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Abstract
Traditional causal inference techniques assume
data are independent and identically distributed
(IID) and thus ignore interactions among units. In
this paper, we analyze the bias of causal identifi-
cation techniques in linear models if IID is falsely
assumed. Specifically, we discuss 1) when it is
safe to apply traditional IID methods on non-IID
data, 2) how large the bias is if IID methods are
blindly applied, and 3) how to correct the bias. We
present the results through a real-world example
of vaccine efficacy.

1. Introduction
Majority of the existing machine learning and causal in-
ference algorithms assume the data are independent and
identically distributed (IID)(Rubin, 1978; Schölkopf, 2022).
Unfortunately IID rarely holds true inreal-world datasets.
Suppose we are interested in studying the effectiveness of
Covid-19 vaccines. Specifically, we are interested in the
causal effect of vaccine doses, V , on the severity of sickness
S. A naive method would be building a causal model on V ,
S, and other related factors, and estimating the causal effect
of V on S using available data. However, applying tradi-
tional causal methods that assume IID may result in biased
estimation since units/samples/individuals are not isolated
from each other in a pandemic setting. We exemplify below
a few instances where IID is violated.

• Case 1: The vaccination V of a unit i, (Vi), decreases
their viral load, Li, which in turn decreases the trans-
mission rate of the virus, and hence decreases the viral
load of a contact j, (Lj), and hence make j less sick.

• Case 2: Exposure to high viral load Lj exacerbates the
cormorbidities of i, Ci.
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• Case 3: Certain hidden factor Zi might affect Vi and
Sj at the same time.

Such interactions between units plague both observational
and experimental studies. If the latter is performed in a con-
trolled environment where units are isolated from each other,
the results would not be valid for the target environment,
where units affect one another. Hence, blindly assuming
IIDness might result in a biased outcome. The scenario
exemplified above raises several questions regarding the
computation of causal effects given non-IID data.

1. Under what conditions can we safely ignore unit in-
teractions with the guarantee that assuming IID (and
applying existing estimation techniques) will result in
negligible bias?

2. How large is the bias if we assume IIDness on non-IID
data?

3. If assuming IID would yield a significantly biased esti-
mate, then how can we get rid of this bias?

We answer those questions through results from our full pa-
per (Zhang et al., 2022), presented in the following sections.

2. Modeling Unit Interactions
2.1. Interference

To detect, quantify, and remove bias, we need to model
the exact interacting patterns of the units. One of the most
studied concepts related to interactions among units is in-
terference (Cox, 1958). Interference is the phenomenon in
which treatment of unit i (Vi) causally affects the outcome,
Sj , of another unit j. In almost all existing literature this is
interpreted as there existing a causal pathway from Vi to Sj .
Case-1 above is a typical example. Clearly, ignoring unit
interactions while computing causal effects would result
in a biased estimate. However, we note that interference
is not the only type of interaction between units that can
yield biased estimates. For example, Case-3 above is a con-
founding path between Vi and Sj that is not classified as
interference. As we will discuss in the next section, this
also yields biased estimates. In addition, we might have two
units i, j, where the treatment of i is correlated with its own
outcome through j.
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2.2. Interaction Models

We need to model different types of interactions. A useful
graphical tool is the interaction models. Interaction models
are derived from the traditional causal models, except that
the variables are replaced with “explicit variables” that are
variables specific to units. For example, “sickness” is a
variable in a traditional causal model, while “sickness of
unit i” is an explicit variable.

We show an example of interaction models by modeling
the vaccine-sickness example in the introduction. The three
variables we consider are the vaccine doses (V ), the viral
load (L), and the sickness (S). The interaction model should
include the “explicit” version of those variables for all units.
We consider a dataset with 4 units, where the causal relation-
ships among them are as follows. An interaction network
can be constructed using information regarding these units
and expert knowledge.

• For each unit i = 1, 2, 3, 4, the vaccine dose of i affects
the viral load of i which then affects the sickness of i
(Vi → Li → Si).

• Units 1 and 2 live together. At a specific time stamp, 2
has higher viral load, so the viral load of 2 affects the
viral load of 1 (L2 → L1).

• Units 1 and 2’s viral loads cause their own and each
others’ comorbidities, and in turn cause the sickness
(L1 → S2, L2 → S1). Comorbidities are not explicitly
portrayed.

• Units 2 and 3 are friends. A hidden factor Z2 (e.g., Unit
2’s mental condition) affects both Unit 2’s vaccination
decision and Unit 3’s sickness (V2 ← Z2 → S3).

• A hidden factor W4 (e.g., Unit 4’s wealthiness) affects
the sickness of both Unit 4 and Unit 3 (S4 ← W4 →
S3).

In this way we construct the interaction network in Figure 1.
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Figure 1: The interaction network for the vaccine-sickness
example. Z1, Z3, Z4 and W1,W2,W3 are omitted from the
graph.

3. Interaction Bias
Almost all machine learning algorithms including those
that employ causal techniques assume that data are IID
((Schölkopf, 2022), section 3). In other words, the theo-
retical and performance guarantees of these algorithms are
based on data being IID. As such it would be useful to de-
termine conditions under which an algorithm meant for IID
data can be applied on non-IID data with the certainty that
the resulting bias would be negligible. The interaction bias
is defined as the bias obtained by blindly assuming IID and
applying IID methods to estimate the query Q.

In this work, we are primarily interested in the case where
Q is the “non-IID version” of the ACE, which we name as
true average causal effects (TACE). Assuming IIDness, the
ACE of V on S is identified as βSV , the linear regression
coefficient of S on V , if there is no non-causal path between
V and S (Pearl et al., 2016; Pearl, 2017). TACE is the aver-
age unit effect through each unit itself, but not through the
interactions with other individuals. In other words, TACE is
ACE as if all the units were isolated. For example, in Fig-
ure 1, TACE of V on S is the average path-specific effects
through Vi → Li → Si. We are interested in analyzing the
difference between the TACE and the estimation obtained
by incorrectly assuming IIDness (β̂SV ).

4. Quantifying and Detecting Interaction Bias
In this section, we analyze how to quantify the interaction
bias for an interaction model, and how to detect interaction
bias given an interaction network. We make a few symmet-
ric assumptions on the interaction models that include 1)
the treatment is IID, 2) the “unit model” (with only explicit
variables of this unit, and with interacting components re-
moved) for each unit is the same, and 3) the treatment and
outcome of a unit is not confounded by itself. Elements 1)
and 2) of this assumption is still weaker than the traditional
IID assumption, since we still allow unit interactions. Ele-
ment 3) assumes no confounding within a unit, but allows a
unit’s treatment and outcome to be confounded by another
individual.

4.1. Detecting Bias

There are two main types of problematic graphical structures
in a linear interaction network that introduces bias in the
estimation of TACE of V on S.

1. Deflecting bias structure: an open path between Vj

and Si for any i ̸= j.

2. Reflecting bias structure: an open path between Vi

and Si through some explicit variable Wj , i ̸= j.

For example, in Figure 1, examples of deflecting bias struc-
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tures include V1 → L1 → S2, V2 ← Z2 → S3, etc.
V2 → L2 → L1 → S2 is a reflecting bias structure.

Absence of bias structure implies no bias. If there is no bias
structure in an interaction network, then β̂SV would be an
unbiased estimation of TACE of V on S. In this case, we
can simply assume IIDness to estimate TACE. Note that no
bias structure does not imply IIDness. In Figure 1, S3 and
S4 are dependent, and hence non-IID, but this interaction
does not constitute a bias structure.

4.2. Quantifying Bias

We can quantify the interaction bias created when blindly
assuming IIDness in the estimation of ACE.

Theorem 4.1 ((Zhang et al., 2022)). Let M∗(G∗, S∗) be
an interaction model with the symmetrical assumptions sat-
isfied. Let D be the available data generated by M∗ and
let G† be the approximate graph constructed using D. Let
TACEV S be identifiable in G† and be given by βSV , the
regression coefficient of S on V . Let α denote the true value
of TACEV S in M∗. The interaction bias is given by,∣∣∣E[β̂SV ]− α

∣∣∣ = ∣∣∣ 1
n

∑
1≤i≤n

∑
p∈P [iji]

V al(p)
σ2
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V

− 1

n(n− 1)

∑
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∑
p∈P [ji]

V al(p)
σ2
Rp

σ2
V

∣∣∣, (1)

where P [iji] is the set of reflecting bias structures between
Vi and Si through any explicit variable Wj of unit j with
i ̸= j, P [ji] is the set of deflecting bias structures between
Vj and Si with i ̸= j, and Rp is the root of path p.

It follows that the reflecting and deflecting structures are the
only two structures that will bias the estimation of TACE.
Note that although the definition of interaction bias on TACE
is for any unbiased estimator for ACE, we focus only on
the ordinary least squares estimator in this paper. This is
because among the class of unbiased linear estimators, the
OLS estimator has the minimum variance (Johnson et al.,
2014).

We exemplify the above theorem.
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Figure 2: Interaction network with 4 units. The numbers
represent edge coefficients. (C1, C2, C3, C5 are omitted)

Example 4.2. Figure 2 shows an example of an interaction
model with 4 units where X1, . . . , X5 are the treatments,
and Y1, . . . , Y5 the outcomes. The numbers on the edges
are the edge coefficients. Ci for i = 1, 2, 3, 5 are omitted
from the graph for simplicity.

Suppose we want to estimate TACEXY , the ACE of X
on Y as if the units were isolated:

• Input: the interaction network G∗ as shown in Figure
2 (no parameter i.e., S∗ is not an input),

• Output: the TACEXY (should equal to 2).

If we estimate ACEXY ignoring the connections between
units, our estimator will be β̂Y X , with Y = {Y1, . . . , Y5}
and X = {X1, . . . , X5}. This is because ignoring the
connections, the graph becomes Xi → Yi separated for i =
1, . . . , 5, so is essentially X → Y (Pearl, 2009). However,
by Equation (1),

βY X

=2 +
0.3 · 0.4

4
− 1

12
· 0.5− 1

12

0.6 · 0.2σ2
C

σ2
X

− 1

12
· 2 · 0.3

̸=2.

Hence, the result is biased, and does not give us what we
want.

5. Removing Interaction Bias
We present a method for computing an unbiased estimate of
TACE in cases where Equation (1) predicts significant bias.
It proceeds by applying linear regression on a set of samples
B that satisfy the condition that no bias inducing structures
exist between any two distinct units i and j. In particular, a
subset of samples/units B is termed as a bias-free subset
for TACEV S if no reflecting bias structures exist for any
i ∈ B and no deflecting bias structures exist in G∗

B where
G∗

B is the latent projection of G∗ on B (Definition 2.6.1,
(Pearl, 2009)).

For example in figure 1, B comprises of units 1 & 3 and
G∗

B is V1 → L1 → S1 V4 → L4 → S4. However, B is not
unique for a given interaction network. Another candidates
for B are units 1 & 3, or units 3 & 4. A possible algorithm
for constructing B starts by randomly initializing B with a
sample. Then it goes through the rest of the samples and
adds a sample to B if it does not have a reflecting bias
structure, and the inclusion does not create deflecting bias
structures in the resultant graph, G∗

B . Once we have B,
TACE can be unbiasedly estimated by β̂SV using only the
data in B.

Note that bias-free subset of samples B is not necessarily
IID. While no reflecting or deflecting bias structures exist
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in G∗
B , there is no restriction on other forms of interactions

among these samples. For example, G∗
B can be V1 → S1 ←

C2 → S2 ← V2 where S1 is caused by C2. In this case S is
not IID and hence B does not constitute an IID dataset.

Also note that to compute an unbiased estimate, we have
at our disposal a smaller set of samples; so the variance
of estimation will be larger. There is a trade off between
ignoring interaction (large bias, small variance), and using
this debias method (no bias, large variance). It remains
future work to quantify the variance of the estimator in this
debias method for different interaction models.

Applicability of bias quantification results to real world
problems: A natural question that arises at this juncture
is whether we need an entire interaction network to apply
these results to real world problems. Theorem 4.1 quantifies
bias and in doing so reveals to us if and how various fac-
tors such as sample size and strength of connections (value
of path coefficients) influence bias. This in turn allows us
to use available information about the problem from prior
experience, domain knowledge or external sources to deter-
mine if bias would be negligible or not. Specifically, bias is
inversely proportional to sample size; in fact the quadratic
term n(n− 1) in the denominator of deflecting bias shows
that it diminishes at a fast rate as sample size increases. It is
also evident that if the values of path coefficients are high,
V al(p) would be high and this will result in increased bias.

Finally, if the interaction connections are sparse (fewer
edges between units), the reduction in the total number
of paths could potentially lower bias but more importantly
the number of samples in the bias-free set B used in the
debias method will tend to be larger, which in turn will help
in computing better quality estimates.

6. Conclusion
In this work, we analyzed the bias induced from blindly
assuming IID in causal effect estimation using non-IID data,
based on the results presented in (Zhang et al., 2022). We
showed that incorrectly assuming IID induces bias if certain
interacting patterns exist, and we quantified the bias given
graphical models of interaction. We further presented a
debiasing method which allows applying IID methods to
non-IID data while guaranteeing minimal bias.
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