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Abstract

Identifying the effects of causes and causes of ef-
fects is vital in virtually every scientific field. Often,
however, the needed probabilities may not be fully
identifiable from the data sources available. This pa-
per shows how partial identifiability is still possible
for several probabilities of causation. We term this
ϵ-identifiability and demonstrate its usefulness in
cases where the behavior of certain subpopulations
can be restricted to within some narrow bounds. In
particular, we show how unidentifiable causal effects
and counterfactual probabilities can be narrowly
bounded when such allowances are made. Often
those allowances are easily measured and reason-
ably assumed. Finally, ϵ-identifiability is applied to
the unit selection problem.

1 Introduction
Both Effects of Causes (EoC) and Causes of Effects (CoE)
play an important role in several fields, such as health sci-
ence, social science, and business. For example, the causal
effects identified by the adjustment [Pearl, 1993] formula
helps decision-maker avoid randomized controlled trial using
purely observational data. For another example, probabilities
of causation have been proven critical in personalized decision-
making [Mueller and Pearl, 2022]. Besides, a linear combina-
tion of probabilities of causation has been used to solve the unit
selection problem defined by Li and Pearl [Li and Pearl, 2022b;
Li and Pearl, 2019; Li and Pearl, 2022d]. Causal quantities
can also increase the accuracy of machine learning models by
combining causal quantities with the model’s label [Li et al.,
2020].

The causal quantities have been studied for decades. Pearl
first defined the causal quantities such as causal effects [Pearl,
1993], probability of necessity and sufficiency (PNS), probabil-
ity of sufficiency (PS), and probability of necessity (PN) [Pearl,
1999] and their identifiability [Pearl, 2009] using the struc-
tural causal model (SCM) [Galles and Pearl, 1998; Halpern,
2000]. Pearl also proposed the identification conditions of the
causal effects (i.e., back-door and front-door criteria) [Pearl,
1993]. Pearl, Bareinboim, etc. have studied more conditions
for identifying the causal effects [Bareinboim and Pearl, 2012;

Shpitser and Pearl, 2009]. If the causal effects are not iden-
tifiable, the informative bounds are given by Li and Pearl
using non-linear programming [Li and Pearl, 2022c]. Then,
Tian and Pearl proposed the identification conditions of the
binary probabilities of causation (i.e., monotonicity) [Tian
and Pearl, 2000]. If the probabilities of causation are not
identifiable, Tian and Pearl [Tian and Pearl, 2000] also have
informative tight bounds for them using Balke’s Linear pro-
gramming [Balke and Pearl, 1997]. Mueller, Li, and Pearl
[Mueller et al., 2021], as well as Dawid [Dawid et al., 2017],
increased those bounds using additional covariate information
and the corresponding causal structure. Recently, Li and Pearl
also proposed the theoretical work for non-binary probabilities
of causation [Li and Pearl, 2022a].

In real-world applications, decision-makers are more likely
to have identifiable cases (i.e., the causal quantities have point
estimations) because the bounds under unidentifiable cases
may be less informative (e.g., 0.1 ≤ PNS ≤ 0.9). Besides,
estimating the bounds often requires a combination of exper-
imental and observational data. So we wonder if something
is sitting between the identifiable and the bounds. Inspired by
the idea of the confidence interval, in this paper, we proposed
the definition of ϵ-identifiability, in which more conditions
of ϵ-identifiability can be found while the estimations of the
causal quantities are still near point estimations.

2 Preliminaries
Here, we review the definition of PNS, PS, and PN defined
by Pearl [Pearl, 1999], as well as the definition of identifiable
and the conditions for identifying PNS, PS, and PN [Tian and
Pearl, 2000]. Besides, we review the tight bounds of PNS, PS,
and PN when they are unidentifiable [Tian and Pearl, 2000].
Readers who are familiar with the above knowledge may skip
this section.

Similarly to any works mentioned above, we used the causal
language of the SCM [Galles and Pearl, 1998; Halpern, 2000].
The introductory counterfactual sentence “Variable Y would
have the value y, had X been x” in this language is denoted by
Yx = y, and shorted as yx. We have two types of data: experi-
mental data, which is in the form of causal effects (denoted as
P (yx)), and observational data, which is in the form of a joint
probability function (denoted as P (x, y)).

First, the definition of identifiable for any causal quantities
defined using SCM is as follows:
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Definition 1 (Identifiability). Let Q(M) be any computable
quantity of a class of SCM M that is compatible with graph G.
We say that Q is identifiable in M if, for any pairs of models
M1 and M2 from M , Q(M1) = Q(M2) whenever PM1

(v) =
PM2

(v), where P (v) is the statistical data over the set V of
observed variables. If our observations are limited and permit
only a partial set FM of features (of PM (v)) to be estimated,
we define Q to be identifiable from FM if Q(M1) = Q(M2)
whenever FM1

= FM2
. [Pearl, 2009]

Second, the definitions of three binary probabilities of cau-
sation defined using SCM are as follow [Pearl, 1999]:

Definition 2 (Probability of necessity (PN)). Let X and Y
be two binary variables in a causal model M , let x and y
stand for the propositions X = true and Y = true, respec-
tively, and x′ and y′ for their complements. The probability of
necessity is defined as the expression

PN =∆ P (Yx′ = false|X = true, Y = true)

=∆ P (y′x′ |x, y)

Definition 3 (Probability of sufficiency (PS)). Let X and Y
be two binary variables in a causal model M , let x and y
stand for the propositions X = true and Y = true, respec-
tively, and x′ and y′ for their complements. The probability of
sufficiency is defined as the expression

PS =∆ P (yx|y′, x′)

Definition 4 (Probability of necessity and sufficiency (PNS)).
Let X and Y be two binary variables in a causal model M , let
x and y stand for the propositions X = true and Y = true,
respectively, and x′ and y′ for their complements. The proba-
bility of necessity and sufficiency is defined as the expression

PNS =∆ P (yx, y
′
x′)

Third, we review the identification conditions for causal
effects [Pearl, 1993; Pearl, 1995].

Definition 5 (Back-door criterion). Given an ordered pair
of variables (X,Y ) in a directed acyclic graph G, a set of
variables Z satisfies the back-door criterion relative to (X,Y ),
if no node in Z is a descendant of X , and Z blocks every path
between X and Y that contains an arrow into X .

If a set of variables Z satisfies the back-door criterion for
X and Y , the causal effects of X on Y are identifiable and
given by the adjustment formula:

P (yx) =
∑
z

P (y|x, z)P (z). (1)

Definition 6 (Front-door criterion). A set of variables Z is
said to satisfy the front-door criterion relative to an ordered
pair of variables (X,Y ) if:

• Z intercepts all directed paths from X to Y ;

• there is no back-door path from X to Z; and

• all back-door paths from Z to Y are blocked by X .

If a set of variables Z satisfies the front-door criterion for
X and Y , and P (x, Z) > 0, then the causal effects of X on
Y are identifiable and given by the adjustment formula:

P (yx) =
∑
z

P (z|x)
∑
x′

P (y|x′, z)P (x′).

If causal effects are not identifiable, Tian and Pearl [Tian
and Pearl, 2000] provided the following bounds for the causal
effects.

P (x, y) ≤ P (yx) ≤ 1− P (x, y′). (2)
Finally, we review the identification conditions for PNS, PS,

and PN [Tian and Pearl, 2000].
Definition 7. (Monotonicity) A Variable Y is said to be mono-
tonic relative to variable X in a causal model M iff

y′x ∧ yx′ = false.
Theorem 8. If Y is monotonic relative to X , then PNS, PN,
and PS are all identifiable, and

PNS = P (yx)− P (yx′),

PN =
P (y)− P (yx′)

P (x, y)
,

PS =
P (yx)− P (y)

P (x′, y′)
.

If PNS, PN, and PS are not identifiable, informative bounds
are given by Tian and Pearl [Tian and Pearl, 2000].

max


0,

P (yx)− P (yx′),
P (y)− P (yx′),
P (yx)− P (y)

 ≤ PNS (3)

min


P (yx),
P (y′x′),

P (x, y) + P (x′, y′),
P (yx)− P (yx′)+
P (x, y′) + P (x′, y)

 ≥ PNS (4)

max

{
0,

P (y)−P (yx′ )
P (x,y)

}
≤ PN (5)

min

{
1,

P (y′
x′ )−P (x′,y′)

P (x,y)

}
≥ PN (6)

max

{
0,

P (y′)−P (y′
x)

P (x′,y′)

}
≤ PS (7)

min

{
1,

P (yx)−P (x,y)
P (x′,y′)

}
≥ PS (8)

The identification conditions mentioned above (i.e., back-
door and front-door criteria and monotonicity) are robust.
However, it may still be hard to achieve in real-world applica-
tions. In this work, we extend the definition of identifiability,
in which a sufficiently small interval is allowed. By the new
definition, the estimates of causal quantities are still near point
estimations, and more conditions for identifiability could be
discovered. If nothing is specified, the discussion in this paper
will be restricted to binary treatment and effect (i.e., X and Y
are binary).



3 Main Results
First, we extend the definition of identifiability, which we call
ϵ-identifiability.
Definition 9 (ϵ-Identifiability). Let Q(M) be any computable
quantity of a class of SCM M that is compatible with graph
G. We say that Q is ϵ-identifiable in M (and ϵ-identified to
q) if, there exists q s.t. for any model m from M , Q(m) ∈
[q − ϵ, q + ϵ] with statistical data PM (v), where P (v) is the
statistical data over the set V of observed variables. If our
observations are limited and permit only a partial set FM

of features (of PM (v)) to be estimated, we define Q to be ϵ-
identifiable from FM if Q(m) ∈ [q − ϵ, q + ϵ] with statistical
data FM .

With the above definition, the causal quantity is at a maxi-
mum distance of ϵ from its true value. We will use the infix
operator symbol ≈ϵ to represent its left-hand side being within
ϵ of its right-hand side:

r ≈ϵ q ⇐⇒ r ∈ [q − ϵ, q + ϵ]. (9)
The following sections explicate conditions for ϵ-

identifiability of causal effects, PNS, PS, and PN.

3.1 ϵ-Identifiability of Causal Effects
The causal effect P (YX) can be ϵ-identified with information
about the observational joint distribution P (X,Y ). This can
be seen by rewriting Equation (2) as:

P (x, y) ⩽ P (yx) ⩽ P (x, y) + P (x′). (10)
Here, P (yx) is ϵ-identified to P (x, y) + ϵ when P (x′) ⩽ 2ϵ.
This ϵ-identification indicates a lower bound of P (x, y) and
an upper bound of P (x, y) + 2ϵ. Since P (x′) ⩽ 2ϵ, these
bounds are equivalent to (10). Notably, only P (x, y) and an
upper bound on P (x′) are necessary to ϵ-identify P (yx). This
is generalized in Theorem 10, without any assumptions of the
causal structure.
Theorem 10. The causal effect P (YX) is ϵ-identified as fol-
lows:

P (yx) ≈ϵ P (x, y) + ϵ if P (x′) ⩽ 2ϵ, (11)

P (y′x) ≈ϵ P (x, y′) + ϵ if P (x′) ⩽ 2ϵ, (12)

P (yx′) ≈ϵ P (x′, y) + ϵ if P (x) ⩽ 2ϵ, (13)

P (y′x′) ≈ϵ P (x′, y′) + ϵ if P (x) ⩽ 2ϵ. (14)

Proof. See Appendix 8.1.

When the complete distribution P (X,Y ) is known, The-
orem 10 provides no extra precision over Equation (10). Its
power comes from when only part of the distribution is known
and only an upper bound on P (X) is available or able to be
assumed.

Knowledge of a causal structure can aid ϵ-identification. In
Figure 1, there is a binary confounder U . If the full joint dis-
tribution P (X,Y, U) was available, the causal effect P (YX)
could be computed simply through the backdoor adjustment
formula. In the absence of the full joint distribution, Theorem
11 allows ϵ-identification of P (yx) with only knowledge of
P (x) and the conditional probability P (y|x) as well as an
upper bound on P (u).

U

X Y

Figure 1: The causal graph, where X is a binary treatment, Y is a
binary effect, and U is a binary confounder.

Theorem 11. Given the causal graph in Figure 1 and P (u) ≤
P (x)− c for some constant c, where 0 < c ⩽ P (x),

P (yx) ≈ϵ P (y|x) + P (x)− c

2cP (x) + P (x) + c
· ϵ

if P (u) ≤ 2cP (x)

2cP (x) + P (x) + c
· ϵ. (15)

Specifically, if P (x) ≥ 0.5, then the causal effect P (yx) is
ϵ-identified to P (y|x) + ϵ

13 if P (u) < 4
13ϵ.

Proof. See Appendix 8.2.

Note that x ∈ {x, x′}, y ∈ {y, y′}, and u ∈ {u, u′} in
Theorem 11. The constant c should be maximized satisfying
both c ⩽ P (x)− P (u) and the condition in Equation (15) for
a given ϵ. The larger c is, the closer P (yx) is ϵ-identified to
P (y|x). This needs to be balanced with minimizing ϵ.

As an example, if P (x) ≥ 0.5 and P (u) ⩽ 0.1, then the
causal effect P (yx) is ϵ-identified to P (y|x) + ϵ

13 if P (u) ⩽
4
13ϵ.

Essentially, P (yx) is ϵ-identified to P (y|x) plus some frac-
tion of ϵ when P (u) is sufficiently small. Therefore, the causal
effect P (yx) is near P (y|x) if P (U) is specific (i.e., P (u) or
P (u′) is minimal). In this case, Theorem 11 can be advan-
tageous over the backdoor adjustment formula to compute
P (yx), even when data on X , Y , and U are available, because
P (Y |X,U), required for the adjustment formula, is impracti-
cal to estimate with P (U) close to 0.

3.2 ϵ-Identifiability of PNS
Even though Tian and Pearl derived tight bounds on PNS [Tian
and Pearl, 2000], the PNS can be potentially further narrowed
when taking into account particular upper bound assumptions
on causal effects or observational probabilities. This can be
seen by analyzing the bounds of PNS in Equations (3) and (4).
Picking any of the arguments to the max function of the lower
bound and any of the arguments to the min function of the
upper bound, we can make a condition that the range of those
two values is less than 2ϵ. For example, let us pick the second
argument of the max function, P (yx)− P (yx′), and the first
argument of the min function, P (yx):

P (yx)− [P (yx)− P (yx′)] ⩽ 2ϵ,

P (yx′) ⩽ 2ϵ. (16)

Equation (16) is the assumption and the PNS is the ϵ-identified
to ϵ above the lower bound or ϵ below the upper bound:

PNS ≈ϵ P (yx)− P (yx′) + ϵ, or (17)
PNS ≈ϵ P (yx)− ϵ. (18)



Since it is assumed that P (yx′) ⩽ 2ϵ, Equation (17) is equiv-
alent to Equation (18). The complete set of ϵ-identifications
and associated conditions are stated in Theorem 12.

Theorem 12. The PNS is ϵ-identified as follows:

PNS ≈ϵ ϵ if P (yx) ⩽ 2ϵ, (19)

PNS ≈ϵ ϵ if P (y′x′) ⩽ 2ϵ, (20)

PNS ≈ϵ ϵ if P (x, y) + P (x′, y′) ⩽ 2ϵ,
(21)

PNS ≈ϵ ϵ if P (yx)− P (yx′)+

P (x, y′) + P (x′, y) ⩽ 2ϵ,
(22)

PNS ≈ϵ P (yx)− ϵ if P (yx′) ⩽ 2ϵ, (23)

PNS ≈ϵ P (y′x′)− ϵ if P (y′x) ⩽ 2ϵ, (24)
PNS ≈ϵ P (yx)−

P (yx′) + ϵ if P (x, y′) + P (x′, y) ⩽ 2ϵ,
(25)

PNS ≈ϵ P (yx)−
P (yx′) + ϵ if P (yx′)− P (yx)+

P (x, y) + P (x′, y′) ⩽ 2ϵ,
(26)

PNS ≈ϵ P (x, y)−
P (x′, y′)− ϵ if P (yx′)− P (yx)+

P (x, y) + P (x′, y′) ⩽ 2ϵ,
(27)

PNS ≈ϵ P (y′x′)− ϵ if P (y′) ⩽ 2ϵ, (28)
PNS ≈ϵ P (yx)− ϵ if P (yx) + P (yx′)−

P (y) ⩽ 2ϵ, (29)
PNS ≈ϵ P (y)− P (yx′) + ϵ if P (yx) + P (yx′)−

P (y) ⩽ 2ϵ, (30)
PNS ≈ϵ P (x, y)+

P (x′, y′)− ϵ if P (x′, y′) + P (yx′)−
P (x′, y) ⩽ 2ϵ, (31)

PNS ≈ϵ P (y)− P (yx′) + ϵ if P (x′, y′) + P (yx′)−
P (x′, y) ⩽ 2ϵ, (32)

PNS ≈ϵ P (y)− P (yx′) + ϵ if P (x′, y) + P (y′x′)−
P (x′, y′) ⩽ 2ϵ, (33)

PNS ≈ϵ P (yx)− ϵ if P (y) ⩽ 2ϵ, (34)

PNS ≈ϵ P (y′x′)− ϵ if P (y′x′)− P (yx)+

P (y) ⩽ 2ϵ, (35)

PNS ≈ϵ P (y)− P (yx′) + ϵ if P (y′x′)− P (yx)+

P (y) ⩽ 2ϵ, (36)
PNS ≈ϵ P (x, y)+

P (x′, y′)− ϵ if P (x, y) + P (y′x)−
P (x, y′) ⩽ 2ϵ, (37)

PNS ≈ϵ P (yx)− P (y) + ϵ if P (x, y) + P (y′x)−
P (x, y′) ⩽ 2ϵ, (38)

PNS ≈ϵ P (yx)− P (y) + ϵ if P (x′, y) + P (y′x′)−
P (x′, y′) ⩽ 2ϵ. (39)

Proof. See Appendix 8.3.

Note that in the above theorem, eight conditions consist
solely of experimental probabilities or solely of observational
probabilities. This potentially eliminates the need for some
types of studies, at least partially, even when estimating a coun-
terfactual quantity such as PNS. For example, if a decision-
maker knows that P (y) is large (P (y) ⩾ 0.95), they can
immediately conclude PNS ≈0.05 P (y′x′) − 0.05 without
knowing the specific value of P (y). Thus, only a control
group study would be sufficient.

3.3 ϵ-Identifiability of PN and PS

Tian and Pearl derived tight bounds on PN and PS in addition
to PNS. Similar to the derivation of Theorem 12, we can po-
tentially narrow those bounds by taking into account upper
bound assumptions on causal effects or observational proba-
bilities. The set of ϵ-identifications and associated conditions
are stated in Theorems 13 and 14.

Theorem 13. The PN is ϵ-identified as follows:

PN ≈ϵ ϵ if P (y′x′)− P (x′, y′)

⩽ 2ϵP (x, y), (40)

PN ≈ϵ 1− ϵ if P (yx′)− P (x′, y)

⩽ 2ϵP (x, y), (41)

PN ≈ϵ
P (y)− P (yx′)

P (x, y)
+ ϵ if P (yx′)− P (x′, y)

⩽ 2ϵP (x, y), (42)

PN ≈ϵ
P (y′x′)− P (x′, y′)

P (x, y)
− ϵ if P (x, y′)

⩽ 2ϵP (x, y), (43)

PN ≈ϵ
P (y)− P (yx′)

P (x, y)
+ ϵ if P (x, y′)

⩽ 2ϵP (x, y). (44)

Proof. See Appendix 8.4.



Table 1: Results of an observational study with 1500 individuals who
have access to the medicine, where 1260 individuals chose to receive
the medicine and 240 individuals chose not to.

Take the medicine Take no medicine
Recovered 780 210

Not recovered 480 30

Theorem 14. The PS is ϵ-identified as follows:

PS ≈ϵ ϵ if P (yx)− P (x, y)

⩽ 2ϵP (x′, y′), (45)

PS ≈ϵ 1− ϵ if P (y′x)− P (x, y′)

⩽ 2ϵP (x′, y′), (46)

PS ≈ϵ
P (y′)− P (y′x)

P (x′, y′)
+ ϵ if P (y′x)− P (x, y′)

⩽ 2ϵP (x′, y′), (47)

PS ≈ϵ
P (yx)− P (x, y)

P (x′, y′)
− ϵ if P (x′, y)

⩽ 2ϵP (x′, y′), (48)

PS ≈ϵ
P (y′)− P (y′x)

P (x′, y′)
+ ϵ if P (x′, y)

⩽ 2ϵP (x′, y′). (49)

Proof. See Appendix 8.5.

4 Examples
Here, we illustrate how to apply ϵ-Identifiability in real appli-
cations by two simulated examples.

4.1 Causal Effects of Medicine
Consider a medicine manufacturer who wants to know the
causal effect of a new medicine on a disease. They conducted
an observational study where 1500 patients were given access
to the medicine; the results of the study are summarized in
Table 1. In addition, the expert from the medicine manufac-
turer acknowledged that family history is the only confounder
of taking medicine and recovery, and the family history of
the disease is extremely rare; only 1% of the people have the
family history.

Let X = x denote that a patient chose to take the medicine,
and X = x′ denote that a patient chose not to take the
medicine. Let Y = y denote that a patient recovered, and
Y = y′ denote that a patient did not recover. Let U = u
denote that a patient has the family history, and U = u′ denote
that a patient has no family history.

To obtain the causal effect of the medicine (i.e., using ad-
justment formula (1)), we have to know the observational data
associated with family history, which is difficult to obtain.

Fortunately, from Table 1, we obtain that P (x) = 0.84 and
P (y|x) = 0.62. We also have the prior that P (u) = 0.01.
Since 0.01 = P (u) ≤ P (x) − 0.8 (let c = 0.8) and
0.01 = P (u) < 2c∗0.025P (x)

2cP (x)+P (x)+c = 0.0113, we can ap-
ply Theorem 11 to obtain that P (yx) is 0.025-identified to
P (y|x)+ P (x)−c

2cP (x)+P (x)+c0.025 = 0.62. This means the causal

effect of the medicine is very close to 0.62 (i.e., 0.025 close),
which can not be 0.025 far from 0.62. Then the medicine man-
ufacturer can conclude that the causal effect of the medicine
is roughly 0.62 without knowing the observational data asso-
ciated with the family history.

Or even simpler, note that P (x) = 0.84 > 0.5 and P (u) =
0.01 < 0.1, P (u) = 0.01 < 4

13 ∗ 0.035 = 0.0108. We obtain
that P (yx) is 0.035-identified to P (y|x) + 0.035

13 = 0.62. The
decision-maker can make the same conclusion as above.

4.2 PNS of Flu Shot
Consider a newly invented flu shot. After a vaccination com-
pany introduced a new flu shot, the number of people infected
by flu reached the lowest point in 20 years (i.e., less than 5%
of people infected by flu). The government concluded that
the new flu shot is the key to success. However, some anti-
vaccination associations believe it is because people’s physical
quality increases yearly. Therefore, they all want to know
how many percentages of people are uninfected because of
the flu shot. The PNS of the flu shot (i.e., the percentage of
individuals who would not infect by the flu if they had taken
the flu shot and would infect otherwise) is indeed what they
want.

Let X = x denote that an individual has taken the flu shot
and X = x′ denote that an individual has not taken the flu
shot. Let Y = y denote an individual infected by the flu and
Y = y′ denote an individual not infected by the flu.

If they want to apply the bounds of PNS in Equations (3) and
(4), they must conduct both experimental and observational
studies. However, note that P (y) < 0.05, one could apply
Equation (34) in Theorem 12, which PNS is 0.025-identified
to P (yx) − 0.025 (i.e., PNS is very close to P (yx)). Thus,
according to [Li et al., 2022], only an experimental study for
the treated group with a sample size of 385 is adequate for
estimating PNS.

5 ϵ-Identifiability in Unit Selection Problem
One utility of the causal quantities is the unit selection problem
[Li and Pearl, 2022b; Li and Pearl, 2019], in which Li and
Pearl defined an objective causal function to select a set of
individuals that have the desired mode of behavior.

Let X denote the binary treatment and Y denote the binary
effect. According to Li and Pearl, individuals were divided
into four response types: Complier (i.e., P (yx, y

′
x′)), always-

taker (i.e., P (yx, yx′)), never-taker (i.e., P (y′x, y
′
x′)), and

defier (i.e., P (y′x, yx′)). Suppose the payoff of selecting a
complier, always-taker, never-taker, and defier is β, γ, θ, δ,
respectively (i.e., benefit vector). The objective function (i.e.,
benefit function) that optimizes the composition of the four
types over the selected set of individuals c is as follows:

f(c) = βP (yx, y
′
x′ |c) + γP (yx, yx′ |c) +

θP (y′x, y
′
x′ |c) + δP (y′x, yx′ |c).

Li and Pearl provided two types of identifiability conditions
for the benefit function. One is about the response type such
that there is no defier in the population (i.e., monotonicity).
Another is about the benefits vector’s relations, such that β +
δ = γ+θ (i.e., gain equality). These two conditions are helpful



Table 2: Results of an experimental study with 1500 randomly se-
lected customers were forced to apply the discount, and 1500 ran-
domly selected customers were forced not to.

Discount No discount
Bought the purchase 900 750

No purchase 600 750

but still too specific and challenging to satisfy in real-world
applications. If the benefit function is not identifiable, it can be
bounded using experimental and observational data. Here in
this paper, we extend the gain equality to the ϵ-identifiability
as stated in the following theorem.

Theorem 15. Given a causal diagram G and distribution com-
patible with G, let C be a set of variables that does not contain
any descendant of X in G, then the benefit function f(c) =
βP (yx, y

′
x′ |c)+γP (yx, yx′ |c)+θP (y′x, y

′
x′ |c)+δP (yx′ , y′x|c)

is |β−γ−θ+δ|
2 -identified to (γ − δ)P (yx|c) + δP (yx′ |c) +

θP (y′x′ |c) + β−γ−θ+δ
2 .

One critical use case of the above theorem is that decision-
makers usually only care about the sign (gain or lose) of the
benefit function. Decision-makers can apply the above theo-
rem before conducting any observational study to see if the
sign of the benefit function can be determined, as we will
illustrate in the next section.

5.1 Example: Non-immediate Profit
Consider the most common example in [Li and Pearl, 2019]. A
sale company proposed a discount on a purchase in order to in-
crease the total non-immediate profit. The company assessed
that the profit of offering the discount to complier, always-
taker, never-taker, and defier is $100,−$60, $0,−$140, re-
spectively. Let X = x denote that a customer applied the
discount, and X = x denote that a customer did not apply
the discount. Let Y = y denote that a customer bought the
purchase and Y = y′ denote that a customer did not. The
benefit function is then (here c denote all customers)

f(c) = 100P (yx, y
′
x′ |c)− 60P (yx, yx′ |c) +

0P (y′x, y
′
x′ |c)− 140P (y′x, yx′ |c).

The company conducted an experimental study where 1500
randomly selected customers were forced to apply the dis-
count, and 1500 randomly selected customers were forced not
to. The results are summarized in Table 2. The experimental
data reads P (yx|c) = 0.6 and P (yx′ |c) = 0.5.

Before conducting any observational study, one can con-
clude that the benefit function is 10-identified to −12 using
Theorem 15. This result indicates that the benefit function is at
most 10 away from −12; thus, the benefit function is negative
regardless of the observational data. The decision-maker then
can easily conclude that the discount should not offer to the
customers.

6 Discussion
We have defined the ϵ-identifiability of causal quantities and
provided a list of ϵ-identifiable conditions for causal effects,

PNS, PN, and PS. We still have some further discussions about
the topic.

First, all conditions except Theorem 11 are conditions from
observational or experimental data. In other words, if some of
the observational or experimental distributions satisfied a par-
ticular condition, then the causal quantities are ϵ-identifiable.
These conditions are advantageous in real-world applications
as no specific causal graph is needed. However, we still love
to discover more graphical conditions of ϵ-identifiability, such
as back-door or front-door criterion.

Second, the bounds of PNS, PS, PN, and the benefit function
can be narrowed by covariates information with their causal
structure [Dawid et al., 2017; Li and Pearl, 2022d; Mueller
et al., 2021]. The ϵ-identifiability can also be extended if
covariates information and their causal structure are available,
which should be an exciting direction in the future.

Third, monotonicity is defined using a causal quantity, and
in the meantime, monotonicity is also an identifiable condition
for other causal quantities (e.g., PNS). Thus, another charming
direction is how the ϵ-identifiability of monotonicity affects
the ϵ-identifiability of other causal quantities.

7 Conclusion
In this paper, we defined the ϵ-identifiability of causal quan-
tities, which is easier to satisfy in real-world applications.
We provided the ϵ-identifiability conditions for causal effects,
PNS, PS, and PN. We further illustrated the use cases of the
proposed conditions by simulated examples.
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8 Appendix
8.1 Proof of Theorem 10
Proof. From Equation (2) we have,

P (x, y) ≤ P (yx) ≤ 1− P (x, y′).

Let 1− P (x, y′)− P (x, y) ≤ 2ϵ, we obtain P (x′) ≤ 2ϵ.
Therefore, P (yx) is ϵ-identified to P (x, y) + ϵ if P (x′) ≤ 2ϵ,
Equation (11) holds. Similarily, we can substitute x, y with
x′, y′, respectively. Equations (12) to (14) hold.

8.2 Proof of Theorem 11
Proof. First, by adjustment formula in Equation (1), we have,

P (yx) = P (y|x, u)P (u) + P (y|x, u′)P (u′).

Thus,
P (yx)

≥ P (y|x, u′)P (u′)

= P (y|x, u′)(1− P (u))

=
P (x, y, u′)

P (x, u′)
(1− P (u))

≥ P (x, y)− P (u)

P (x)
(1− P (u))

= P (y|x)− P (y|x)P (u)− P (u)

P (x)
+

P 2(u)

P (x)

≥ P (y|x)− P (u)− P (u)

P (x)

= P (y|x)− (1 +
1

P (x)
)P (u).

Also if P (x) ≥ P (u) + c for some constant c > 0, we have,
P (yx)

≤ P (u) + P (y|x, u′)(1− P (u))

≤ P (u) +
P (x, y, u′)

P (x, u′)
(1− P (u))

≤ P (u) +
P (x, y)

P (x)− P (u)
(1− P (u))

≤ P (u) +
P (x, y)

P (x)− P (u)

= P (u) +
P (x, y)

P (x)(1− P (u)
P (x) )

= P (u) +
P (x, y)(1− P (u)

P (x) ) + P (y|x)P (u)

P (x)(1− P (u)
P (x) )

= P (u) + P (y|x) + P (y|x)P (u)

P (x)− P (u)

≤ P (y|x) + P (u) +
P (u)

P (x)− P (u)

≤ P (y|x) + P (u) +
P (u)

c

= P (y|x) + P (u)(1 +
1

c
)

Therefore, we have,

P (y|x)− (1 +
1

P (x)
)P (u) ≤ P (yx) ≤ P (y|x) + (1 +

1

c
)P (u).

Let

(1 +
1

c
)P (u) + (1 +

1

P (x)
)P (u) ≤ 2ϵ.

We have,
P (u)

≤ 2

2 + 1
c + 1

P (x)

ϵ

=
2cP (x)

2cP (x) + P (x) + c
ϵ.

Then we know that if P (u) ≤ 2cP (x)
2cP (x)+P (x)+cϵ,

P (y|x)− (1 +
1

P (x)
)

2cP (x)

2cP (x) + P (x) + c
ϵ ≤ P (yx),

P (y|x) + (1 +
1

c
)

2cP (x)

2cP (x) + P (x) + c
ϵ ≥ P (yx),

P (y|x)− 2cP (x) + 2c

2cP (x) + P (x) + c
ϵ ≤ P (yx),

P (y|x) + 2cP (x) + 2P (x)

2cP (x) + P (x) + c
ϵ ≥ P (yx).

Therefore, P (yx) is ϵ-identified to P (y|x)− 2cP (x)+2c
2cP (x)+P (x)+cϵ+

ϵ = P (y|x) + P (x)−c
2cP (x)+P (x)+cϵ.

Besides, if P (x) ≥ 0.5 and P (u) ≤ 0.1, let c = 0.4, we have

P (y|x)− (1 +
1

P (x)
)P (u) ≤ P (yx),

P (y|x) + (1 +
1

c
)P (u) ≥ P (yx).

P (y|x)− (1 +
1

0.5
)P (u) ≤ P (yx),

P (y|x) + (1 +
1

0.4
)P (u) ≥ P (yx).

P (y|x)− 3P (u) ≤ P (yx) ≤ P (y|x) + 3.5P (u).

Let 3.5P (u) + 3P (u) ≤ 2ϵ, we have P (u) ≤ 4
13ϵ, and

P (y|x)− 12

13
ϵ ≤ P (yx) ≤ P (y|x) + 14

13
ϵ.

Therefore, P (yx) is ϵ-identified to P (y|x) − 12
13ϵ + ϵ =

P (y|x) + ϵ
13 .

8.3 Proof of Theorem 12
Proof. From the bounds of PNS in Equations (3) and (4) is as
follows:

max


0,

P (yx)− P (yx′),
P (y)− P (yx′),
P (yx)− P (y)

 ≤ PNS

min


P (yx),
P (y′x′),

P (x, y) + P (x′, y′),
P (yx)− P (yx′)+

+P (x, y′) + P (x′, y)

 ≥ PNS.



Let P (yx)− 0 ≤ 2ϵ, we obtain that PNS is ϵ-identified to ϵ if
P (yx) ≤ 2ϵ, Equation (19) holds.
Similarly, the rest of 20 equations can be obtained by letting

P (y′x′)− 0 ≤ 2ϵ,

P (x, y) + P (x′, y′)− 0 ≤ 2ϵ,

P (yx)− P (yx′) + P (x, y′) + P (x′, y)− 0 ≤ 2ϵ,

P (yx)− (P (yx)− P (yx′)) ≤ 2ϵ,

P (y′x′)− (P (yx)− P (yx′)) ≤ 2ϵ,

P (x, y) + P (x′, y′)− (P (yx)− P (yx′)) ≤ 2ϵ,

P (yx)− P (yx′) + P (x, y′) + P (x′, y)−
(P (yx)− P (yx′)) ≤ 2ϵ,

P (yx)− (P (y)− P (yx′)) ≤ 2ϵ,

P (y′x′)− (P (y)− P (yx′)) ≤ 2ϵ,

P (x, y) + P (x′, y′)− (P (y)− P (yx′)) ≤ 2ϵ,

P (yx)− P (yx′) + P (x, y′) + P (x′, y)−
(P (y)− P (yx′)) ≤ 2ϵ,

P (yx)− (P (yx)− P (y)) ≤ 2ϵ,

P (y′x′)− (P (yx)− P (y)) ≤ 2ϵ,

P (x, y) + P (x′, y′)− (P (yx)− P (y)) ≤ 2ϵ,

P (yx)− P (yx′) + P (x, y′) + P (x′, y)−
(P (yx)− P (y)) ≤ 2ϵ.

8.4 Proof of Theorem 13
Proof. From the bounds of PN in Equations (5) and (6) is as
follows:

max

{
0,

P (y)−P (yx′ )
P (x,y)

}
≤ PN ≤ min

{
1,

P (y′
x′ )−P (x′,y′)

P (x,y)

}
Let P (y′

x′ )−P (x′,y′)

P (x,y) −0 ≤ 2ϵ, we obtain that PN is ϵ-identified
to ϵ if P (y′x′)− P (x′, y′) ≤ 2P (x, y)ϵ, Equation (40) holds.
Similarly, the rest of 4 equations can be obtained by letting

1− P (y)− P (yx′)

P (x, y)
≤ 2ϵ,

P (y′x′)− P (x′, y′)

P (x, y)
− P (y)− P (yx′)

P (x, y)
≤ 2ϵ.

8.5 Proof of Theorem 14
Proof. From the bounds of PS in Equations (7) and (8) is as
follows:

max

{
0,

P (y′)−P (y′
x)

P (x′,y′)

}
≤ PS ≤ min

{
1,

P (yx)−P (x,y)
P (x′,y′)

}
Let P (yx)−P (x,y)

P (x′,y′) − 0 ≤ 2ϵ, we obtain that PS is ϵ-identified
to ϵ if P (yx)− P (x, y) ≤ 2P (x′, y′)ϵ, Equation (45).
Similarly, the rest of 4 conditions can be obtained by letting

1− P (y′)− P (y′x)

P (x′, y′)
≤ 2ϵ,

P (yx)− P (x, y)

P (x′, y′)
− P (y′)− P (y′x)

P (x′, y′)
≤ 2ϵ.

8.6 Proof of Theorem 15
Proof.

f(c)

= βP (yx, y
′
x′ |c) + γP (yx, yx′ |c) +

θP (y′x, y
′
x′ |c) + δP (y′x, yx′ |c)

= βP (yx, y
′
x′ |c) + γ[P (yx|c)− P (yx, y

′
x′ |c)] +

θ[P (y′x′)− P (yx, y
′
x′ |c)] + δP (y′x, yx′ |c)

= γP (yx|c) + θP (y′x′ |c) + (β − γ − θ)P (yx, y
′
x′ |c) +

δP (y′x, yx′ |c). (50)
Note that, we have,
P (y′x, yx′ |c) = P (yx, y

′
x′ |c)− P (yx|c) + P (yx′ |c). (51)

Substituting Equation (51) into Equation (50), we have,
f(c)

= γP (yx|c) + θP (y′x′ |c) + (β − γ − θ)P (yx, y
′
x′ |c) +

δP (y′x, yx′ |c)
= γP (yx|c) + θP (y′x′ |c) + (β − γ − θ)P (yx, y

′
x′ |c) +

δ[P (yx, y
′
x′ |c)− P (yx|c) + P (yx′ |c)]

= (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c) +
(β − γ − θ + δ)P (yx, y

′
x′ |c).

Case 1: If β − γ − θ + δ ≥ 0,
f(c)

≤ (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c) +
β − γ − θ + δ

2
+

|β − γ − θ + δ|
2

= (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c) +
β − γ − θ + δ.

and,
f(c)

≥ (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c) +
β − γ − θ + δ

2
− |β − γ − θ + δ|

2
= (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c).

Therefore, f(c) is |β−γ−θ+δ|
2 -identified to (γ − δ)P (yx|c) +

δP (yx′ |c) + θP (y′x′ |c) + β−γ−θ+δ
2 .

Case 2: If β − γ − θ + δ < 0,
f(c)

≤ (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c) +
β − γ − θ + δ

2
+

|β − γ − θ + δ|
2

= (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c).
and,

f(c)

≥ (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c) +
β − γ − θ + δ

2
− |β − γ − θ + δ|

2
= (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c) +

β − γ − θ + δ.



Therefore, f(c) is |β−γ−θ+δ|
2 -identified to (γ − δ)P (yx|c) +

δP (yx′ |c) + θP (y′x′ |c) + β−γ−θ+δ
2 .
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