keep using

this notion throughout the manuscript). m1 +m0 = n. This estimand is essentially taking

the difference between the average value of Yi where Xi = 1 and the average value of Yi

where Xi = 0. I will use this estimator as the default for estimating ACE assuming the data

are IID, assuming no confounder exists between Xi and Yi for all i. I define the query of

interest, which is the average causal effect as if the units were isolated, as follows.

Definition 18 (True Average Causal Effect (TACEXY )). Let M
∗ be a balanced interaction

model with default values dv. True average causal effect of X = 1 vs 0 on Y , denoted as

TACEXY , is defined as the ACE of X on Y in the identical unit default model with dv

corresponding to M∗.

For example, given Figure 5.3 as the interaction network, Eqs. (5.13)-(5.16) as the

structural equations, and the default values dv : C = 2, X = 0, Y = 1, the true average

causal effect of X = 1 vs X = 0 on Y is given by

TACEXY =

∑
i 1{Xi=1}Yi
m1

−
∑

i 1{Xi=0}Yi
m0

= (12 − 4)− (02 − 4) = 1,

where 1A is the indicator function that is equal to 1 if A is true and 0 if A is false.
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5.3 Quantifying and Detecting Bias: the General Case

Theorem 6 (Interaction Bias in Non-Param. Models). Let M∗ be an interaction model

balanced with default values dv. X satisfies ASDC. The average causal effect of X on Y is

estimated as Q̂Y |do(X) in G
†. The interaction bias is given by

|E[Q̂Y |do(X)]− TACEXY |

=

∣∣∣∣Em1,m0

[
1

n

∑
1≤j≤n

E [Yj|m1,m0, Xj = 1] − 1

n

∑
1≤j≤n

E [Yj|m1,m0, Xj = 0]

]
− (E[Y D|XD = 1]− E[Y D|XD = 0])

∣∣∣∣,
where n is the total number of units (n = m1 +m0).

If the model is non-parametric, i.e., no assumption is made of the function forms (linearity,

etc.) of M∗, the graphical criterion for detecting bias is as follows.

Theorem 7. Let M∗ be an interaction model balanced with default values dv. X satisfies

ASDC. The average causal effect of X on Y is estimated as Q̂Y |do(X) in G†. There is no

interaction bias iff Y is ASDC.

X1

Y1

X2

Y2

X3

Y3

W1 W2 W3

Figure 5.5: Interaction network with 3 units.

Y1 = 3X1W1 +W1W2 (5.18)

Y2 = 3X2W2W3 + 1 (5.19)

Y3 = 3X3W3 + 1 (5.20)

Y1 = 3X1W1 +W 2
2 (5.21)

Y2 = 3X2W2 +W3 (5.22)

Y3 = 3X3W3 + 1 (5.23)
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Example 2. I use an example to illustrate this theorem. An interaction model has inter-

action network Figure 5.5, and structural equations (5.18)-(5.20), dv : W = 1. This model

is balanced with shared unit default structural equation Y D = 3XDWD + 1. The interaction

bias given a distribution of m1 and m0 where m1 = 2 and m0 = 1 is calculated as follows.

|E[Q̂Y |do(X)]− TACEXY |

=

∣∣∣∣13 ∑
1≤j≤3

E [Yj|m1 = 2,m0 = 1, Xj = 1]− 1

3

∑
1≤j≤3

E [Yj|m1 = 2,m0 = 1, Xj = 0]

− (E[Y D|XD = 1]− E[Y D|XD = 0])

∣∣∣∣
=

∣∣∣∣13(E[3W1 +W1W2] + E[3W2W3 + 1] + E[3W3 + 1])

− 1

3
(E[W1W2] + E[1] + E[1])− (3E[WD])

∣∣∣∣
=

∣∣∣∣E[WDWD′
]− E[WD]

∣∣∣∣ ̸= 0.

The notion WD′
is used to distinguish from WD so they are not (mistakenly) assumed

to be the same variable. However WD and WD′
are IID. Since Y is not ASDC, interaction

bias exists and this is also confirmed by Theorem 7.

5.4 Restricted Additivity

In this section, I define a parametric assumption called restricted additivity, which will

provide stronger results by aiding in mitigating bias. Note that this assumption is weaker

than both linearity and IID, since it still allows interactions between units and non-linear

terms.

Definition 19 (Restricted Additivity). Given an interaction model M∗, let TVi
denote the

set of terms in the structural equation of Vi. M
∗ satisfies restricted additivity if ∀Vi, ∀t ∈ TVi

,

one of the following holds true:

1. t contains only explicit variables of unit i that correspond to ASDC generic variables
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2. t contains only one explicit variable Ei. Ei corresponds to a Non-ASDC generic variable

E.

3. t contains only one explicit variable Ej with j ̸= i and no other variable.

For example, given the structural equation of an explicit variable Vi as Vi = AiBi +Cj +

DiEk. Then, TVi
= {AiBi, Cj, DiEk}. Note that the term t = DiEk where t ∈ TVi

contains

a variable Ek that is not in i, and there is another variable Di in t. So the interaction

model with this Vi does not satisfy restricted additivity. Note that any linear model satisfies

restricted additivity. In addition, variables that undergo log transformation might make the

model satisfy restricted additivity, although the model might not satisfy it before variable

transformation. As long as the model with the given variables satisfies restricted additivity,

the theories presented in this section apply.

Restricted additivity is essentially requiring that all non-ASDC variables or variables

belonging to a different unit linearly affect their children. As a result, the components that

affect each variable can be separated into the sum of two parts, the ASDC part (which is the

same for each unit) and the non-ASDC part. For example, given Figure 5.5, and structural

equations (5.18)-(5.20), the interaction model does not satisfy restricted additivity. When the

structural equations are (5.21)-(5.23), this interaction model satisfies restricted additivity.

In this case, similarly, the interaction bias is calculated as follows.
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|E[Q̂Y |do(X)]− TACEXY |

=

∣∣∣∣13 ∑
1≤j≤3

E [Yj|m1 = 2,m0 = 1, Xj = 1]− 1

3

∑
1≤j≤3

E [Yj|m1 = 2,m0 = 1, Xj = 0]

− (E[Y D|XD = 1]− E[Y D|XD = 0])

∣∣∣∣
=

∣∣∣∣13(E[3W1 +W 2
2 ] + E[3W2 +W3] + E[3W3 + 1])

− 1

3
(E[W 2

2 ] + E[W3] + E[1])− (3E[WD])

∣∣∣∣
=

∣∣∣∣E[WD]− E[WD]

∣∣∣∣ = 0.

There is no interaction bias, which is consistent with Theorem 8.

Theorem 8. Let M(G,S) be an interaction model balanced with default values dv. X satis-

fies ASDC. The conditional average causal effect of X on Y is estimated as Q̂Y |do(X) in G
†.

Assume restricted additivity. There is interaction bias iff there are deflecting or reflecting

bias structures between X and Y in G.

Compared to Theorem 7, which disallows any form of interaction for the model to be

bias-free, this only forbids the two bias structures. Often persimmible structures include

Y1 ← W2 → Y2, etc. For example, Figure 5.5 is unbiased under restricted additivity (if the

conditions for Theorem 8 is met), but is biased without assuming restricted additivity.

5.5 Debiasing

Theorem 9. A subset of units B is a bias-free subset for the causal effect of X on Y iff the

latent projection [Pea09] on B does not have interaction bias by Theorem 7 (by Theorem 8

if restricted additivity is satisfied).

For example, no such subset can be selected for the model in Figure 5.5 not assuming

restricted additivity, since no two Yi is ASDC. If restricted additivity is assumed, then {1,
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2, 3} constitutes such a subset. I provide a polynomial algorithm for selecting a bias-free

subset in the appendix.

5.6 Experiments

In this section, I present several simulated experiments to illustrate and support the theoret-

ical results. In the interest of space, I have only retained crucial information in this paper.

Fine-grained information is available in the appendix.

5.6.1 The Size of Interaction Bias

In the following experiments, I will demonstrate results related to the theorems for bias

quantification and bias detection (Theorems 6, 7, 8). I show that interaction bias exists

under the proposed graphical criteria, and illustrate how the bias size changes with varies

factors. For the analysis of bias, I will run a “naive” method that estimates TACE as if the

data were generated by an IID model, i.e., compute Q̂Y |do(X) = E[Y |X = 1] − E[Y |X = 0]

from the sample.

5.6.1.1 Bias due to Blindly Assuming IID

The goal of this experiment is to test how well the naive method would perform in the pres-

ence of bias inducing structures. In Theorem 8, consider the case where restricted additivity

holds, deflecting bias and reflecting bias structures cause interaction bias. I compare the bias

of blindly assuming IID with three types of interactions including deflecting bias structures,

reflecting bias structures, and non-bias interactions. I simulate data based on interaction

models with interactions shown in Figure 5.6, where from left to right are deflecting bias

only, reflecting bias only, and non-bias interaction only. I generated different structures with

those interactions randomly added to different places of the structures.
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X1

Y1

X2

Y2

X1

Y1

X2

Y2

M1

A1

X1

Y1

X2

Y2

C1

Figure 5.6: Three types of interactions.

Setup: The same default model is used for all three cases (TACE = 6), and the same

number of corresponding interactions are added. I run the experiment for 1000 iterations to

reduce sampling variance. In each iteration, I resample data for each of the three interaction

models, and estimate the TACE of X on Y using the naive method.

Figure 5.7: Comparison of the estimation assuming IID for three interaction types.

Results: I plot a histogram of the results from the 1000 iterations and is shown in Figure

5.7. The means and variances of the estimates of the three models are listed in the following

table.
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def. model ref. model non-bias model

Mean 5.57 7.92 5.97

Var. 5.10 2.42 3.68

The mean of the non-bias interaction case is close to TACE. The means of the deflecting

case and the reflecting case are both biased, where the reflecting case has a larger bias.

5.6.1.2 Size of Interaction Bias

The goal of this experiment is to test how interaction bias size changes with other factors. I

first assume a restricted additivity setting, and show how the bias varies with bias (deflecting

or reflecting) structure strength and density.

Deflecting bias case: I simulate data from a balanced interaction model, where deflecting

bias structures exist in the form of Xi → Yj for i ̸= j. α denotes the bias strength and is

equal to 1, −3, or 5 in our experiment. The experiment is run for 1000 iterations and

averaged to reduce uncertainty. The plot below shows how bias (Y-axis) varies with sample

size (X-axis), with the number of interactions fixed at 50.

As seen in the graph, the bias is larger when the bias structure has a stronger bias. Also,

as the sample size increases, the interaction network has less interaction density (since the

total number of interactions is fixed by our setting), and the bias becomes smaller.

Reflecting bias case: similarly, I simulate data from a balanced interaction model, where

reflecting bias structures exist in the form Xi →Mj → Yi with i ̸= j. The plot is as follows.

The effect of reflecting biases is in general larger than deflecting biases, while they both

become smaller as the bias strengths and the interaction densities decrease. Next, I show

the results for a general non-parametric setting without assuming restricted additivity.
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Figure 5.8: Deflecting bias size vs. sample size with total interaction number fixed.

General case: without the restricted additivity assumption, any interaction that causes

Y to be non-ASDC will result in interaction bias. So in this experiment, I do not distinguish

between deflecting and reflecting bias structures, and instead I use interaction structures

that would not cause bias if they were in the restricted additivity setting. The interactions

are of the form Yi ← Ci → Yj with i ̸= j. The bias strength α is equal to 0.1, -0.3, or 0.5

in our experiment. The plot below shows how the interaction bias varies with different bias

strengths and sample sizes (with the total number of interactions fixed).

The general non-parametric case is different from the restricted additivity cases we have

seen above. Although note that the bias still becomes smaller as the interactions become

less dense, the value of the parameter α is not necessarily positively correlated with the bias

size. The reason for this is that the interactions can affect the estimate in arbitrary ways, so

it is likely non-monotonic. Note that an extreme case happens when α = 0.5, where there is

no bias. This is due to an “accidental” but not “structural” cancel out, since it happens only

for certain parameter choices. Such cases are ruled out when assuming unbiased everywhere.
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Figure 5.9: Reflecting bias size vs. sample size with total interaction number fixed.

5.6.2 Debias

The goal of the following experiments is to test the performance of the proposed debias

method (Theorem 9).

5.6.2.1 Assuming Restricted Additivity

Setup: I simulate data from a balanced interaction model (TACE = 3) with both de-

flecting and reflecting bias structures. I run both a naive method that estimates as if the

data were IID using the original dataset (denoted ORI), and our proposed method selecting

a bias-free subset (denoted SUBS). I repeat the experiment for 1000 iterations and record

all the results. The experiment is done for two different settings: 1. all units have equal

chance of being involved in an interaction, and 2. some units have higher chance and some

units have lower chance. Setting 1 is a simple setting that is likely to happen in designed

experiments, while setting 2 is a more real-world setting (e.g., some people are more isolated
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Figure 5.10: General case: interaction bias size vs. sample size with total interaction number

fixed.

and some people are more social).

Results: The results are in the plots and tables below.

Table 5.1: Restricted additivity & setting 1.

ORI SUBS

mean 3.75 3.00

var. 5.15 12.46

Table 5.2: Restricted additivity & setting 2.

ORI SUBS

mean 3.74 2.90

var. 9.59 5.14

In both settings, SUBS has better mean than ORI, which is consistent with the results in

this paper, since SUBS is expected to be bias-free while ORI is not. However, for setting 1

where all units have the same interaction chance, SUBS has a larger variance than ORI. The

large variance is mainly due to sample size issues. In setting 1, SUBS on average selected

22.363 units for each iteration, while ORI had many more available units: it used all 100
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Figure 5.11: Comparison of ORI and SUBS, without restricting sample sizes.

units. So I also tested the results estimated if they had the same sample size. The results

are in the following plots and tables.

From the results comparing ORI and SUBS with the same sample size, we see that

SUBS subsumes ORI in both settings, and for both mean and variance. Note that the

current version of SUBS is a basic one that greedily selects units, which is unlikely to select

the largest bias-free subset. It is straightforward to develop efficient algorithms that can

select subsets such that more number of samples are used. This would make it comparable

to the sample size and substantially improve the performance. One candidate algorithm

is provided in the appendix. In addition, as I have shown, if the units vary a lot in the
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Figure 5.12: Comparison of ORI and SUBS, with same sample size.

possibility of involved in an interaction, SUBS is also able to select more units (∼ 44 vs.

∼ 22 in the experiments).

5.6.2.2 General Non-parametric with Interactions

For the non-parametric case, the bias terms are multiplied instead of added, and the TACE

is set to 6. The results are in Tables 5.5 and 5.6. The histograms are in the appendix.

I omit the comparison of the results obtained if the sample size were the same since SUBS

already has better variance in this case even with smaller sample sizes.
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Table 5.3: Restricted additivity & setting 1,

with same sample size.

ORI SUBS

mean 3.64 2.97

var. 23.12 11.51

Table 5.4: Restricted additivity & setting 2,

with same sample size.

ORI SUBS

mean 3.78 3.02

var. 22.79 5.34

Table 5.5: Non-parametric & setting 1.

ORI SUBS

mean 1602.86 5.98

variance 318153430.56 5.82

Table 5.6: Non-parametric & setting 2.

ORI SUBS

mean 5587.52 5.98

variance 2632262981.40 4.81

5.7 Summary

The main points of this chapter are as follows. I first developed non-parametric interaction

framework for analyzing bias induced by non-IID data in estimating causal effects. I showed

that in non-parametric models bias is inevitable given non-IID data. Next, I derived for

restricted additivity models, the graphical condition where blindly applying IID methods

would result in bias, which is existence of deflecting or reflecting bias structures. Between

these, reflecting bias e.g.,Xi → Yj → Yi is the more harmful one. I then developed debiasing

procedures for both the non-parametric setting and the restricted additivity setting. Finally,

I ran simulated experiments to test the proposed debiasing procedures for various setups.
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CHAPTER 6

Causal Identification under Partial Interference

6.1 Introduction

While interactions among subjects can complicate causal identification, sometimes it may be

defensible to assume that certain causal effects apply equally to each subject. For example,

a person getting vaccinated reduces the chance of them getting a contagious disease, and

in turn reduces the chance of people around them getting the disease. However, the effect

of vaccination on one’s own chance of getting the disease might be assumed to be same. A

person who smoke can affect the health condition of people who live together with them,

such effect might be the same as how this person is affected by other smokers. I refer to such

equality of effects as equality constraints in the following text.

Currently there is no known efficient algorithm that is able to systematically exploit such

equality constraints for identification.1 While in the past few decades significant progress has

been made in developing efficient identification algorithms for linear causal models [BP12,

FDD12, CKB17, WRD18, KCB19, KCB20], such techniques can only systematically handle

two types of assumptions encoded in a causal diagram: (i) the absence of a direct effect

between certain variables; and (ii) the absence of association between error terms.

As a result, the current literature handling equality constraints has mostly worked with

ad-hoc structures on a case-by-case basis. For example, [KS19] discuss the gain-score method

1One could use methods from computer algebra [GSS10], but these are often computationally intractable,
making it practically infeasible for models larger than 4 or 5 nodes.
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for solving certain models; [Cha13, Cha19] provides a more general method in which difference-

in-differences is a special case, but still restricted to few cases; and while [CPC18] demon-

strate that benchmarking in sensitivity analysis can be reduced to an identification problem

with equality constraints, they only do so for specific model structures.

In this chapter, I show how to utilize equality in causal effects to handle causal iden-

tification with non-IID (interacting) subjects. The proposed identification method can be

applied to real-world applications other than the non-IID settings.

6.2 Interference

A common assumption made when dealing with non-IID data is partial interference. Partial

interference is a specific type of interference that splits the population into “blocks” (usually

with the same number of units per block) such as, for instance, a household [Sob06, Ros07,

HH08, TV12]. [OV14] demonstrate how interference in such cases can be represented and

solved graphically. Partial interference assumes that interactions only occur between two

units that belong to the same block. In addition, partial interference requires corresponding

units in different blocks to satisfy the “identical” condition in IID. Thus partial interference

methods assume “block IID,” which is weaker than “unit IID” assumed by traditional causal
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Figure 6.1: The assumption that x1 and x2 have equal effects on y3 allows the identification

of λx1y3 , λx2y3 , and λx3y3 . Bidrected edges between other xi and yj omitted for clarity.
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methods.

Existing approaches handling interference usually do not handle unobserved confounders,

which complicates identification and, in some cases, makes it impossible. Luckily, if equality

constraints can be defended, they can help identification even under the presence of con-

founding. For instance, perhaps one could argue that the effect of the treatment on the

outcome should be equivalent for subjects within the block. Alternatively, one could also

surmise that effects of one subject on another subject (known as spillover effects) are similar

within the block.

Figure 6.1 graphically depicts the interference structure within a block [OV14], where

three subjects are interfering with one another. In this case, x1, x2, and x3 represent treat-

ments for different subjects, and y1, y2, and y3 represent their outcomes; z and t are two

instrumental variables (e.g, randomized incentive for taking the treatment) applied to the

whole block (e.g, the household). Here, if one posits that the effects of x1 and x2 on y3 are

the same, this enables the identification of λx1y3 , λx2y3 , and λx3y3 .

Of course, such strict equality may not always be assumed. In these cases, one could relax

the degree of equality, and obtain bounds on the causal effects instead of point identification.

6.3 Problem Setup

For the example presented in the previous section, the identification of causal effects of in-

terest only becomes possible when equality amongst certain structural parameters is known

a priori. In this section, I formally define the problem of identification using equality con-

straints.

I first define C-identifiability, denoting identifiability of model parameters of a linear

SCM, M , given a set of external constraints C, beyond those already induced by the causal

graph G.
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Figure 6.2: Numerical example of C-identifiability. In this model, λac and λbc are not

identified just with the constraints provided by the DAG. However, they become identified

if the constraint cλac + λbc = 0 is added.

Definition 20 (C-identifiability). Let M be a linear SCM (as specified by G) and let C be

a set of additional constraints on the parameters of M . A causal quantity θ is said to be

C-identifiable if θ is uniquely computable from C and the covariance matrix of M .

In this paper, I consider the problem of C-identifiability specifically when C is composed

of equality constraints on two structural parameters where one parameter is a multiple of

the other. I restrict attention to two edges because this is the type of equality constraint of

interest in the applications cited, and also the main focus of our results in Section 6.5.

Formally, we have the following definition.

Definition 21 (External Equality Constraint). An external equality constraint for a model

M is a constraint of the form

cθ1 + θ2 = 0, (6.1)

where c is a constant, and θ1 and θ2 are structural parameters of M .

Here, the two structural parameters θ1 and θ2 can be two directed edges, two bidirected

edges, or one directed edge and another bidirected edge. In fact, benchmarking in sensitivity

analysis involves constraints where directed edges are equal to bidirected edges. I discuss

that in detail in Section 6.6.

I use an example to illustrate the idea of C-identification. Suppose we are given the SCM

of Figure 6.2. If we do not know the value of any of the edges, and we are given only the
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graph as well as the correlations among the three variables, then neither λac nor λbc can be

identified. To demonstrate, λac, λbc, εab, εbc could be 0.4, 0.25, 0.4, 0.41 respectively, and this

model implies the same correlations as those of the SCM of Figure 6.2 (this can be easily

checked using Wright’s rules). However, if we know the equality constraint between λac, λbc,

i.e., −5/3λac + λbc = 0, then we can uniquely solve for λac and λbc. Thus, λac and λbc are

not identifiable but are both C-identifiable with C being −5/3λac + λbc = 0.

As we see, the goal is to find cases where the provided external equality constraints can

supplement the limited information we have from the graph G alone, and thus help with

the identification of more structural parameters of the model. As I discuss next, I tackle

this problem by finding the linear constraints induced by the graph G and combining them

with the external equality constraints C. This allows the construction of a system of linear

equations that can solve for the parameters of interest.

6.4 Searching for Graph-Induced Linear Constraints

Given a DAG G and the covariance matrix of the modeled variables, some relationships

between structural parameters can be deduced. Here I am interested in finding linear equa-

tions among the structural parameters, since these equations can be used to solve for the

structural parameters using linear algebra. In this section, I provide graphical conditions to

find such linear constraints on the graph.

I first formally define this type of linear relationship, which I name graph-induced linear

constraint.

Definition 22. Let θ1, . . . , θp be structural parameters of a linear model M . If the graph

G = (V,D,B) induces a linear equation of the type,

lθ1,...,θp := a1θ1 + a2θ2 + · · ·+ apθp = c

where a1 . . . ap and c are functions of Σ, then we say lθ1,...,θp is a graph-induced linear con-
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straint on θ1 . . . , θp from G.

One way to search for graph-induced linear constraints is through searching for gener-

alized instrumental sets (IV sets) of [BP12]. If an IV set can be found in the graph, one

can then use them to construct a full-rank system of linear equations on certain structural

parameters. Instead of aiming for a full-rank system that guarantees point identification,

the basic idea of our method is simply to search for such linear relationships among edges,

even if we cannot have as many equations as there are unknowns (here including directed

and bidirected edges).

For example, in Figure 6.1, if we search for a generalized instrumental set on the edges

λx1y3 , λx2y3 , λx3y3 , I will not be able to find one, since there are only two possible instruments,

z and t, while all other variables violate the requirements for a generalized instrumental set.

However, although it is not possible to identify any of the three edges, we can still construct

two linear constraints on these three edges:

ρzy3 = ρzx1λx1y3 + ρzx3λx3y3 + ρzx2λx2y3 (6.2)

ρty3 = ρtx1λx1y3 + ρtx3λx3y3 + ρtx2λx2y3 (6.3)

Now note that those linear constraints can still be used to identify the three edges, provided

we have a third external equality constraint to supplement the missing information.

Below I define partial-instrumental sets, which relaxes the traditional definition of gen-

eralized instrumental sets of [BP12], by allowing the inclusion of a larger set of directed and

bidirected edges.

Definition 23 (Partial-Instrumental Set). In a graph G = (V,D,B), let y be a variable in V

and let E be a set of n edges where E ⊆ Inc(y). Given a set of n′ edges, E ′ = {e1, e2, . . . , en′}

where E ′ ⊆ E, and a set of n′ variables, Z = {z1, z2, . . . , zn′}, Z is a partial-instrumental

set for E on E ′ if there exists triples (z1,W1, p1), . . . , (zn′ ,Wn′ , pn′) such that:

1. For i = 1, . . . , n′, the elements of Wi are non-descendants of y, and either:
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(a) (zi⊥⊥y|Wi)G(E∩D)−, or

(b) if there exists a bidirected edge between zi and y: εi, and εi ∈ E, Wi are non-

descendants of zi, and (zi⊥⊥y|Wi)G(E∩D)∪{εi}−
.

2. for i = 1, . . . , n′, pi is a path between zi and y that is not blocked by Wi and passes

through ei, and

3. for 1 ≤ i < j ≤ n′, variable zj does not appear in path pi, and if paths pi and pj have

a common variable v, then both pi[v ∼ y] and pj[zj ∼ v] point to v.

In this definition, the set of edges, E, contains the edges we are interested in solving for

and might not be able to be removed from consideration by conditioning. Note |E ′| number

of linear constraints on E can be generated if such a partial-instrumental set exists. The set

of edges, E ′, is considered a “critical set” for the constraints generated, where each constraint

matches to an edge in E ′. For each i in 1, . . . , n′, I say that the constraint li generated from

zi “matches to” the edge ei. The constraint li matching to ei indicates that li has additional

information about ei, which cannot be deduced from other constraints.

I explain the matching between constraints and edges using the example in Figure 6.3.

Starting with Figure 6.3(a), using Wright’s rules, we can find two linear equations on the

edges, λx1y and λx2y. They are

l1 : ρz1x1λx1y + ρz1x2λx2y = ρz1y (6.4)

l2 : ρz2x1λx1y + ρz2x2λx2y = ρz2y (6.5)

When we have two graph-induced linear constraints on two parameters, we have a system

of linear equations to solve for both parameters. However, now moving to Figure 6.3(b), note

that here the two equations are in fact “equivalent,” since the coefficients (ρz1x1 , ρz1x2 , and

ρz1y) in Eq. (6.4) multiplied with λz2z1 are equal to the corresponding coefficients (ρz2x1 , ρz2x2 ,

and ρz2y) in Eq. (6.5). The reason behind this is, given z1, there is no additional information

z2 can provide on λx1y or λx2y, because z2 is connected to λx1y or λx2y only through z1. Hence,
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Figure 6.3: Different numbers of independent linear constraints can be constructed in differ-

ent graphs.

l2 cannot be “matched to” λx1y or λx2y, which makes z2 an invalid candidate instrument when

z1 is present. Condition 3 in Definition 23 is used to guarantee that each constraint generated

will have unique information on one edge in E ′, since it disallows the path for one instrument

to subsume the path for another instrument.

Nevertheless, Figure 6.3(b) is still an example of partial-instrumental set. One possible

choice of Z, E, E ′ is Z = {z2}, E = {λx1y, λx2y}, E ′ = {λx1y}, so that Z is a partial-

instrumental set for E on E ′. In this case, W1 = ∅ and p1 is z2 → z1 → x1 → y. In

other words, although we cannot solve the system, we can still extract one non-redundant

linear equation on the two parameters. This may still be useful, as such equation may

be combined with an external equality constraint on those parameters to build a full-rank

system of equations.

Another example is given in Figure 6.4. If we define Z = {z1, z2, z3, z4}, E = {λx1y,

λx2y, λx3y, εz2y, εz4y}, and E ′ = {λx1y, εz2y, λx2y, λx3y}, then Z is a partial-instrumental set

for E on E ′. The constraints generated from z1, z2, z3, z4 are matched to λx1y, εz2y, λx2y, λx3y,

respectively, with conditioning sets W = {{a, b}, {b}, ∅, ∅}, and the paths P = {z1 → x1 →

y, z2 ↔ y, z3 → z2 → x2 → y, z4 → x3 → y}.

Note that when E ′ = E and E contains only directed edges, Definition 23 degenerates to

the traditional generalized instrumental set. Lemma 2 below states that we can construct
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Figure 6.4: It is possible to construct 4 linear equations on 5 edges, E =

{λx1y, λx2y, λx3y, εz2y, εz4y}.

graph-induced linear constraints on edges in E, which might contain both directed and

bidirected edges. The number of constraints constructed, |E ′|, might be fewer than the

number of edges involved in the equations, when E ′ is a strict subset of E. For example, for

the DAG in Figure 6.4, we can construct 4 linear equations on 5 edges.

Lemma 2. For an SCM M with graph G = (V,D,B), if there exists a partial-instrumental

set Z = {z1, . . . , zn′} for E = {θ1, . . . , θn} on E ′ where |E| = n and |Z| = |E ′| = n′, then

there exists a set of n′ graph-induced linear constraints on E. Specifically, given the triples in

Definition 23 as (z1,W1, p1), . . . , (zn′ ,Wn′ , pn′), for each i = 1, . . . , n′, we have a constraint,

li : ρziy·Wi
= ci1θ1 + · · ·+ cinθn, (6.6)

where cij is a function on the correlations of variables in M for all j = 1, . . . , n.

See [BP12] for how to compute the coefficients ci1, . . . , cin.

6.5 Incorporating External Equality Constraints

Given a set of linear constraints, it is important to check for the uniqueness of such constraints

given the model M—is a newly found constraint equivalent to a previously found one, or

can it be deduced from several previously found ones? In other words, what are the criteria
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for a set of constraints to be “full-rank?” This question becomes harder when external

equality constraints and known edges are provided, since it is not trivial to decide whether

one constraint can be a linear combination of several other constraints of any type. As

discussed, each constraint of an instrumental set can be “matched to” an edge. The same

idea applies to partial-instrumental sets, where more edges of both types are involved. I

now show that we can also apply this simple strategy when combining graph-induced linear

constraints with external equality constraints and known edges.

To begin with, we have the following lemma.

Lemma 3. Given only n′ constraints constructed in Lemma 2 from the partial-instrumental

set Z for E on E ′, no edge in E \ E ′ can be solved.

The correctness of this lemma is evident for the reason that, if an edge is not “matched

to” by any constraint constructed from a partial-instrumental set, then it cannot be solved

given those constraints. In other words, the value of any variable in E\E ′ cannot be deduced

from L. Hence, we can combine external information on the edges E\E ′ with the constraints

of L, without worrying about such external constraints being redundant.

Building on top of this, we have the main theorem of this paper. Theorem 10 provides a

sufficient condition that, when satisfied, guarantees a full-rank set system of linear equations

can be constructed by combining a set of graph-induced linear constraints, external equality

constraints, and the values of known edges.

Theorem 10. For an SCM M with graph G = (V,D,B), let y be a variable in V and let

E be a set of n edges where E ⊆ Inc(y). Suppose there exists a partial-instrumental set, Z,

for E on E ′ where |Z| = |E ′| = n′, and we are given the following external information:

1. a set of nk edges, Ek ⊆ E, whose coefficients are known, and

2. a set of ne linearly independent external equality constraints, Le, on edges Ee, where

Ee ⊆ E.
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If Ek ∩E ′ = ∅, and there exists a way to simultaneously select one edge from each constraint

l ∈ Le such that the selected edges 1) are not repetitive, 2) do not contain any edge in E ′∪Ek,

then there exists a full-rank set of n′ + nk + ne linear constraints on E.

The intuition behind Theorem 10 is that a full-rank set of constraints can be constructed

if we can find an edge for each constraint, where that constraint contains some unique infor-

mation on that edge. Specifically, the constraints are given by: n′ constraints constructed

from the partial-instrumental set as in Lemma 2, nk constraints in the form of θi = ci where

θi ∈ Ek and ci is the known value of θi for i = 1, . . . , nk, and ne external equality constraints.

A special case of Theorem 10 is when there exists no partial-instrumental set—we can still

construct a full-rank constraint set from known edges and equality constraints only. For

example, given θ1 = θ2 and θ1 = k, they form a full-rank set and we immediately have

θ2 = k.

An immediate result from Theorem 10 is that when n′ + nk + ne = |E|, i.e., the number

of linear constraints we can find is equal to the number of structural parameters E that

those constraints are on, then we can solve for all the structural parameters in E. I use

Figure 6.5 to show how to apply Theorem 10. The set of variables Z = {z1, z2, z3} is

a partial-instrumental set for E = {λx1y, λx2y, εx2y, εz3y} on E ′ = {λx1y, εx2y, εz3y}. We can

construct three constraints using the instruments z1, z2, z3, and those constraints are matched

to λx1y, εx2y, εz3y, with the paths z1 → z2 → x1 → y, z2 ↔ y, z3 ↔ y, respectively.

Now I analyze different possible types of external information given. Let k, l,m denote

constants:

1. the constraint εx2y = kεx3y cannot be combined with our graph-induced linear con-

straints, since both εx2y and εz3y are in E ′, and there is no way to select an edge from

this equality constraint that is not in E ′ ∪ Ek;

2. the constraint λx1y = lλx2y can be combined with our graph-induced linear constraints,

since λx2y is not in E
′, so we can select the edge λx2y from this equality constraint that
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Figure 6.5: Variables z1, z2, z3 form a partial instrument set for E = {λx1y, λx2y, εx2y, εz3y}

on E ′ = {λx1y, εx2y, εz3y}.

is not in E ′ ∪ Ek;

3. the constraint λx2y = m (either from previous identification or prior knowledge) can

be combined with our graph-induced linear constraints, since λx2y is not in E ′, so

Ek ∩ E ′ = ∅.

The three graph-induced linear constraints are:

ρz1y = ρz1x1λx1y + ρz1x2λx2y (6.7)

ρz2y·{z3} =
ρz2x1 + ρz3x1

(1− ρ2z2z3)1/2(1− ρ2z3y)1/2
λx1y

+
ρz2x2 + ρz3x2

(1− ρ2z2z3)1/2(1− ρ2z3y)1/2
λx2y

+
1

(1− ρ2z2z3)1/2(1− ρ2z3y)1/2
εx2y

(6.8)

ρz3y = ρz3x1λx1y + ρz3x2λx2y + εz3y (6.9)

By Wright’s rules, all three equations above have the equal ratio of the coefficient for λx1y to

the coefficient for λx2y. Hence, λx1y and λx2y can be eliminated together, and εx2y and εz3y can

thus both be solved. This again explains why we cannot combine the external information

εx2y = kεz3y with the three graph-induced linear constraints: this external constraint can be

deduced from the three graph-induced linear constraints. On the other hand, if the external
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information is λx1y = kλx2y, since neither edge can be solved from the graph-induced linear

constraints, the equality constraint cannot be deduced from the system, and is therefore not

redundant.

Though in this paper I present our method based on generalized instrumental sets, I

conjecture that this approach can be generalized to combine with most of existing linear

causal identification methods. This is due to the nature of identification methods for linear

models, most of which construct a system of linear equations to solve for a set of structural

parameters, E. I hence believe that we can match each equation to one parameter in E as

required by Theorem 10. Proving this conjecture is beyond the scope of this paper and I

leave it for future work.

6.6 Case Studies

In this section, I revisit the example in Section 6.2 and show how the proposed method can

be used to solve it. I also show how it is useful in other important real-world applications.

6.6.1 Interference

For the interference example in Figure 6.1, there is an equality constraint λx1y3 = λx2y3 . Z =

{z, t} is a partial-instrumental set for E = {λx1y3 , λx2y3 , λx3y3} on E ′ = {λx1y3 , λx3y3}. Note

that here we can either choose E ′ to be {λx1y3 , λx3y3} or {λx2y3 , λx3y3} but not {λx1y3 , λx2y3}.

Otherwise, the equality constraint has no edge to select from for it to match to, so the

condition in Theorem 10 will fail. If we choose E ′ = {λx1y3 , λx3y3}, we have a full-rank set

of three equations on λx1y3 , λx2y3 , λx3y3 , with two graph-induced linear constraints generated

from z and t, and one external equality constraint.
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6.6.2 Equiconfounding

A number of identification techniques use the assumption of equiconfounding, where observed

variables are equally affected by an unobserved confounder. [Cha13] discusses some special

types of equiconfounding where point-identification is possible, including when two joint

responses are equiconfounded, and when two causes and one response are equiconfounded.

The most widely applied special case of equiconfounding is “difference-in-differences”

[AP09, KS19], which assumes two joint responses are equally affected by unobserved con-

founding. A commonly cited example involves estimating the effect of raising the minimum

wage on unemployment. In this case, the change in employment after minimum wage was

increased in New Jersey (NJ) was compared to the change in employment in Pennsylvania

(PA) over the same time period, where minimum wage was not changed [CK94]. The usual

structure can be depicted as in Figure 6.6, where x represents minimum wage, y represents

unemployment after the change in minimum wage, w represents unemployment before the

change in minimum wage, and u represents the unobserved confounder. The equality con-

straint of this model is that λuw = λuy (DAG on the left), without which the causal effect is

not identifiable. In the latent projection [Pea09] (DAG on the right) the equality constraint

becomes εxw = εxy.

(u)

x y

w

λuw
λ
uy

w

x y
λxy

ε
w
yε xw

εxy

Figure 6.6: When two joint responses are equiconfounded (λuy = λuw) this can aid in

identification. Left: Latent variable DAG. Right: Latent projection.

As discussed in [Cha13, Chapter 4], another common case of equiconfounding happens

when two joint causes and one response are affected by the unobserved confounder by the

same or proportional magnitude. For example, in Figure 6.7 (left), we have an equality
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constraint on three edges, λux1 = λux2 = λuy (in the latent projection (right), this translates

to the equality constraint εx1x2 = εyx1 = εx2y). The causal effect λx1y is not identifiable

without this constraint.

(u)

x1 y
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Figure 6.7: If two joint causes and one response are equiconfounded (λux1 = λux2 = λuy) this

enables identification. Left: Latent variable DAG. Right: Latent projection.

The first example I showed is Figure 6.6, the well-known “difference-in-differences” graph,

or the case when two joint responses are equiconfounded [Cha13]. First, we can see that the

bidirected edge, εxw is identified in this latent projection DAG and is equal to ρxw, since

x ↔ w is the only unblocked path between x and w. So we can plug it in to the equality

constraint, εxw = εxy and get εxy = ρxw. Next, we see that Z = {x} is a partial-instrumental

set for E = {λxy, εxy} on E ′ = {λxy}, so we have the graph-induced linear constraint

λxy + εxy = ρyx. Together with the known edge constraint εxy = ρxw, we have a full-rank set

of two constraints on two variables, and λxy can be solved, which gives λxy = ρyx − ρxw.

The second example is when two joint causes and one response are equiconfounded, as in

Figure 6.7. This case is similar to the previous one. εx1x2 can be identified (εx1x2 = ρx1x2),

and plugging into the equality constraint identifies εx2y and εyx1 . Next, we observe that Z =

{x1, x2} is a partial-instrumental set for E = {εx2y, λx1y, λx2y, εyx1} on E ′ = {λx1y, λx2y}. As

a result, we have a full-rank set of four constraints, including two graph-induced constraints

and two constant (known edge) constraints, and we can thus solve for all the four edges in

E.

Another more complex example, [Cha13, Graph 2], can be solved similarly using our

method, and I skip the discussion of that. Our method can solve all the cases where point
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identification is possible in [Cha13]. I can also solve other simple generic cases of equicon-

founding which have not been discussed in [Cha13]. For instance, by replacing the equality

constraint with λux = λuw or λux = λuy in Figure 6.6 left, I have two different examples that

I can both solve. I leave the discussion to the appendix.

6.6.3 Benchmarking in Sensitivity Analysis

Causal inference requires knowledge or assumptions about the data generating process, and

sensitivity analysis aims to understand the extent of bias when these assumptions are violated

[Ros10, Ros17]. Often, these violations render the causal effect of interest unidentifiable, and,

therefore, additional constraints are needed to identify the causal effect and derive the bias

[CKC19].

A common practice is to “benchmark” the extent to which the assumption is violated

[CH20]. For example, if we want to assess the sensitivity of our estimate to omitted variable

bias, we might ask what the bias would be if the missing confounder were as strong as an

observable confounder. One could then argue that, as long as the strongest confounders

have been accounted for, this value represents an upper bound on the potential bias due to

a missing variable.

Solving this problem again reduces to identification in the presence of an equality con-

straint. For example, suppose that we wanted to determine the bias if an unobserved con-

founder, depicted by the bidirected edge in Figure 6.8 right, were k times as strong as the

observed confounder, z, for some known constant k. In this case, I posit that εxy = kλzxλzy.

This equality constraint permits the identification of λxy, enabling us to compute the bias

under this hypothesized relative strength of confounding.

For Figure 6.8, we have the external information that εxy = kλzxλzy. First notice that

the edge, λzx can be identified using z as an instrument to itself, and we get λzx = ρzx.

Hence, the equality constraint reduces to εxy = kρzxλzy, which is now in the form of
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Figure 6.8: Left: Original DAG. Right: Potential violation with unobserved confounders εxy.

The assumption that εxy = kλzxλzy allows identifying λxy.

θ1 = k′θ2 that our method can handle. We next examine the DAG and see the set Z = {x, z}

is a partial-instrumental set for E = {εxy, λxy, λzy} on E ′ = {λxy, λzy}. We can thus construct

two graph-induced linear constraints, as follows.

εxy + λxy + ρzxλzy = ρxy (6.10)

ρzxλxy + λzy = ρzy (6.11)

Together with the equality constraint εxy = kρzxλzy, we have a full-rank set of linear con-

straints from Theorem 10, where the equality constraint is matched to the edge εxy. Note

that this is just one possible choice of E ′, and we can also choose E ′ = {εxy, λxy}, where the

equality constraint will be matched to λzy. Either way, we have three equations on three

unknowns, and all of them are solved. Specifically,

λxy =
ρzxρzy(k + 1)− ρxy

(k + 1)ρ2zx − 1
(6.12)

λzy =
ρxyρzx − ρzy
(k + 1)ρ2zx − 1

(6.13)

εxy = kρzx
ρxyρzx − ρzy
(k + 1)ρ2zx − 1

. (6.14)

As we see, those parameters are point-identified if we know the value of k, which is how

strong the unobserved confounder is compared to an observed confounder, z. If one does

not know the exact value of k, but only its plausible range (for instance, k ≤ 2), it is still

possible to use this result to bound the target parameters.
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6.7 Discussion and Summary

I developed a novel graphical criterion that allows researchers to leverage equality constraints

for identification in linear systems. I showed how several apparently diverse problems includ-

ing interference, difference-in-differences, and sensitivity analysis can be reduced to identifi-

cation with equality constraints, consisting of special cases handled by our method. I hope

the results of this paper can be used towards the construction of a systematic, algorithmic

approach to exploit equality constraints in causal inference. Extensions to more general

forms of equality constraints, and incorporating such results into state-of-the art linear iden-

tification algorithms are promising directions for future work.
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CHAPTER 7

Concluding Remarks

Many existing machine learning and causal inference methods have relied on the data being

IID. Blindly assuming that data are IID when in fact they are not, can potentially bias the

outcome of a research study. Such bias can occur for the query: causal effect of treatment

on outcome, when there exist bias structures in the interaction pattern. In this work, I

focus on causal inference for the generalized interference problem. Under the linear setting

or restricted additivity, bias structures include an open (not necessarily directed) path from

the treatment of unit i to the outcome of unit j and/or to the outcome of unit i itself such

that an intermediate node on the path belongs to unit j. Furthermore, only those two types

of interaction structures can induce bias. Under the general non-parametric setting, any

effect from a unit i to the outcome of another unit j induces bias. I also presented the bias-

quantification formulas, which show what factors affect the size of the interaction bias. In the

presence of interaction bias, it is still possible to compute an unbiased estimate by selecting

a subset of samples B such that no biasing paths exist in the interaction graph corresponding

to samples in B. More importantly, such a debiasing procedure does not require the selection

of IID samples and may contain interactions among them. Such a debiasing procedure can

also be done in polynomial time. In the empirical analysis, I randomly generated interaction

models and show that the bias can be huge if IID is wrongly assumed on data with generalized

interference. The debiasing methods in this work yield unbiased estimates. Finally, with the

partial interference assumption, I developed a causal identification method utilizing equality

constraints that works even with unobserved confounders. The method advances solutions

to other well-known problems including difference-in-differences and sensitivity analysis.
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CHAPTER 8

Appendix

8.1 Supplemental Materials for Chapter 3

8.1.1 Example and Analysis for Algorithm 1

X1

Y1

X2

Y2

X3

Y3

X4

Y4

C4

X5

Y5

Figure 8.1: An interaction network of 5 individuals.

Example 3. Input: t = 3, interaction network in Figure 8.1.

Iteration 1: Units = [1, 5, 4, 2, 3]. B = {5, 2}.

Iteration 2: Units = [5, 1, 4, 3, 2]. B = {5, 3}.

Iteration 3: Units = [5, 2, 3, 1, 4]. B = {5, 2}.

The three choices of B all have the same size 2. So the output is any of the three choices

of B.

Note that the subnetwork formed by 5 and 3 contains a bidirected path between Y3 and Y5

(due to the path Y3 ← C4 → X4 → Y4 → Y5), and this does not constitute a bias structure.
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Complexity Analysis The time complexity is O(tn2dp). d is the maximum degree of each

node (how many other nodes a node is directly connected to), and p is the length (number

of edges) of the longest simple path. This is polynomial if the degree is bounded.

Lemma 4. The following two statements are equivalent. The first statement is used in this

algorithm for simpler computation, and the second statement is used in the main text for

easier understanding.

1. For each individual i in B, i has no deflecting bias structure in G∗ with another indi-

vidual j in B.

2. For each individual i in B, i has no deflecting bias structure in the latent projection of

G∗ on B.

The definition of latent projection is by [Pea09], as follows.

Definition 24 (Projection[Pea09]). A latent structure L[O] =< D[O], O > is a projection of

another latent structure L if and only if:

1. every unobservable variable of D[O] is a parentless common cause of exactly two non-

adjacent observable variables; and

2. for every stable distribution P generated by L, there exists a stable distribution P ′

generated by L[O] such that I(P[O]) = I(P ′
[O]).

Proof of Lemma 4.

Proof. If statement 1 is false, then there exists an open path between Xi and Yj in G
∗, where

i, j ∈ B. The latent projection contains both i and j so the open path still exists, which

imply a deflecting bias structure in the latent projection.

If statement 2 is false, then there exists an open path between Xi and Yj in the latent

projection. This implies a deflecting bias structure in G∗.
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8.1.2 An Additional Simulation

Experiment: Subset Size of THM-2 We use same parameter settings as the previous

experiment, except that we let dRate and rRate vary in 0.01, 0.1, 0.3, 0.5. The subset sizes

selected by THM-2 are in Table 8.1. Observe that as the graph gets denser (larger dRate

and rRate), THM-2 is unable to use most of the input samples. However, for the tests with

samples ≥ 3, THM-2 yields very accurate estimates. Given that the ground truth is 100,

the estimates of THM-2 range between 99.96 and 100.06.

dRate

0.01 0.1 0.3 0.5

rRate

0.01 155 147 131 115

0.1 26 24 23 23

0.3 9 8 8 8

0.5 5 4 3 0

Table 8.1: Each cell denotes the subset size selected using THM-2.

8.1.3 Proof of the Theorems

All lemmas and proofs are attached in Section 8.1.4 of the appendix.

Theorem 1. Let M∗(G∗, S∗) be a balanced interaction model in which treatment variable Xi

and outcome variable Yi are not confounded by any variable in Vi, ∀i. Let D be the available

data generated by M∗ and let G† be the generic network. Let TACEXY be identifiable in G†

and be given by βY X , the regression coefficient of Y on X. Let α denote the true value of

TACEX,Y in M∗. If X satisfies ASDC then the interaction bias is given by,

∣∣∣E[ ˆβY X ]− α
∣∣∣ = ∣∣∣ 1n ∑

1≤i≤n

∑
p∈P [iji]

V al(p)
σ2
Rp

σ2
X
− 1

n(n−1)

∑
1≤i≤n

∑
p∈P [ji]

V al(p)
σ2
Rp

σ2
X

∣∣∣,
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where P [iji] is the set of reflecting bias structures between Xi and Yi through any explicit

variable Wj of unit j with i ̸= j, P [ji] is the set of deflecting bias structures between Xj and

Yi with i ̸= j, and Rp is the root of path p.

Proof. By Lemma 11,

E[ ˆβY X ]

=α

+
1

n
(
∑
p∈P

V al(p) +
∑

1≤i≤n

∑
R∈(R[iji]\{Xi})

cRβRX)

− 1

n(n− 1)

∑
1≤i≤n

∑
R∈R[ji]

cRβRX ,

where P is the set of directed paths from Xi to Yi for any i passing through an intermediate

node Wj ∈ V(j), i ̸= j, R[iji] is the set of roots of the open paths between Xi and Yi through

some Wj with j ̸= i, R[ji] is the set of roots of the open paths between Xj and Yi for j ̸= i,

and cR is the sum of values of the directed paths from a variable R (∈ (R[iji] \ {Xi}) or

∈ R[ji]) to Yi not passing through any variable in R[iji] ∪R[ji] for any j ̸= i.

We prove this is equivalent to

E[ ˆβY X ]

=α

+
1

n

∑
1≤i≤n

∑
p∈P [iji]

V al(p)
σ2
Rp

σ2
X

− 1

n(n− 1)

∑
1≤i≤n

∑
p∈P [ji]

V al(p)
σ2
Rp

σ2
X

,

where P [iji] is the set of open paths between Xi and Yi through any Wj ∈ V(j) with i ̸= j,

P [ji] is the set of open paths between Xj and Yi through any Wj ∈ V(j) with i ̸= j, and Rp

is the root of path p.

We first check the term
∑

R∈R[ji] cRβRX . For an R that is the root of a path between Xj

and Yi, since X satisfies ASDC, we must have R ∈ V(j). Rename it as Rj. We also have
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βRX = σRX/σ
2
X . By Wright’s Rules, σRX is equal to the sum of open path values between

R and X times the variance of the root of that path. Recall that R ∈ Anc(X), X satisfies

ASDC, so R satisfies ASDC. So σRX is equal to the sum of open path values between Rj

and Xj times the variance of the root of that path. We prove that each term that appears

in A =
∑

p∈P [ji]

V al(p)
σ2
Rp

σ2
X

also appears in B =
∑

R∈R[ji] cRβRX , and there is no extra term.

Each Rp in A is a root between Xj and Yi for some j ̸= i, and must be included if it is

a root. So we just have to check all the roots between Xj and Yi for some j ̸= i. For each

root Rp, we check where in B will σ2
Rp
/σ2

X exist. When R in B is Rp, the term containing

σ2
Rp
/σ2

X in βRX is the sum of paths from Rp to Xj where Rp is the root, so is the sum of

directed paths from Rp to Xj. So the term containing σ2
Rp
/σ2

X in cRβRX is the sum of paths

between Yi and Xj through Rp with 1) Rp being the root and 2) the sub-path from Rp to Yi

does not go through any variable in R[iki] ∪R[ki] for any k ̸= i.

The terms that are left in V al(p)
σ2
Rp

σ2
X

to cover in B are the Xj − Rp − Yi paths whose

sub-path from Rp to Yi go through some variable in R[iki] ∪ R[ki] for any k ̸= i. We just

have to go over all types of R in B, and see which ones contain σ2
Rp
/σ2

X .

Case 1: R ∈ Anc(Rp). There is no such a path in cR or βRX . cR does not go through

R since R ∈ R[ji]cRβRX . βRX also does not contain σ2
Rp

since R ∈ Anc(Rp), so Rp is never

a root on any paths between R and Xj. Hence cRβRX does not contain such a path.

Case 2: R ∈ Desc(Rp). Again, cR does not contain Rp. However βRX contains σ2
Rp
.

Rp can be a root on some paths between R and Xj. Those paths are from Rp to R and Rp

to Xj. Recall that cR denotes directed paths from R to Yi. The term that contains σ2
Rp

in

cRβRX are the paths between Xj and Yi, that pass through some variable in R[iki] ∪ R[ki]

(R), with Rp being the root. As a result, this case completely cover the missing term.

Case 3: R⊥⊥Rp. It is easy to derive that in this case, cRβRX does not contain a path

that goes through Rp. Otherwise R and Rp would be dependent.

Case 4: R and Rp are only connected through common ancestors. In this case,
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in any path that contains both R and Rp, Rp will not be the root. Their common ancestors

will be the roots. So this case also does not provide any term containing σ2
Rp
/σ2

X .

We have proved that for every Rp in A, the coefficient of σ2
Rp
/σ2

X (equal to a sum of those

paths in P [ji] with Rp being the root) is equal to the the coefficient of σ2
Rp
/σ2

X in B. As

stated before, A and B have the same set of roots, so they have the same σ2
Rp
/σ2

X terms. So

the sum of those terms are equal.

Next, we prove the reflecting bias terms are also equal. Observe that
⋃

1≤i≤n P [iji] =

P , so we just have to prove that
∑

p∈P [iji] V al(p) +
∑

R∈(R[iji]\{Xi}) cRβRX is equivalent to∑
p∈P [iji] V al(p)

σ2
Rp

σ2
X
. This can be proven using the exact same reasoning above, so we omit

the proof.

Thus, the two expressions for E[ ˆβY X ] are equivalent.

Corollary 1. Let M∗∗(G∗∗, S) be a balanced interaction model in which X satisfies ASDC

and TACE is identified as βY X = α in the generic network, then interaction bias exists iff

G∗∗ contains a reflecting or deflecting bias structure.

Proof. (if part) Follows from theorem 1.There are two terms that cause bias in theorem 1

and they can be attributed to the two bias structures.

(only if part) Had there been additional structures that caused bias, then theorem 1 would

have had additional terms to account for it. Since theorem 1 has only two bias terms fully

accounted for by the two structures, there exist no other structure that creates bias.

Theorem 2. Let G∗ be an interaction network. Given the conditions in Theorem 1 and B

a bias-free subset for G∗, TACEXY = E[ ˆβY X ] where the regression coefficient is calculated

using only samples in set B.

Proof. We check the interaction network G∗
S formed by B, by treating any variable from V(j)

where j /∈ S as unobserved. Next, we calculate E[ ˆβY X ] for G
∗
S.
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By Theorem 1,

E[ ˆβY X ] = α +
1

n
Term2 −

1

n(n− 1)
Term3.

The second term is obtained by summing over paths of the form: Xi − · · · −Wj − · · · − Yi,

and the third term is obtained by summing over paths of the form: Xi − · · · − Yj. These

paths do not exist in G∗
S. Hence, the two bias terms are 0, and E[ ˆβY X ] = α.

8.1.4 Lemmas

Lemma 1. If W satisfies ASDC, then any two explicit variables Wi and Wj are IID (Inde-

pendent and Identically Distributed.)

Proof. If W satisfies ASDC, and Wi is the root for some i, then from the third property of

ASDC, Wi must be the root for all i. The roots are only caused by their error terms, the

error terms are IID (identically distributed and independent), so W is IID.

If Wi is not the root for any i, W satisfies ASDC, and all its parents are IID, then we

have for any i

Wi =
∑

Vi∈Pa(W )

cVi
Vi + UWi

,

where cVi
is the coefficient of the variable Vi on the edge Vi → Wi. Each term is IID for any

i ̸= j. So Wi and Wj are IID.

If Wi is not the root for any i, W satisfies ASDC, and there exists a parent of W , V such

that Vi and Vj are not IID. Then from our previous derivation, there exists a parent of V ,

V ′, such that V ′
i and V ′

j are not IID. Keep tracing up until a root variable R, such that Ri

and Rj are not IID. However, this violates our derivation in the beginning, that if a variable

is the root and satisfies ASDC, it must be IID. We reach a contradiction. Hence, if Wi is not

the root for any i, W satisfies ASDC, then all its parents are IID, and W is thus IID.
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Lemma 5. Let X = {X1, . . . , Xn} be n IID random variables where the σ2
X > 0, and a

random variable Wi. Among X , Wi is dependent of Xi only, and Wi = aXi + b where a and

b are constants. Then the following expectation exists.

E

 (Xi − X̄)Wi∑
1≤i≤n

(Xi − X̄)2

 .
Proof. We have to prove that the function f(X1, . . . , Xn,Wi) inside of the expectation is

bounded. For convenience, rewrite it by plugging in Wi = aXi + b.

E

(Xi − X̄)(aXi + b)∑
1≤i≤n

(Xi − X̄)2

 .
For any Xj with j ̸= i, the denominator is a quadratic function on Xj, and the numerator

is a linear function of Xj from the term X̄. For Xi, the denominator is a quadratic function

on Xi, and the numerator is a quadratic function on Xi. Since σ2
X ̸= 0, X1, . . . , Xn cannot

take on the same value, so the denominator is always positive. When considering Xi as the

variable, f might only go to infinity when Xi goes to infinity or negative infinity, and same

with Xj.

When considering Xi as the variable, and Xj for all other j as constants, the denominator

can be written in the form of AX2
i + BXi + C, with A,B,C being constants. Hence, the

order (of the polynomial) of the denominator is 2, and the order of the numerator is 2. So

the limit of f when Xi goes to ∞ or −∞ is a finite value equal to the ratio of the coefficient

of X2
i in the numerator divided by the coefficient of X2

i in the denominator.

When considering Xj as the variable, the order of the denominator is 2, and the order

of the numerator is 1. So the limit of f when Xi goes to ∞ or −∞ is 0. Hence, f is

bounded.

Lemma 6. Given a balanced interaction model M∗∗(G∗∗, S∗∗), if generic variables V and X
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both satisfy ASDC, and dSep(Vi, Xi|∅) for all i in G∗∗, then

E


∑

1≤i≤n

(Xi − X̄)Vi∑
1≤i≤n

(Xi − X̄)2

 = 0.

Proof. The d-separation condition implies Xi⊥⊥Vi. V and X are IID implies that we can

treat all Xi’s as the same variable X, and treat all Vi’s as the same variable V . Hence, X⊥⊥V

and σXV = 0, which gives βV X = σXV σ
2
X = 0. Also note that

ˆβV X =

∑
1≤i≤n

(Xi − X̄)Vi∑
1≤i≤n

(Xi − X̄)2
.

Since the ordinary least squares estimator is unbiased, we have E[ ˆβV X ] = βV X = 0.

Lemma 7. Given a balanced interaction model, with the following conditions: 1) Xi and Yi

are not confounded by a path containing only variables in Vi, ∀i, and 2) Xi satisfies ASDC.

Then there exists a set S consisting of the following three subsets of explicit variables:

1. S1: Xi,

2. S2: the root variables (excluding Xi) of each open path between Xj and Yi (j can be

the same as i),

3. S3: the root variables of this interaction network that are in Anc(Yi) and d-separated

(by an empty set) from Xj for all j,

such that Yi can be expressed as a linear function of the variables in S i.e.,

Yi =
∑
Wt∈S

cWtWt,

where cWt is equal to the sum of the values of the directed paths from Wt to Yi that do not

go through any variable in S.

Proof. Consider the following protocol.
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• Start from the initial structural equation of Yi, Yi = f(Pa(Yi)), denoted SE(Yi).

• For each variable Aq in the r.h.s. of SE(Yi),

– if Aq ∈ S, keep it.

– if Aq /∈ S and not a root of the network, replace it with its structural equation,

Aq = g(Pa(Aq)) and plug it into SE(Yi).

– if Aq /∈ S and is a root of the network, keep it.

• Keep replacing until no more replacement can be done in the r.h.s. of SE(Yi).

• Denote the final SE(Yi) as SEf (Yi).

We prove SEf (Yi) is

Yi =
∑
Wt∈S

cWtWt,

where cWt is equal to the sum of the product of path coefficients of the directed paths from

Wt to Yi that do not go through any variable in S.

First, we prove that the r.h.s. of SEf (Yi) contains only variables in S. If it contains a

variable, Ar /∈ S, then Ar must be a root variable of the network. Otherwise it would have

been replaced by its parents according to the protocol. Ar /∈ S, so Ar /∈ S3, hence Ar must

be d-connected (given an empty set) to at least one Xj for some j. Since Ar is a root of the

network, Ar must be the ancestor of Xj. We next discuss if it is Xj for j = i or j ̸= i.

• j = i, i.e., Ar is an ancestor of Xi. Since X is ASDC, Xi cannot be caused by a variable

belonging to another unit. Hence, we have r = i. If all directed paths from Ar to Yi

pass through variables in S, then Ar cannot be replaced into the r.h.s. of SEf (Yi).

Hence, there exists at least one directed path from Ar to Yi that does not pass through

any variable in S, which we denote as pd. Since Ar is an ancestor of Xi and Ar to Yi is

a directed path not through S(including Xi), there exists a confounding path between
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Xi and Yi through Ar. Since Xi and Yi are not confounded by only variables of i, pd

must go through a variable of a different unit, and is the root of that confounding path.

However, then Ar ∈ S2 by definition, which contradicts the assumption that Ar /∈ S.

• j ̸= i, i.e., Ar is an ancestor of Xj for some j ̸= i. Again, there exists at least one

directed path from Ar to Yi that does not pass through any variable in S, which we

denote as pd. Since Ar is ancestor to both Xj and Yi, there is a confounding path

between Xj and Yi through Ar. Ar is the root on this path, which implies Ar ∈ S3,

and contradicts the assumption that Ar /∈ S.

Thus, our counterproof assumption is wrong, which means the r.h.s. of SEf (Yi) generated

by the above protocol contains only variables in S. Next we prove that the coefficients CWt

for eachWtS in the linear combination is equal to the sum of the values of the directed paths

from Wt to Yi that do not go through any variable in S. In the protocol above, every time

a variable is replaced by its parents, there is a multiplier equal to the directed edge between

each parent and the variable. For example, in SEYi
, a term is γCi. If Ci is replaced by its

parents, Dj and Ek, where Ci = δDj + θEk, then the term in SEYi
becomes γ(δDj + θEk).

So the coefficient of Dj is Ci’s coefficient γ multiplied by δ, the edge Dj → Ci. Since

replacements of a variable stops if it is in S, we have that the final coefficient of a variable

is equal to the sum of all directed paths from that variable to Yi, which do not pass through

any other variable in S.

Lemma 8. Given n IID random variables X1, . . . , Xn, and n IID random variables R1, . . . , Rn.

For each i, Ri is not independent of Xi only. Then we have

E

 (Xi − X̄)Ri∑
1≤k≤n

(Xk − X̄)2

 =
βRX

n
,

and βRX is the OLS regression coefficient of R on X, treating X1, . . . , Xn as a single variable

X, and R1, . . . , Rn as a single variable R.
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Proof. The above expression only depends on i, and from the property of IID, it is the same

for any i. We sum over i for that expression, and get

nE

 (Xi − X̄)Ri∑
1≤k≤n

(Xk − X̄)2


=

∑
1≤i≤n

E

 (Xi − X̄)Ri∑
1≤k≤n

(Xk − X̄)2


=E


∑

1≤i≤n

(Xi − X̄)Ri∑
1≤k≤n

(Xk − X̄)2


=E

[
ˆβRX

]
=βRX .

Divided by n on both sides, we have the equation in the lemma.

Lemma 9. Given n IID random variables X1, . . . , Xn, and n IID random variables R1, . . . , Rn.

For each i, Ri is not independent of Xi only. Then we have

E

 (Xi − X̄)Rj∑
1≤k≤n

(Xk − X̄)2

 = − βRX

n(n− 1)
,

for i ̸= j, and βRX is the OLS regression coefficient of R on X, treating X1, . . . , Xn as a

single variable X, and R1, . . . , Rn as a single variable R.

Proof. Denote the expectation of interest as Eij. X and R are both IID regarding different

units, and Xi and Rj are independent for i ̸= j. Thus, Eij = Ei′j, for any i′ ̸= j. Below
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when the sum is over i ̸= j, it means summing over i ∈ {1, . . . , n} \ {j}. We have

(n− 1)Eij =
∑
i ̸=j

Eij

=E


∑
i ̸=j

(Xi − X̄)Rj∑
1≤k≤n

(Xk − X̄)2


=E


∑

1≤i≤n

(Xi − X̄)Rj − (Xj − X̄)Rj∑
1≤k≤n

(Xk − X̄)2


=E

(
∑

1≤i≤n

(Xi − X̄)− (Xj − X̄))Rj∑
1≤k≤n

(Xk − X̄)2


=E

(0− (Xj − X̄))Rj∑
1≤k≤n

(Xk − X̄)2


=− E

 (Xj − X̄)Rj∑
1≤k≤n

(Xk − X̄)2

 .
By Lemma 8, we have

(n− 1)Eij = −
βRX

n
.

Divided by (n− 1) on both sides, we get the equation we wanted to prove.

Lemma 10. Given n IID random variables X1, . . . , Xn, and a variable Lt independent of

X1, . . . , Xn. Then we have

E

 (Xi − X̄)Lt∑
1≤k≤n

(Xk − X̄)2

 = 0.

Proof. Denote the expectation of interest as Ei, then Ei = Ej for any i, j, since Xi and Xj
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are IID. So we have

nEi =
∑

1≤i≤n

Ei

=E


∑

1≤i≤n

(Xi − X̄)Lt∑
1≤k≤n

(Xk − X̄)2


=0.

To prove Theorem 1, we first prove a slightly different version of it, Lemma 11.

Lemma 11. Given the interaction network G∗ of a balanced linear interaction model, with

Xi and Yi not confounded by any variable in Vi, ∀i. Given that X satisfies ASDC, then the

expected value of the OLS estimator ˆβY X is given by

E[ ˆβY X ]

=α

+
1

n
(
∑
p∈P

V al(p) +
∑

1≤i≤n

∑
R∈(R[iji]\{Xi})

cRβRX)

− 1

n(n− 1)

∑
1≤i≤n

∑
R∈R[ji]

cRβRX ,

where P is the set of directed paths from Xi to Yi for all i through any Wj ∈ V(j) with i ̸= j,

R[iji] is the set of roots of the open paths between Xi and Yi through some Wj with j ̸= i,

R[ji] is the set of roots of the open paths between Xj and Yi for j ̸= i, and cR is the sum of

values of the directed paths from a variable R (∈ (R[iji]\{Xi}) or ∈ R[ji]) to Yi not passing

through any variable in R[iji] ∪R[ji] for any j ̸= i.
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Proof.

E[ ˆβY X ] =E


∑

1≤i≤n

(Xi − X̄)(Yi − Ȳ )∑
1≤i≤n

(Xi − X̄)2


=E


∑

1≤i≤n

(Xi − X̄)Yi∑
1≤i≤n

(Xi − X̄)2

− E


∑
1≤i≤n

(Xi − X̄)Ȳ∑
1≤i≤n

(Xi − X̄)2


=E


∑

1≤i≤n

(Xi − X̄)Yi∑
1≤i≤n

(Xi − X̄)2

− E
(

∑
1≤i≤n

Xi − nX̄)Ȳ∑
1≤i≤n

(Xi − X̄)2


=E


∑

1≤i≤n

(Xi − X̄)Yi∑
1≤i≤n

(Xi − X̄)2

− E
 (nX̄ − nX̄)Ȳ∑

1≤i≤n

(Xi − X̄)2


=E


∑

1≤i≤n

(Xi − X̄)Yi∑
1≤i≤n

(Xi − X̄)2


Yi is can be written as a linear combination of the set in Lemma 7, S. By Lemma 7, S

is composed of

1. Xi,

2. the root variables (excluding Xi) of each open path between Xj and Yi, and

3. the root variables of this interaction network that are in Anc(Yi) and d-separated (by

an empty set) from Xj for all j, denoted by Li.

The second component can be further divided into two sub-components as follows.

1. R[iji] \ {Xi}, the set of roots of the open paths between Xi and Yi through some Wj

with j ̸= i, with Xi excluded, and

2. R[ji], the set of roots of the open paths between Xj and Yi for i ̸= j.
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We have

Yi = ciXi +
∑

R∈(R[iji]\{Xi})

cRR +
∑

R∈R[ji]

cRR +
∑
L∈Li

cLL,

where ci, cR, and cL denote coefficients for the linear combination. The variables in the

above expression are S, i.e., S = R[iji] ∪ R[ji] ∪ Li. Next, we compute the coefficients ci,

cR, cL.

ci is the sum of the directed path values from Xi to Yi not passing through any variable

in S. There are three types of directed paths from Xi to Yi:

1. the directed edge Xi → Yi,

2. directed paths Xi → · · · → Vi → · · · → Yi, and

3. directed paths Xi → · · · → Vj → · · · → Yi for j ̸= i.

The first two types belong to TACE by definition. So ci = α+ ci3, where ci3 is the coefficient

contributed by the third type of directed paths. Note that Vj cannot be a root of another

path between Xk and Yl for some k ̸= l. This is because Vj is caused by Xi, so V cannot be

ASDC, so X cannot be ASDC since Xk is caused by Vj, which violates the assumption that

X is ASDC. Hence, ci3 is equal to the sum of all directed paths from Xi to Yi through some

variable Vj for any j, which is equal to
∑

p∈P in the lemma statement.

For the second and third components in Yi, each cR is the sum of the directed paths

(multiplications of edge coefficients) from R to Yi not through variables in S. This follows

from Lemma 7.
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We have

E[ ˆβY X ]

=E


∑

1≤i≤n

(Xi − X̄)Yi∑
1≤i≤n

(Xi − X̄)2


=E


∑

1≤i≤n

(Xi − X̄)(ciXi +
∑

R∈(R[iji]\{Xi}) cRR +
∑

R∈R[ji] cRR +
∑

L∈Li
cLL)∑

1≤i≤n

(Xi − X̄)2


=αE


∑

1≤i≤n

(Xi − X̄)Xi∑
1≤i≤n

(Xi − X̄)2

+ E


∑

1≤i≤n

(Xi − X̄)ci3Xi∑
1≤i≤n

(Xi − X̄)2


+

∑
1≤i≤n

∑
R∈(R[iji]\{Xi})

cRE

 (Xi − X̄)R∑
1≤i≤n

(Xi − X̄)2


+

∑
1≤i≤n

∑
R∈R[ji]

cRE

 (Xi − X̄)R∑
1≤i≤n

(Xi − X̄)2

+
∑

1≤i≤n

∑
L∈Li

cLE

 (Xi − X̄)L∑
1≤i≤n

(Xi − X̄)2

 .
For the first term: similar to the way Ȳ is removed before, in the first term, we can change

Xi to Xi− X̄. The numerator and the denominator are the same in the expectation. So the

first term is α.

The second term is equal to

∑
1≤i≤n

ci3E

 (Xi − X̄)Xi∑
1≤i≤n

(Xi − X̄)2

 .
By Lemma 8, it becomes ∑

1≤i≤n

ci3
βXX

n
,

where ci3 is the sum of directed paths from Xi to Yi through Vj for any j ̸= i and any V .

For the third term: we look at one single R first. R is the root variable of an open path

between Xi and Yi through some Wj with j ̸= i, so R causes Xi. Then R must belong to
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unit i since X satisfies ASDC. Since R is the root, R ∈ Anc(X), so R satisfies ASDC, and

is IID for different units. So we relabel this R as Ri, and we have IID R1, . . . , Rn. Applying

Lemma 8, we have the expectation term is equal to βRX/n. cR is the sum of the directed

paths from Ri to Yi, not through variables in S. So the third term is equal to

1

n

∑
1≤i≤n

∑
R∈(R[iji]\{Xi})

cRβRX .

For the fourth term: we look at one single R first. R is the root variable of an open

path between Xj and Yi, for some j ̸= i, so either R causes Xj or R = Xj. If R causes Xj,

then R must belong to unit j, because X satisfies ASDC. So either case R belongs to unit

j. Since R is the root, R ∈ Anc(X), so R satisfies ASDC, and is IID for different units.

So we relabel this R as Rj, and we have IID R1, . . . , Rn. Applying Lemma 9, we have the

expectation term is equal to −βRX/(n(n− 1)). cR is the sum of the directed paths from Rj

to Yi, not through variables in S. So the fourth term is equal to

− 1

n(n− 1)

∑
1≤i≤n

∑
R∈R[ji]

cRβRX .

The fifth term is 0 by Lemma 6.

Finally, recall that V al(p) denotes the value of an open path p. Plugging the above values

back into the expression for E[ ˆβY X ], we have the results as in Lemma 11.

8.2 Supplemental Materials for Chapter 4

8.2.1 Proof

Theorem 3. Suppose M∗, D,G† refer to the true model, available data and generic network

as specified in definition 6 such that Q = TACEXY and Q̂ = βY X . Xi and Yi are not

confounded by any variable of i, for all i. Let GU be the b-GU corresponding to M∗. For all

i ̸= j pairs, let Nd be the number of pairs of units that have definite interference paths from
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i to j and let Nθ be the number of pairs of units that have uncertain interference paths from

i to j with probability θ. Let the sum of the values of the interference paths from Xi to Yj be

p,1 for all i ̸= j. The expected interaction bias is given by

E[
∣∣∣E[ ˆβY X ]−Q

∣∣∣] = 1

n(n− 1)
|p|(Nd + θNθ).

Proof. Let G∗ be the true interaction graph corresponding to M∗ (no uncertainty). By

Theorem 1 in [ZMP22],∣∣∣E[ ˆβY X ]−Q
∣∣∣ = ∣∣∣ 1n ∑

1≤i≤n

∑
p∈P [iji]

V al(p)
σ2
Rp

σ2
X
− 1

n(n−1)

∑
1≤i≤n

∑
p∈P [ji]

V al(p)
σ2
Rp

σ2
X

∣∣∣.
Under our settings, there is no reflecting bias structure, but only deflecting bias structures.

So the first term on the r.h.s. is 0. Theorem 1 becomes∣∣∣E[ ˆβY X ]−Q
∣∣∣ = ∣∣∣− 1

n(n−1)

∑
1≤i≤n

∑
p∈P [ji]

V al(p)
σ2
Rp

σ2
X

∣∣∣.
The sole term on the r.h.s. is the sum of all deflecting bias paths’ strengths multiplied by

the variance factors, divided by 1/(n(n1)). Under our settings, interference paths are the

only deflecting bias structures, and the roots of those paths are all Xi for some i. So we have

σ2
Rp
/σ2

X = 1. In addition, the summation is over all interference paths. It can be rearranged

as summing over all pairs of i ̸= j, and for each pair, sum over all the interaction paths. For

each pair, the summation of all the interaction paths is the same and equal to p, from our

assumptions. Hence, Theorem 1 can be further simplified as∣∣∣E[ ˆβY X ]−Q
∣∣∣ = ∣∣∣− 1

n(n−1)
Np

∣∣∣,
where N is the total number of ordered pairs of i ̸= j where there are interference paths

from Xi to Yj. The term on the r.h.s. inside of the absolute symbols except p is less than 0.

So Theorem 1 becomes ∣∣∣E[ ˆβY X ]−Q
∣∣∣ = 1

n(n−1)
N |p|.

1I.e., p is equal to the causal effect of Xi on Yj.

101



Hence, we have

E[
∣∣∣E[ ˆβY X ]−Q

∣∣∣] = E[
1

n(n− 1)
N |p|]

=
1

n(n− 1)
|p|E[N ]. (8.1)

Next we evaluate E[N ]. N is the sum of the pairs whose interference paths appear in GU

as definite paths, and the pairs whose interference paths appear in GU as uncertain paths.

The first part is simply Nd. The second part’s expectation is θNθ by the definition of θ. So

we have

E[N ] = Nd + θNθ.

Plugging this into Equation 8.1, we have the equation in the statement of Theorem 3.

Theorem 4. Consider the setting in Theorem 3. Suppose we are additionally given a bias

threshold τ , and the interference effect is bounded by a constant Γ times the TACE (i.e.,

|p| ≤ Γ|Q|). If a subset B of units satisfies

1

|B|(|B| − 1)
(N ′

d + θN ′
θ)Γ ≤ τ,

then using the samples in B, the expected interaction bias will be at most τ |Q|. For all i ̸= j

pairs with i, j ∈ B, N ′
d denotes the number of pairs with definite interference paths from i to

j in G∗, and N ′
θ denotes the number of pairs with interference paths from i to j in G∗ with

probability θ.

Proof. Consider the sub-graph Gsub formed by projecting the true interaction graph G∗ on

B. variables of units in B. Consider an interference path from Xi to Yj, where i ̸= j and

i, j ∈ B. It does not go through a third unit by our assumptions, and since i, j ∈ B, the path

remains unchanged in Gsub. Let Gusub be the uncertain sub-graph formed by projecting GU

on B. For each pair i ̸= j in the original uncertain sub-graph GU such that the interference

paths from Xi to Yj are uncertain, consider the following scenarios.
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1. If i, j ∈ B, then from the previous discussion, the interference paths from Xi to Yj

remains unchanged after the projection. So the probability of those paths existing is

still θ.

2. If i ∈ B, j /∈ B, then the interference paths are removed in Gusub.

3. If i /∈ B, j ∈ B, if we also have interference paths from Xi to Yk with k ̸= j, this will

result in a bidirected path between Yj and Yk. However, this can be ignored since it is

not a bias structure, by Definitions 7 and 8 in [ZMP22].

As a result, we can apply Theorem 3 on Gusub, and obtain the interaction bias as

1

|B|(|B| − 1)
(N ′

d + θN ′
θ)|p|.

Plugging in |p| ≤ Γ|Q|, we have the interaction bias is at most τ |Q| by Theorem 4.

Theorem 5. Consider the setting described in Theorem 3. Suppose we know the relationship

between p (the interference path strength) and Q (TACE) is p = γQ, where γ is a constant,

then Q is unbiasedly estimated as

Q =
E[ ˆβY X ]

1− 1
n(n−1)

γ(Nd + θNθ)
.

Proof. From the proof of Theorem 1 in [ZMP22], we have a slightly stronger result than

Theorem 3, which is Theorem 3 without the absolute signs. We have

E[ ˆβY X ]−Q = − 1

n(n− 1)
p(Nd + θNθ).

Plugging in p = γQ, we have the expression in the theorem statement.

Corollary 2. Consider the setting described in Theorem 5, if we further assume 0 < γ < 1

and |Q| > |p| and 0 < γ < 1 then Q can be bounded as

E[ ˆβY X ]

1− (Nd+θNθ)
n(n−1)

< Q < E[ ˆβY X ].

Proof. Q is monotonic with respect to γ. Hence, Corollary 2 results from Theorem 5 by

plugging in γ = 0 and γ = 1.

103



8.3 Supplemental Materials for Chapter 5

8.3.1 Derivation of Examples for Definition 9

Given an interaction model with network Figure 3.3 and structural equations (3.4)-(3.6), the

interaction bias is calculated as follows.

|E[Q̂Y |do(X)]− TACEXY |

=

∣∣∣∣Em1,m0

[
1

n

∑
1≤j≤n

E [Yj|m1,m0, Xj = 1] − 1

n

∑
1≤j≤n

E [Yj|m1,m0, Xj = 0]

]
− (E[Y D|XD = 1]− E[Y D|XD = 0])

∣∣∣∣
=

∣∣∣∣Em1,m0

[
1

3
(2 + E[2−X1 +X3|X2 = 1,m1,m0] + 2)− 1

3
(0 + E [0−X1 +X3|X2 = 0,m1,m0] + 0]

]
− 2

∣∣∣∣
=

∣∣∣∣Em1,m0

[
2 +

1

3
E [−X1 +X3|X2 = 1,m1,m0]−

1

3
E [−X1 +X3|X2 = 0,m1,m0]

]
− 2

∣∣∣∣
=
1

3

∣∣∣∣Em1,m0

[
(−E [X1|X2 = 1,m1,m0] + E [X3|X2 = 1,m1,m0]) + (E [X1|X2 = 0,m1,m0]− E [X3|X2 = 0,m1,m0])

]∣∣∣∣
=
1

3

∣∣∣∣Em1,m0

[
0 + 0

]∣∣∣∣
Both terms are 0 because X1 and X3 are identically distributed given X2,m1,m0. As a result

the bias is 0. If the structural equation of Y2 is changed to Y2 = 2X2 − 2X1 −X3, then the

interaction bias becomes

|E[Q̂Y |do(X)]− TACEXY |

=

∣∣∣∣Em1,m0

[
1

3
(2 + E[2− 2X1 +X3|X2 = 1,m1,m0] + 2)− 1

3
(0 + E [0− 2X1 +X3|X2 = 0,m1,m0] + 0]

]
− 2

∣∣∣∣
=

∣∣∣∣Em1,m0

[
2 +

1

3
E [−2X1 +X3|X2 = 1,m1,m0]−

1

3
E [−2X1 +X3|X2 = 0,m1,m0]

]
− 2

∣∣∣∣
=
1

3

∣∣∣∣Em1,m0

[
(−E [2X1|X2 = 1,m1,m0] + E [X3|X2 = 1,m1,m0]) + (E [2X1|X2 = 0,m1,m0]− E [X3|X2 = 0,m1,m0])

]∣∣∣∣
=
1

3

∣∣∣∣Em1,m0

[
− E [X1|X2 = 1,m1,m0] + E [X1|X2 = 0,m1,m0]

]∣∣∣∣
This is non-zero because X1 has different distributions given X2,m1,m0. Hence, whether the

bias is 0 depends on the parameter choice, and the model is not unbiased almost everywhere.
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For the other example with network Figure 3.4, the interaction bias is computed as follows.

|E[Q̂Y |do(X)]− TACEXY |

=

∣∣∣∣Em1,m0

[
1

2
(E[Y1|X1 = 1,m1,m0] + E[Y2|X2 = 1,m1,m0])−

1

2
(E[Y1|X1 = 0,m1,m0] + E[Y2|X2 = 0,m1,m0])

]
− α

∣∣∣∣
=

∣∣∣∣Em1,m0

[
1

2
(E[Y1|X1 = 1] + E[Y2|X2 = 1,m1,m0])−

1

2
(E[Y1|X1 = 0] + E[Y2|X2 = 0,m1,m0])

]
− α

∣∣∣∣
=

∣∣∣∣Em1,m0

[
1

2
α +

1

2
(E[Y2|X2 = 1]− E[Y2|X2 = 0])

]
− α

∣∣∣∣
=

∣∣∣∣Em1,m0

[
1

2
α +

1

2
α

]
− α

∣∣∣∣
This is 0 regardless of parameter choice.

8.3.2 Proof

Proof of Theorem 6.

Proof.

E[β(X, Y )]

=Em1,m0

E


∑
1≤i≤n

XiYi

m1

−

∑
1≤i≤n

(1−Xi)Yi

m0

∣∣∣∣m1,m0


=Em1,m0

[ ∑
1≤i≤n

E

[
XiYi
m1

− (1−Xi)Yi
m0

∣∣∣∣m1,m0

]]

=Em1,m0

[ ∑
1≤i≤n

m1

n
E

[
Yi
m1

∣∣∣∣m1,m0, Xi = 1

]
− m0

n
E

[
Yi
m0

∣∣∣∣m1,m0, Xi = 0

]]

=Em1,m0

[ ∑
1≤i≤n

1

n

(
E

[
Yi

∣∣∣∣m1,m0, Xi = 1

]
− E

[
Yi

∣∣∣∣m1,m0, Xi = 0

])]
.

TACE is defined as the ACE in the default model, which is

E[Y D|XD = 1]− E[Y D|XD = 0].

The interaction bias is the absolute value of the difference between E[β(X, Y )] and TACE,

which is the expression in the theorem.
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Proof of Theorem 7.

Proof. TACE is defined as the ACE in the default model, which is

E[Y D
i |Xi = 1]− E[Y D

i |Xi = 0].

Since we are considering the general non-parametric smooth functions, the function forms

of the structural equations can be arbitrary. We just need to prove

1. if Y is not ASDC, then there exists a function form for the structural equation such

that there is interaction bias, and

2. if Y is ASDC, then there is no interaction bias.

Part 1: If Y is not ASDC, then there exists a unit i and a non-ASDC parent for Yi.

Denote the non-ASDC parent as Vj (j can be equal to i). Let the structural equation

of Yi be Yi = XiVj. Then, the difference between Yi given Xi = 1,m1,m0 and Yi given

Xi = 0,m1,m0 are calculated as follows.

E
[
Yi
∣∣m1,m0, Xi = 1

]
− E

[
Yi
∣∣m1,m0, Xi = 0

]
=E[Vj].

Another unit l might have different results, since l might not be affected by Vj but another

variable. The interaction bias is the average difference above for all units, so the interaction

bias is not 0.

Part 2: If Y is ASDC, then ∀i, Y is affected by Xi but not Xj ̸= i, and there is no ancestor

of Yi that belongs to another variable. We do not have to consider descendants of Yi. This

is because in this case, if a variable is a descendant of Yi, since Y is ASDC, then it must be

a descendant of all Yj’s too. So we can safely ignore the descendants of Yi for any i.
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If we try converting the unit default model, we will get the same model, since no replace-

ment to default value needs to be made. Hence, E[β(X, Y )] is the same as TACE, and there

is no interaction bias.

Proof of Theorem 8.

Proof. We first write the structural equation of Yi in a different way using the construction

process below.

The structural equation of Yi might contain non-ASDC variables or variables of another

unit. In the structural equation of Yi, for each variable that violates ASDC but is still unit i’s

variable, replace it with its structural equation. Recursively replace variables until the new

structural equation of Yi does not contain a non-ASDC variable of i. Denote the variables

from another unit that are in the equation as Vik where k is the index for those variables.

The term with Vik is a function of Vik, and is denoted as fk(Vik), where fk is the function.

The new structural equation of Yi can be written as

Yi = Y ASDC
i +

∑
k

fk(Vik),

where Y ASDC
i is the ASDC component (a function of the ASDC variables). The non-ASDC

term is a summation due to restricted additivity. Since the component is ASDC, and the

model is balanced, the component is identical for Yj for all j. Note that the definition of

the unit default model is the model of a unit where all variables that are from another unit

are replaced with their default values. So Y D
i is Yi with other units’ variables replaced with

their default values. So we have

Y D
i = Y ASDC

i +
∑
k

fk(vik),

where vik is the default value of Vik. The second term becomes a constant. Hence, the TACE

is given by

E[Y ASDC
i |Xi = 1,m1,m0]− E[Y ASDC

i |Xi = 0,m1,m0].
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This gives the same result for all i since the model is balanced. Denote the term∑
k

fk(vik)

as Y NASDC
i , then the interaction bias is given by∣∣∣∣∣Em1,m0

[
1

n

∑
1≤j≤n

E
[
Y NASDC
i

∣∣m1,m0, Xi = 1] − 1

n

∑
1≤j≤n

E
[
Y NASDC
i |m1,m0, Xi = 0

]] ∣∣∣∣∣.
Under the assumption of “unbiased almost everywhere,” the cancellation of bias between

different units is considered “accidental,” since changing the numbers in the structural equa-

tion (without changing the interaction graph) will change the values of the estimate. Hence,

the interaction bias is 0 iff ∀i,

E
[
Y NASDC
i

∣∣m1,m0, Xi = 1
]
= E

[
Y NASDC
i

∣∣m1,m0, Xi = 0
]
. (8.2)

Given Xi = 1, the other Xj’s for j ̸= i need to satisfy the number of Xj = 1 is m1−1 (minus

one because Xi = 1), and the number of Xj = 0 is m0. Hence, Equation 8.2 holds iff

∀j, Y NASDC
i ⊥⊥Xj.

Additionally, Vik ⊥̸⊥ Xi iff there is an open path between Vik and Xi. Since Vik ∈ Anc(Yi),

there is an open path between Xi and Yi through Vik, which is a reflecting bias structure.

Hence, Vik ⊥̸⊥ Xi iff there is a reflecting bias structure.

Similarly, Vik ⊥̸⊥ Xj for j ̸= i iff there is an open path between Vik and Xj. Since

Vik ∈ Anc(Yi), there is an open path between Xj and Yi, which is a deflecting bias structure.

Hence, Vik ⊥̸⊥ Xi iff there is a deflecting bias structure.

Combining both cases Vik ⊥̸⊥ Xi and Vik ⊥̸⊥ Xj for j ̸= i, we have that Vik is dependent

of some Vj for any j iff there is a reflecting or deflecting bias structure. There exists such

Vik iff Equation 8.2 does not hold iff interaction bias is not 0. Thus, there is interaction bias

iff there are deflecting or reflecting bias structures between X and Y .
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Proof of Theorem 9.

Proof. We check the interaction network G∗
B formed by B, by treating any variable from

unit j /∈ B as unobserved. G∗
B is a new interaction network from a new interaction model

M∗
B, where all the properties remain. Applying Theorems 7 or Theorems 8, we have the

corresponding conclusions in this theorem.

8.3.3 Experiment Details

8.3.4 Section 5.6.1.1 Experiment Setup

Interaction model is balanced on the default value of X = 0 and M = 0. Variable settings:

• X is random binary with P (Xi = 1) = 0.5 for all i

• Ai N(2, 1)

• Mi = Ai +N(0, 1)

• Basic Yi = (Xi + 1)2Ai +N(0, 1)

– For the model with deflecting bias, Yi+ = 8Xj for an interaction between Xj and

Yi

– For the model with reflecting bias, Mj+ = Xi and Yi+ = Mj for an interaction

between Xi and Yi through Mj

– For the model with non-bias interactions, Yi+ = 2Aj for an interaction between

Yi and Yj through Aj.

Sample size: 50. Number of interactions for each model: 100. We chose the specific strengths

of the interactions because different Yi receiving different types of interactions would still

have similar variance due to the interaction effect.
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8.3.5 Section 5.6.1.2 Experiment Setup

8.3.5.1 Deflecting Bias (Restricted Additivity)

Interaction model is balanced on the default value of X = 0. Variable settings:

• X is random binary with P (Xi = 1) = 0.4 for all i

• Basic Yi = (X + 1)2 +N(0, 1)

• For the Yi affected by deflecting bias, Yi+ = αXj for an interaction between Xj and Yi

• α = 1,−3, 5 for three experiments

Sample size ranges from 10 to 100. Number of interactions: 50.

8.3.5.2 Reflecting Bias (Restricted Additivity)

Interaction model is balanced on the default value of X = 0 and M = 0. Variable settings:

• X is random binary with P (Xi = 1) = 0.4 for all i

• Ci N(2, 1)

• Mi = Ci +N(0, 1)

• Basic Yi = (Xi + 1)2Ai +N(0, 1)

• For the Yi affected by deflecting bias, Mj+ = Xi and Yi+ = αMj for an interaction

between Xi and Yi through Mj

• α = 1,−3, 5 for three experiments

Sample size ranges from 10 to 300. Number of interactions: 50.
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8.3.5.3 Interactions (Non-Parametric General)

Interaction model is balanced on the default value of C = 10, 10/3, or 2, depending on which

experiment (with different interaction strengths) it is. Variable settings:

• X is random binary with P (Xi = 1) = 0.4 for all i

• Ci N(2, 1)

• Basic Yi = (Xi + 1)2 − C +N(0, 1)

• For the Yi affected by deflecting bias, the first term is multiplied by αCj.

• α = 0.1,−0.3, 0.5 for three experiments

Sample size ranges from 10 to 1000. Number of interactions: 50.

8.3.6 Sections 5.6.2.1 and 5.6.2.2 Experiment Setup

Interaction model is balanced on the default value of X = 0. Variable settings:

• X is random binary with P (Xi = 1) = 0.5 for all i

• Ci N(2, 1)

• Wi N(1, 1)

• Basic Yi = (Xi + 1)2CiWi +N(0, 1)

• For the Yi affected by deflecting bias, Yi+ = 8Xj

• For the Yi affected by reflecting bias, Mj+ = Xj and Yi+ =Mi

Sample size: 100. Number of deflecting bias interactions: 300. Number of reflecting bias

interactions: 100.
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For the setting with different unit interacting chance, 1/3 units are “non-interacting”, 1/3

units are “possibly-interacting”, and 1/3 units are “likely-interacting”. Randomly sample

interaction pairs until enough number of interactions are added to the model. For each

sampled interaction pair,

• If it contains at least one non-interacting unit, it is not added to the model.

• If it contains two possibly-interacting units, it has 0.25 chance of being added to the

model.

• If it contains one possibly-interacting unit and one likely-interacting unit, it has 0.5

chance of being added to the model.

• If it contains two likely-interacting units, it will be added to the model.

The non-parametric experiment uses similar setups except that the interactions are mul-

tiplied instead of added.

8.3.7 Histograms for Section 5.6.2.2
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8.3.8 Debias Algorithm

8.3.9 Restricted Additivity

The linear debias algorithm in [ZMP22] can be generalized and used for the restricted addi-

tivity case.

Algorithm 3 Select a bias-free subset B from an interaction network G∗ and return the

largest subset from t iterations

Input: an interaction network G∗, iterations t

Output: the largest bias-free subset B selected from t iterations

1: function FindSub(G∗, t)

2: B = ∅

3: for i = 1, . . . , t do

4: Units = randomly sorted list 1, . . . , n

5: B = {Units[1]} (The indices for Units start from 1)

6: for i = 2, . . . , n do

7: if Units[i] has no reflecting bias structure in G∗ then

8: if Units[i] has no deflecting bias structure in G∗ with an element in B

then

9: B = B ∪ {Unit[i]}

10: B = B ∪ {B}

11: return Largest B in B

8.3.10 General Non-Parametric

8.4 Supplemental Materials for Chapter 6

We first define the following lemma, which we will be using in the later proofs.
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Algorithm 4 Select a bias-free subset B from an interaction network G∗

Input: an interaction network G∗

Output: a bias-free subset B

1: function FindSub(G∗, t)

2: B = ∅

3: for i = 1, . . . , n do

4: if Yi is ASDC then

5: B = B ∪ {i}

6: return B

Lemma 3. Each constraint li in Lemma 1 can be rewritten in the form of

ρziy·Wi
Ψ = qi1θ1 + · · ·+ qinθn, (8.3)

such that Ψ is a function on correlations among variables in M , and each qil for all i =

1, . . . , n′ and l = 1, . . . , n satisfies the following conditions.

1. If θl is a directed edge, then qil =
∑n

j=0 bijaij l, where aij l and bij are defined the same

way as [BP12] Equation (10).

2. If θl is a bidirected edge, then qil = bi0.

The proof of Lemma 3 is given in Section 8.4.4.

8.4.1 Proof of Lemma 1

Proof. Given Lemma 3, and [BP12] Section 7.4, we have all those coefficients are functions

on the correlations of variables in M .

Note that the functions are not necessarily polynomials, since from the proof of Lemma

3, ϕi is a polynomial on correlations, while ρziy·Wi
is ϕi divided by some functions on the

correlations, which results in an arbitrary function.
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8.4.2 Proof of Lemma 2

We prove Lemma 2 together with Theorem 1.

8.4.3 Proof of Theorem 1

Proof. To prove there exists a full-rank set of N = n′ + nk + ne linear constraints on E,

we first construct a set of constraints, L, such that |L| = N . Then we prove each of the N

constraints is linear, and finally we show that the set is full-rank.

Constructing the N constraints: We first construct the first n′ constraints. Given a

partial-instrumental set Z for E on E ′, w.l.o.g, denote Z = {z1, . . . , zn′}, E = {e1, . . . , en}, E ′ =

{e1, . . . , en′}. Also denote the triples in the definition of a basic-partial-instrumental set as

(z1,W1, p1), . . . , (zn′ ,Wn′ , pn′). Since each pi is a path from zi to Ta(ei), we can say each zi

matches to an edge ei ∈ E ′. From Lemma 1, we can create li, which is matched to zi and ei.

See Lemma 3.

The left-hand side expression from Equation (8.3) and qi1, . . . , qin can all be calculated

from the data. Hence, the first n′ linear equations we construct for L are Equation (8.3) for

i = 1, · · · , n′.

Next, we construct the next group of ne constraints in L. For each j = 1, . . . , ne, we

write the j-th constraint in Ee as

0 = dje
e
j1 + eej2, (8.4)

where dj is a constant, and eej1 and e
e
j2 are the two edges involved in this equality constraint.

W.l.o.g, we assume for each j, in the j-th constraint, the first edge, eej1, is selected for the

selection defined in the theorem.

Finally, we construct the remaining nk of the constraints in L. For each h = 1, . . . , nk,
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the h-th edge in Ek is ekh, and we have a constraint

λh = ekh, (8.5)

where λh is the known value of ekh.

Constructing a matrix of the constraints Now that we have a set of N = n′+ne+nk

constraints, in order to prove that they are linearly independent, we want to construct a

matrix, and prove the matrix is full-row-rank. We first construct an ordering of the edges

involved in those constraints.

The first n′ edges are the edges in E ′, in the order of e1, . . . , en′ . Since there exists a

way to non-repetitively select one edge from each equality constraint that certain conditions

are satisfied, let the selected edges, Es, be the next ne edges, with the ordering the same

as the ordering of the equality constraints in L. Denote those edges as {ee11, . . . , eene1}, and

the edges that are paired with those edges as {ee12, . . . , eene2}. Next, the last nk edges are

those in Ek, with the ordering the same as the constraints in L. Finally, any edges in

(E∪Ek)\ (E ′∪Es∪Ek) can be of any order in the end. We can construct this order because

as specified in the theorem, E ′, Es, and Ek do not share any element.

Given the ordering of the edges, we can construct a matrix, where each term in the matrix

is the coefficient in front of an edge in a constraint. Each row is one constraint in L, in order,

and each column is one edge, in the order we just specified. So we have an N × |E| matrix.

To prove this matrix is full-row-rank, it suffices to prove the N × N sub-matrix containing

the first N columns of the original matrix is full-rank. Below we give what the submatrix

looks like (the first row in parentheses is used to indicate the edges for the matrix, and is
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not part of the matrix.)

(e1 e2 . . . en′ ee11 . . . eene1 ek1 . . . eknk
)

q11 q12 . . . q1n′ U . . . U U . . . U
...

. . .
...

...
. . .

...

qn′1 qn′2 . . . qn′n′ U . . . U U . . . U

0 . . . . . . 0 d1 . . . . . . 1 . . . 0
...

. . .
...

0 . . . 1 . . . 0 . . . dne . . . . . . 0

0 . . . . . . . . . . . . . . . 0 1 . . . 0
...

. . .
...

0 . . . . . . . . . . . . . . . . . . . . . 0 1


U denotes “unknown”, which might be zero (if the edge corresponding to that column is not

in E, or is in E but not in the constraint corresponding to that row,) or non-zero (if the edge

corresponding to that column is in E and is in the constraint corresponding to that row.)

Proof that the matrix is full-rank To prove this matrix is full-rank, we simply have

to prove that the determinant does not vanish. The determinant of an N × N matrix can

be calculated using the Leibniz formula, which is summing up the product of N entries

corresponding to all possible permutations of the set {1, 2, . . . , N}. Hence, we only have to

prove that the product we get by selecting the first permutation, i.e., {1, 2, . . . , N}, cannot

be canceled by any other products. In other words, we only have to prove that the product

of the diagonal of the matrix has a term that cannot be canceled out by any other term from

the expression of the determinant.

We define a term, T ∗ to be

T ∗ =
n′∏
j=1

T (pj)
ne∏
i=1

di, (8.6)
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where T (pj) is the product of the edge coefficients along the path pj. T
∗ must exist in the

product of the diagonal, since
∏n′

j=1 T (pj) exists in the product of the first n′ entries from

the diagonal (Lemma 3), and
∏ne

i=1 di is the product of the rest of the diagonal entries.

Suppose that T ∗ appears at least twice in the expression of the determinant. We first

prove that T ∗ must come from selecting the diagonal terms of the matrix.

Note that each selection must select one entry from each row and each column, from the

Leibniz formula. We must select the diagonal for the last nk entries, since if a non-diagonal

entry was selected, that entry must be 0, and the whole product would be 0.

Next, we must also select the diagonal for the middle ne entries, d1, . . . , dne . We prove

this argument by proving that if we do not select the diagonal, then we cannot reproduce the

product of the ne diagonal entries no matter what edges we select, which means any term

in our selection cannot cancel out T ∗. Suppose this is not true, i.e., even if we do not select

the diagonal entries for the middle ne rows, we can still get the product somewhere else.

Recall that for each j = 1, . . . , ne, dje
e
j1 + eej2 = 0. Since this equality constraint should

comply with the actual values of the edges eej1, e
e
j2 in the model M , we have for each j,

dj = −
eej2
eej1

. (8.7)

Denote the product of the diagonal entries for the middle ne rows as Tm, then

Tm = (−1)ne

ne∏
j=1

eej2
eej1

. (8.8)

Terms cancel out if we have the same edge with one occurrence on the numerator and one

occurrence on the denominator. So we might end up having a simplified expression,

Tm = (−1)ne
∏
i

eeni

eedi
. (8.9)

Note that Tm cannot be (−1)ne , where all edges cancel out. We next examine where

those edges might appear in the matrix. First note that the terms in the first n′ rows do not

contain any edge in Inc(y) (Lemma 3).
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bij are polynomials on the correlations among zi,Wi1 , . . . ,Wik and aij l = ρWij
xl
. All

edges in Inc(y) have a head y, which means no edge in Inc(y) can appear in the correlations

among the non-descendants of y (this can be seen from Wrights’ rules.) So qil, which is made

up of correlations among Wij , xi, zi (all non-descendants of y,) does not contain any edge in

Inc(y).

Hence, the edges in Tm cannot be canceled out by anything in the first n′ rows, which

means T ∗ will contain Tm as it is.

Suppose we select only a subset of n′
e the diagonal entries for the middle ne rows. For

each row where the diagonal is not selected, 1 must be selected (otherwise we will have to

select 0, and the product will be 0.) So we end up having the product of the selected entries

from the middle ne rows, T
′
m as

T ′
m = (−1)n′

e

∏
i

een′
i

eed′i
. (8.10)

Tm and T ′
m cannot be equal to each other. Otherwise, we produce a constraint on those

edges by equating Tm and T ′
m. However, given that the equality constraints are linearly

independent, the values of those edges should vary independently and should not comply to

any constraint. In other words, they are equal only when the constraint is satisfied, which

has Lebesgue measure 0, so we assume that is not the case. Thus, to cancel out T ∗, we must

select the diagonal of the middle ne rows.

We have proved that for the last ne+nk rows, we must select the entries on the diagonal.

For the first n′ rows, we can only select from the first n′ columns, since we can only select

one entry from each column, and the last ne+nk columns already have entries been selected.

Therefore, we only need to analyze the top left n′ × n′ submatrix. The problem reduces to

proving the term

t∗ =
n′∏
j=1

T (pj) (8.11)

exists only once in the determinant of this submatrix. We first prove that t∗ appears only
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once in the product of the diagonal entries. We use the same proof strategy as in [BP12]

Proof of Lemma 8. To get t∗, we need to select one term from each diagonal entry such that

the product of those terms gives t∗. From [BP12] Proof of Lemma 8, for qjj where column j

is a directed edge, if we select the second or the third term of qjj in [BP12] Equation (11),

then it must bring in a term that is not in t∗, or causes the product to contain a term in

t∗ twice. Hence, for those qjj entries, we can only select from the first term in Equation

in [BP12] Equation (11). After eliminating those terms from consideration, the remaining

terms in the product of the n′ diagonal terms are given by

t∗
∏

i for directed

(1 + b̂i0)
∏

k for bidirected

(1 + b̂k0) (8.12)

=t∗
n′∏
j

(1 + b̂j0), (8.13)

From [BP12], b̂j0 are polynomials on correlations among Wi, and they do not have any

constant terms. As a result, t∗ appears only once in Equation (8.13), and thus appears only

once in the product of the diagonal entries.

What remains to prove is that t∗ does not appear in the product of another selection of

entries, which is different from selecting all the diagonals. For the columns that correspond

to bidirected edges, we have to select the diagonal terms, since those are the only terms

in those column that are non-zero. We generate a submatrix by removing those columns

corresponding to bidirected edges and those rows with the same row numbers as those column

numbers. This submatrix is a square matrix, and all columns correspond to directed edges.

This reduces to the proof of Theorem 1 from [BP12], where they proved that no matter

which selection we have, the term
∏

j for directed T (pj) can never be canceled.

To sum up, we showed that one can never find another term in the determinant that can

cancel out a term, T ∗, which is also in the determinant. Hence, the N × N sub-matrix is

full-rank, and the N × E matrix is full-row-rank.

Finally, when N = |E|, we have a full-rank set of N linear equations on N edges, so we
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can solve for all of the edges.

8.4.4 Proof of Lemma 3

Proof. From Lemma 1 in [BP12], denoting Wi = {Wi1 , . . . ,Wik} (we assume Wi contains k

single variables), we have

ρziy·Wi
=

ϕi(zi, y,Wi1 , . . . ,Wik)

ψi(zi,Wi1 , . . . ,Wik)ψi(y,Wi1 , . . . ,Wik)
, (8.14)

where ϕ is linear on the correlations ρziy, ρWi1
y, . . . , ρWik

y, and the square of each of the ψ

functions is a polynomial on correlations among the variables it takes. We can write

ϕi = bi0ρziy + bi1ρWi1
y + · · ·+ bi1ρWik

y. (8.15)

We only need to prove that ϕi is linear on the edges e1, . . . , en and does not contain

any constant term. Since ρziy·Wi
vanishes in GE∩D∪{εi}− from the definition of a partial-

instrumental set, ϕ(zi, y,Wi1 , . . . ,Wik) must also vanish in GE∩D∪{εi}−. For all bidirected

edges in Inc(y), we can treat them as two directed sub-edges connected at the tails. Hence,

[BP12]’s Lemmas 6 and 7 apply. Let e′j be the same as ej if ej is directed, and the sub-edge

pointing to y if ej is bidirected, and we immediately have that ϕi is linear on the edges

e′1, . . . , e
′
n and does not contain any constant term. If ej is bidirected, ϕi being linear on e′j is

equivalent to that ϕi is linear on ej. From Lemma 7, we have that all edges not in E∩D∪{εi}

have coefficient 0. Hence, either εziy is the only bidirected edge in the constraint li, or there

exists no bidirected edge in li.

ρziy·Wi
can be written in the form of ρziy·Wi

= ci1e1 + · · · + cinen. We then apply the

results from Section 7.4 in [BP12] and we have for each j where ej is a directed edge, cij is

a function of the correlations of variables in M .

If there does not exist a bidirected edge among θ1, . . . , θn, then the lemma is evident from

the result from [BP12]. If there exists a bidirected edge, w.l.o.g, assume θn is the bidirected

edge. Now we examine every qij.

121



First we can decompose θ into two directed edges, one pointing to y and one does not

include y. Let the decomposition be θn = αβ, where α is the edge pointing to y. We can

thus write ρziy·Wi
in the form of

ρziy·Wi
= qi1θ1 + · · ·+ qi(n−1)θn−1 + qinβα. (8.16)

Now we have a linear equation on directed edges θ1, . . . , θn−1, α. Hence, the results from

[BP12] applies, and we know for j where θj is a directed edge, qij is the same as the way

defined in [BP12].

The coefficient of α can also be regarded as
∑n

j=0 bijaijn. Recall the definition in [BP12],

each aijn is the sum of paths from zi or Wi to y passing through θn, but not including

θn. From Definition 4, each Wij is non-descendant of zi, so any unblocked path from Wij

to zi must have an arrowhead at zi, which makes zi a collider (also named as “sink” or

“convergent”) between Wij and y, and blocks the path between zi and y. Since no paths

from other zi orWi can pass through the bidirected edge, the only non-zero aijn is ai0n, which

is the sum of paths from zi to y through θn but not including θn, which is equal to 1. The

corresponding multiplier is bi0 . Since the index of the bidirected edge among θ1, . . . , θn does

not matter, we assumed the bidirected edge is of index n for the convenience of discussion.

Now we can replace n with l and we have the coefficient qil = bi0 · 1 = bi0 .

8.4.5 Discussion on the Example in Section 7.1

In Figure 3 left, if the equality constraint is instead λux = λuw, then the equality con-

straint in the latent projection DAG is εxy = εwy. {w, x} form a partial-instrmental set

for {εwy, εxy, λxy} on {εwy, λxy}. Together with the equality constraint, we can solve for all

edges.

If the equality constraint is instead λux = λuy, then the equality constraint in the latent

projection DAG is εxw = εwy. εxw is identified (εxw = ρxw). Then with the equality con-
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straint, εwy is identified. εxy = εwy. {w, x} form a partial-instrmental set for {εwy, εxy, λxy}

on {εxy, λxy}. Together with the value of εwy, we can solve for all edges.
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