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Abstract

This paper addresses the problem of estimating causal effects
when adjustment variables in the back-door or front-door cri-
terion are partially observed. For such scenarios, we derive
bounds on the causal effects by solving two non-linear opti-
mization problems, and demonstrate that the bounds are suf-
ficient. Using this optimization method, we propose a frame-
work for dimensionality reduction that allows one to trade bias
for estimation power, and demonstrate its performance using
simulation studies.

Introduction
Estimating causal effects has been encountered in many areas
of industry, marketing, and health science, and it is the most
critical problem in causal inference. Pearl’s back-door and
front-door criteria, along with the adjustment formula (Pearl
1995), are powerful tools for estimating causal effects. In
this paper, the problem of estimating causal effects when
adjustment variables in the back-door or front-door criterion
are partially observable, or when the adjustment variables
have high dimensionality, is addressed.

Consider the problem of estimating the causal effects of X
on Y when a sufficient set W ∪U of confounders is partially
observable (see Figure 1). Because W ∪ U is assumed to be
sufficient, the causal effects are identified from measurements
on X,Y,W, and U and can be written as

P (y|do(x)) =
∑
w,u

P (y|x,w, u)P (w, u)

=
∑
w,u

P (x, y, w, u)P (w, u)

P (x,w, u)
.

However, if U is unobserved, d-separation tells us imme-
diately that adjusting for W is inadequate by leaving the
back-door path X ←− U −→ Y unblocked. Therefore, regard-
less of sample size, the causal effects of X on Y cannot be
estimated without bias. However, it turns out that when given
a prior distribution P (U), we can obtain bounds on the causal
effects. We will demonstrate later that the midpoints of the
bounds are sufficient for estimating the causal effects.

Bounding has been proven to be useful in causal infer-
ence. (Balke and Pearl 1997a) provided bounds on causal
effects with imperfect compliance, (Tian and Pearl 2000)
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Figure 1: Needed the causal effects of X on Y when U is
unobserved. The dot line between U and W means either U
affects W , W affects U , or U and W are independent.

proposed bounds on probabilities of causation, (Cai et al.
2008) provided bounds on causal effects with the presence of
confounded intermediate variables, and (Li and Pearl 2019)
proposed bounds on the benefit function of a unit selection
problem.

Although P (U) is assumed to be given, it is usually known
regardless of the model itself (e.g., U stands for gender, gene
type, blood type, or age). Alternatively, if costs permit, one
can estimate P (U) by re-testing within a small sampled sub-
population.

A second problem considered in this paper is that of esti-
mating causal effects when a sufficient set Z of confounders
is fully observable (see Figure 2), but with a high dimen-
sionality (e.g., Z has 1024 instantiates). In such a case, a
prohibitively large sample size would be required, which is
generally recognized to be impractical. We propose a new
framework that transforms the problem associated with Fig-
ure 2 into an equivalent problem associated with Figure 3
containing W and U , which have much smaller dimensional-
ities (e.g., W and U have 32 instantiates). We then estimate
bounds on causal effects of the equivalent problem and take
the midpoints as the effect estimates. We demonstrate through
a simulation that this method can deliver good estimates of
causal effects of the original problem.

Preliminaries & Related Works
In this section, we review the back-door and front-door crite-
ria and their associated adjustment formulas (Pearl 1995). We
use the causal diagrams in (Pearl 1995; Spirtes et al. 2000;
Pearl 2009; Koller and Friedman 2009).
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Figure 2: Needed the causal effects of X on Y when Z has
high dimensionality.
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Figure 3: Causal diagram of an equivalent problem.

One key concept of a causal diagram is called d-separation
(Pearl 2014).
Definition 1 (d-separation). In a causal diagram G, a path
p is blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A −→ B −→ C or a fork
A ←− B −→ C such that the middle node B is in Z (i.e.,
B is conditioned on), or

2. p contains a collider A −→ B ←− C such that the collision
node B is not in Z, and no descendant of B is in Z.

If Z blocks every path between two nodes X and Y , then
X and Y are d-separated conditional on Z, and thus are
independent conditional on Z, denoted as X ⊥⊥ Y | Z.

With the concept of d-separation in a causal diagram, Pearl
proposed the back-door and front-door criteria as follows:
Definition 2 (Back-Door Criterion). Given an ordered pair
of variables (X,Y ) in a directed acyclic graph G, a set
of variables Z satisfies the back-door criterion relative to
(X,Y ), if no node in Z is a descendant of X , and Z blocks
every path between X and Y that contains an arrow into X .

If a set of variables Z satisfies the back-door criterion for
X and Y , the causal effects of X on Y are given by the
adjustment formula:

P (y|do(x)) =
∑
z

P (y|x, z)P (z). (1)

Definition 3 (Front-Door Criterion). A set of variables Z is
said to satisfy the front-door criterion relative to an ordered
pair of variables (X,Y ) if

• Z intercepts all directed paths from X to Y ;
• there is no back-door path from X to Z; and
• all back-door paths from Z to Y are blocked by X .

If a set of variables Z satisfies the front-door criterion for
X and Y , and if P (x, Z) > 0, then the causal effects of X
on Y are given by the adjustment formula:

P (y|do(x)) =
∑
z

P (z|x)
∑
x′

P (y|x′, z)P (x′). (2)

The back-door and front-door criteria are two powerful
tools for estimating causal effects; however, causal effects
are not identifiable if the set of adjustment variables Z is
not fully observable. (Tian and Pearl 2000) provided the
naivest bounds for causal effects (Equation 3), regardless of
the causal diagram.

P (x, y) ≤ P (y|do(x)) ≤ 1− P (x, y′). (3)

As the first contribution of this study, we obtain narrower
bounds of the causal effects by leveraging another source of
knowledge, i.e., a causal diagram behind data combined with
measurements of a set W (observable part of Z) of covariates
and a prior information of a set U (unobservable part of Z),
in a causal diagram in which the bounds are solutions to
two non-linear optimization problems. We illustrate that the
midpoints of the bounds are sufficient for estimating the
causal effects.

Using this optimization method, our second contribution
is the proposal of a new framework for estimating causal
effects when a set of fully observable adjustment variables Z
has a high dimensionality without any assumption regarding
the data-generating process. (Maathuis et al. 2009) proposed
a method of estimating causal effects when the number of
covariates is larger than the sample size. However, it relies
on several assumptions, including the assumption that the
distribution of covariates is multivariate normal. The method
is limited if the distribution of covariates is unknown or does
not have accuracy estimate owing to the limitation of the
sample size.

Bounds on Causal Effects

In this section, we demonstrate how bounds on causal effects
with partially observable back-door or front-door variables
can be obtained through non-linear optimizations.

Partially Observable Back-Door Variables

Theorem 4. Given a causal diagram G and a distribution
compatible with G, let W ∪ U be a set of variables satisfy-
ing the back-door criterion in G relative to an ordered pair
(X,Y ), where W ∪ U is partially observable, i.e., only prob-
abilities P (X,Y,W ) and P (U) are given, the causal effects
of X on Y are then bounded as follows:

LB ≤ P (y|do(x)) ≤ UB

where LB is the solution to the non-linear optimization prob-
lem in Equation 4 and UB is the solution to the non-linear



optimization problem in Equation 5.

LB = min
∑
w,u

aw,ubw,u

cw,u
, (4)

UB = max
∑
w,u

aw,ubw,u

cw,u
, (5)

where,∑
u

aw,u = P (x, y, w),
∑
u

bw,u = P (w),∑
u

cw,u = P (x,w) for all w ∈W ;

and for all w ∈W and u ∈ U,

bw,u ≥ cw,u ≥ aw,u,

max{0, p(x, y, w) + p(u)− 1} ≤ aw,u,

min{P (x, y, w), p(u)} ≥ aw,u,

max{0, p(w) + p(u)− 1} ≤ bw,u,

min{P (w), p(u)} ≥ bw,u,

max{0, p(x,w) + p(u)− 1} ≤ cw,u,

min{P (x,w), p(u)} ≥ cw,u.

Partially Observable Front-Door Variables
Theorem 5. Given a causal diagram G and distribution com-
patible with G, let W ∪U be a set of variables satisfying the
front-door criterion in G relative to an ordered pair (X,Y ),
where W ∪ U is partially observable, i.e., only probabilities
P (X,Y,W ) and P (U) are given and P (x,W,U) > 0, the
causal effects of X on Y are then bounded as follows:

LB ≤ P (y|do(x)) ≤ UB

where LB is the solution to the non-linear optimization prob-
lem in Equation 6 and UB is the solution to the non-linear
optimization problem in Equation 7.

LB = min
∑
w,u

bx,w,u

P (x)

∑
x′

ax′,w,uP (x′)

bx′,w,u
, (6)

UB = max
∑
w,u

bx,w,u

P (x)

∑
x′

ax′,w,uP (x′)

bx′,w,u
, (7)

where,∑
u

ax,w,u = P (x, y, w),
∑
u

bx,w,u = P (x,w)

for all x ∈ X and w ∈W ;

and for all x ∈ X ,w ∈W , and u ∈ U,

bx,w,u ≥ ax,w,u,

max{0, p(x, y, w) + p(u)− 1} ≤ ax,w,u,

min{P (x, y, w), p(u)} ≥ ax,w,u,

max{0, p(x,w) + p(u)− 1} ≤ bx,w,u,

min{P (x,w), p(u)} ≥ bx,w,u.
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Figure 4: Needed the causal effects of X on Y when U is
unobserved and independent with W .

Notably, if any observational data (e.g., P (U)) are unavail-
able in the above theorems, we can remove that term, and
the rest of non-linear optimization problems still provide
valid bounds for the causal effects. In general, midpoints of
bounds on causal effects are effective estimates. However,
the lower (upper) bounds are also informative, which can
be interpreted as the minimal (maximal) causal effects. The
proofs of Theorems 4 and 5 are provided in the appendix.

Example

Herein, we present a simulated example to demonstrate that
the midpoints of the bounds on the causal effects given by
Theorem 4 are adequate for estimating the causal effects.

Causal Effect of a Drug

Drug manufacturers want to know the causal effect of recov-
ery when a drug is taken. Thus, they conduct an observational
study. Here, the recovery rates of 700 patients were recorded.
A total of 192 patients chose to take the drug and 508 patients
did not. The results of the study are shown in Table 1. Blood
type (type O or not) is not the only confounder of taking the
drug and recovery. Another confounder is age (below the age
of 70 or not). The manufacturers have no data associated with
age. They only know that 85.43% of people in their region
are below the age of 70.

Because both age and blood type are confounders of taking
the drug and recovery, and the observational data associated
with age are unobservable, the causal effect is not identifiable.

Let X = x denote the event that a patient took the drug,
and X = x′ denote the event that a patient did not take the
drug. Let Y = y denote the event that a patient recovered,
and Y = y′ denote the event that a patient did not recover. Let
W = w represent a patient with blood type O, and W = w′

represent a patient without blood type O. Let U = u represent
a patient below the age of 70, and U = u′ represent a patient
above the age of 70. The causal diagram is shown in Figure
4.

An option for the manufacturers could be estimating the
causal effect through the Tian-Pearl bounds in Equation 3



Table 1: Results of an observational study considering blood
type.

Drug No Drug

Blood
type O

23 out of 36
recovered
(63.9%)

145 out of 225
recovered
(64.4%)

Not blood
type O

135 out of 156
recovered
(86.5%)

152 out of 283
recovered
(53.7%)

Overall
158 out of 192

recovered
(82.3%)

297 out of 508
recovered
(58.5%)

and the observational data from Table 1, where

P (x, y) =
∑
w

P (y|x,w)P (x|w)P (w)

= 0.2257,

1− P (x, y′) = 1−
∑
w

P (y′|x,w)P (x|w)P (w)

= 0.9514.

Therefore, the bounds on the causal effect estimated using
Equation 3 are 0.2257 ≤ P (y|do(x)) ≤ 0.9514, where the
causal information of the covariate W and the prior informa-
tion P (U) are not used. These bounds are not sufficiently
informative to conclude the actual causal effect. Although
one may believe that we can use the midpoint of the bounds
(i.e., 0.5886), the gap (i.e., 0.9514 − 0.2257 = 0.7257) be-
tween the bounds is not small; hence, this point estimate is
unconvincing.

Now, considering the proposed bounds in Theorem 4 with
the observational data from Table 1. W ∪ U satisfies the
back-door criterion, and P (X,Y,W ) and P (U) are available.
We have 12 optimal variables in each objective function,
because W and U are binary. With the help of the “SLSQP”
solver (Kraft 1988) in the scipy package (SciPyCommunity
2020), we obtain the bounds on the causal effect, which are
0.4728 ≤ P (y|do(x)) ≤ 0.9514. The lower bound actually
increased significantly, and reached close to 0.5, which can
help make decisions. The midpoint is 0.7121. Our conclusion
is then that the causal effect of recovery when taking the drug
is 0.7121. We show in the following section that this estimate
of the causal effect is extremely close to the actual causal
effect.

Informer View of the Causal Effect
An informer with access to the fully observed observational
data, as summarized in Table 2 (Note that although it can be
verified that the data in Table 2 are compatible with those
in Table 1, we will never know these numbers in reality),
would easily calculate the causal effect of recovery when
taking the drug using the adjustment formula in Equation 1
(shown in Equation 8). The error of the estimate of the causal
effect using Theorem 4 is only (0.7518− 0.7121)/0.7518 ≈

Table 2: Informer view of the observational data considering
blood type and age.

Drug No Drug
Blood
type O

and
Age

below 70

3 out of 4
recovered
(75.0%)

141 out of 219
recovered
(64.4%)

Blood
type O

and
Age

above 70

20 out of 32
recovered
(62.5%)

4 out of 6
recovered
(66.7%)

Not blood
type O

and
Age

below 70

135 out of 151
recovered
(89.4%)

117 out of 224
recovered
(52.2%)

Not blood
type O

and
Age

above 70

0 out of 5
recovered

(0.0%)

35 out of 59
recovered
(59.3%)

Overall
158 out of 192

recovered
(82.3%)

297 out of 508
recovered
(58.5%)

5.28%.

P (y|do(x)) =
∑
w,u

P (y|x,w, u)P (w, u) = 0.7518.(8)

Simulation Results
Here, we further illustrate that the midpoints of the proposed
bounds on causal effects are sufficient for estimating the
causal effects, and the midpoints of the proposed bounds in
Theorem 4 are better than the midpoints of the Tian-Pearl
bounds in Equation 3 based on a random simulation.

We employ the simplest causal diagram in Figure 1 with
binary W , U , such that W ∪ U satisfies the back-door cri-
terion. We randomly generated 1000 sample distributions
compatible with the causal diagram (the algorithm for gener-
ating the sample distributions is shown in the appendix). The
average gap (upper bound − lower bound) of the Tian-Pearl
bounds among 1000 samples is 0.487, and the average gap
of the proposed bounds among 1000 samples is 0.383. We
then randomly picked 100 out of 1000 sample distributions
to draw the graph of the actual causal effects, the midpoints
of the Tian-Pearl bounds, and the midpoints of the proposed
bounds. The results are shown in Figure 5.

From Figure 5, although both midpoints of the bounds on
the causal effects are good estimates of the actual causal ef-
fects, the midpoints of the proposed bounds are much closer
to the actual causal effects, particularly when the causal ef-
fects are close to 0 and 1. The average gap (upper bounds −
lower bounds), 0.383, of the proposed bounds among 1000
samples is much smaller than the average gap, 0.487, of the
Tian-Pearl bounds among 1000 samples. This means that
the midpoints of the proposed bounds are more convincing,
because the bounds are narrower.



Figure 5: Bounds on causal effects of 100 sample distribu-
tions with partially observed confounders, where the Tian-
Pearl bounds are obtained through Equation 3 and the pro-
posed bounds are obtained through Theorem 4.

Application to High Dimensionality of
Adjustment Variables

Consider the problem of estimating the causal effects of
X on Y when a sufficient set Z, which satisfies the back-
door or front-door criterion, is fully observable (e.g., see
Figure 2) in a causal diagram G but has high dimensionality
(e.g., Z has 1024 instantiates), a prohibitive large sample size
would be required to estimate the causal effects, which is
generally recognized to be impractical. Herein, we propose a
new framework to achieve dimensionality reduction.

Equivalent Causal Diagram with Observational
Data
Definition 6 (Equivalent causal diagram with observational
data). Let G,G′ be causal diagrams both containing nodes
X,Y . O are observational data compatible with G, and
O′ are observational data compatible with G′. We say that
(G,O) is equivalent to (G′, O′) with respect to P (y|do(x))
if the causal effects of X on Y with (G,O) is equal to the
causal effects of X on Y with (G′, O′).

This equivalent tuple (G′, O′) is easy to obtain. We can
simply add two new nodes W and U , and remove a node Z
in G to obtain G′. Let the arrows entering Z in G now enter
both W and U in G′, and let the arrows exiting Z in G now
exit both W and U in G′. Finally, add an arrow from U to
W . It is easy to show that (G,O) and (G′, O′) are equivalent
if the states of Z are the Cartesian product of the states of W
and the states of U . Formally, we have the following theorem
(the proof of the theorem is provided in the appendix),
Theorem 7. Let G be a causal diagram containing nodes
{V1, ..., Vn−3, X, Y, Z}. Let O be any observational data
compatible with G. Suppose there exists a set of vari-
ables that satisfies the back-door or front-door crite-
rion relative to (X,Y ) in G, then, (G,O) is equivalent
to (G′, O′) respect to P (y|do(x)) (G′ containing nodes

Table 3: Observational data in CPTs compatible with the
causal diagram in Figure 2.

P (z1) 0.3
P (z2) 0.2
P (z3) 0.2
P (z4) 0.3
P (x|z1) 0.1
P (x|z2) 0.4
P (x|z3) 0.5
P (x|z4) 0.7

P (y|x, z1) 0.2
P (y|x′, z1) 0.3
P (y|x, z2) 0.7
P (y|x′, z2) 0.1
P (y|x, z3) 0.6
P (y|x′, z3) 0.5
P (y|x, z4) 0.5
P (y|x′, z4) 0.4

{V1, ..., Vn−3, X, Y,W,U}; O′ are observational data com-
patible with G′), where the number of states in W times the
number of states in U is equal to the number of states in Z,
and the structure of G′ and the observational data O′ are
obtained as follows:

Structure of G′:
Let ParentsG(H) be the parents of H in causal diagram G.
ParentsG′(U) = ParentsG(Z),
ParentsG′(W ) = ParentsG(Z) ∪ {U},
ParentsG′(H) = ParentsG(H) if Z /∈ ParentsG(H)
for H ∈ {V1, ..., Vn−3, X, Y },
ParentsG′(H) = ParentsG(H) \ {Z} ∪ {W,U} if Z ∈
ParentsG(H) for H ∈ {V1, ..., Vn−3, X, Y }.

Note that, let Q be the set of variables in G that satisfies
the back-door or front-door criterion relative to (X,Y ), then
Q′ satisfies the back-door or front-door criterion relative to
(X,Y ) in G′ , where
Q′ = Q if Z /∈ Q,
Q′ = Q \ {Z} ∪ {W,U} if Z ∈ Q.

Observational data:
Let p be the number of states in W , and q be the number of
states in U .
The states of Z are the Cartesian product of the states of W
and the states of U.
In detail, (wj , uk) is equivalent to z(j−1)∗q+k, wj is
equivalent to ∨qk=1(wj , uk) = ∨qk=1z(j−1)∗q+k, and
uk is equivalent to ∨pj=1(wj , uk) = ∨pj=1z(j−1)∗q+k,
i.e., P (wj , uk, V ) = P (z(j−1)∗q+k, V ) for any V ⊆
{V1, ..., Vn−3, X, Y }.

For example, consider the causal diagram in Figure 2 and
the observational data (in the form of conditional probability
tables (CPTs), where X,Y are binary, and Z has 4 states.) in
Table 3. The causal effect, P (y|do(x)), through the adjust-
ment formula in Equation 1, is 0.47. Based on the construc-
tion in Theorem 7 (see the appendix for details), we have
the causal diagram in Figure 2 with the observational data in
Table 3 is equivalent to the causal diagram in Figure 3 with
the observational data in Table 4 (all nodes are binary), and
we can verify that the causal effect, P (y|do(x)), in the causal
diagram in Figure 3 with the observational data in Table 4 is
also 0.47.

Notably, the equivalent tuple is not unique and is transitive
(i.e., if (G,O) is equivalent to (G′, O′), and (G′, O′) is equiv-
alent to (G′′, O′′), then (G,O) is equivalent to (G′′, O′′)).



Table 4: Observational data in CPTs compatible with the
causal diagram in Figure 3.

P (u) 0.5
P (w|u) 0.6
P (w|u′) 0.4

P (x|u,w) 0.1
P (x|u,w′) 0.4
P (x|u′, w) 0.5
P (x|u′, w′) 0.7

P (y|x, u, w) 0.2
P (y|x′, u, w) 0.3
P (y|x, u, w′) 0.7
P (y|x′, u, w′) 0.1
P (y|x, u′, w) 0.6
P (y|x′, u′, w) 0.5
P (y|x, u′, w′) 0.5
P (y|x′, u′, w′) 0.4

Dimensionality Reduction
Now, considering the problem in the beginning of the section
Application to High Dimensionality of Adjustment Variables.
First, we transform the causal diagram G with the compatible
observational data O into an equivalent tuple (G′, O′) using
Algorithm 1 based on the construction in Theorem 7 (note
that the algorithm only construct the structure of the G′ and
assigning the meaning of the states for W,U , the correspond-
ing observatioal data O′ are then easy to obtain), then the
new problem (G′, O′) has the same causal effects of X on
Y as in (G,O). By picking the dimensionality of W (p in
Algorithm 1), we can control the dimensionality of the new
problem.

Note that, if Z = (Z1, Z2, ..., Zm) in G is a set of
variables, we can repeat Algorithm 1 for each variable in
Z, and finally obtain W = (W1,W2, ...,Wm) and U =
(U1, U2, ..., Um), where the multiplication of the number of
states in W is equal to p.

We then treat the new problem (G′, O′) as a partially ob-
servable back-door or front-door variables problem in Sec-
tions and , where P (X,Y,W ) and P (U) are given, and we
can then obtain the bounds of the causal effects through The-
orems 4 and 5. We claim that the midpoints of the bounds are
good estimates of the original causal effects. In addition, the
bounds themselves will help make decisions.

Example
Consider the problem in Figure 2, where X and Y are binary
and Z has 256 states. We randomly generated a distribu-
tion P (X,Y, Z) that is compatible with the causal diagram.
Because we know the exact distribution, we can easily ob-
tain the causal effects through Equation 1. The causal effect
P (y|do(x)) is 0.5527 (the algorithm for generating the dis-
tribution is shown in the appendix).

Now, we transform the causal diagram with the observa-
tional data into an equivalent tuple (G′, O′) (G′ is shown in
Figure 3) using Algorithm 1 (p = 16). We obtain the vari-
able W of 16 states and the variable U of 16 states in G′

((wj , uk) is equivalent to z(j−1)∗16+k). We are then forced
to use only observational data P (X,Y,W ) and P (U) (the
construction of P (X,Y,W ) and P (U) is shown in the ap-
pendix), and based on Theorem 4, with the “SLSQP” solver,
we obtain the bounds on the causal effect p(y|do(x)), which
are 0.4595 ≤ P (y|do(x)) ≤ 0.7012. We see the midpoint,
0.5804, is extremely close to the actual causal effect, 0.5527.

Algorithm 1: Generate Equivalent Tuple
Input: A n nodes, (X1, X2, ..., Xn−3, X, Y, Z), causal
diagram G and compatible O; p, the number of states in W
in G′ of the equiv. tuple (G′, O′).
Output: A n + 1 nodes, (X1, X2, ..., Xn−3, X, Y,W,U),
causal diagram G′;
Maping relation M1 : state of W −→ state of Z;
Maping relation M2 : state of U −→ state of Z.

1: m = num states in G(Z);
2: if m mod p == 0 then
3: q = m/p;
4: else
5: q = m/p+ 1;
6: end if
7: // Set the virtual states for Z s.t. the probability is 0.
8: num states in G(Z) = p× q;
9: for H in {X1, ..., Xn−3, X, Y } do

10: num states in G′(H) = num states in G(H);
11: if Z ∈ Parents in G(H) then
12: Parents in G′(H) = Parents in G(H)\{Z}∪

{W,U};
13: else
14: Parents in G′(H) = Parents in G(H);
15: end if
16: end for
17: num states in G′(W ) = p;
18: num states in G′(U) = q;
19: Parents in G′(W ) = Parents in G(Z) ∪ {U};
20: Parents in G′(U) = Parents in G(Z);
21: for i = 1 to p do
22: M1(wi) = ∨qk=1z(i−1)∗q+k;
23: end for
24: for i = 1 to q do
25: M2(ui) = ∨pj=1z(j−1)∗q+i;
26: end for

Finally, lets consider how many samples are required for
each method. According to (Roscoe 1975), each state needs
at least 30 samples, and therefore, the exact solution by Equa-
tion 1 requires 2 × 2 × 256 × 30 = 30720 samples. How-
ever, the proposed bounds based on Theorem 4 only requires
max(2 × 2 × 16, 16) × 30 = 1920 samples. If the sample
size is still unacceptable, we can use another equivalent tuple
with W having 8 states and U having 32 states, we then only
require max(2 × 2 × 8, 32) × 30 = 960 samples to obtain
the bounds on the causal effects.

Simulation Results
Similarly to the previous simulation, we further illustrate that
the bounds on the causal effects of the proposed framework
are sufficient for estimating the original causal effects.

Once again, by employing the simplest causal diagram in
Figure 2, where X and Y are binary and Z has 256 states.
We randomly generated 100 sample distributions compati-
ble with the causal diagram (the algorithm for generating
the distributions are shown in the appendix). The average



Figure 6: Bounds on causal effects of 100 sample distri-
butions with high dimensional data, where the Tian-Pearl
bounds are obtained through Equation 3 and the proposed
bounds are obtained through Theorems 7 and 4.

gap (upper bound − lower bound) of the Tian-Pearl bounds
among 100 samples is 0.5102, and the average gap of the pro-
posed bounds through Theorems 7 and 4 among 100 samples
is 0.0676. We then draw the graph of the actual causal effects,
the midpoints of the Tian-Pearl bounds, and the midpoints of
the proposed bounds through Theorems 7 and 4. The results
are shown in Figure 6.

From Figure 6, both midpoints of the bounds on the
causal effects are good estimates of the actual causal ef-
fects, whereas the midpoints of the proposed bounds are
slightly closer to the actual causal effects, particularly when
the causal effects are close to 0 and 1. Although the trend of
the Tian-Pearl bounds is also close to the actual causal effects,
the Tian-Pearl bounds are more likely to be parallel with the
x-axis. Here, the Tian-Pearl bounds perform well because, in
high-dimensionality cases, the randomly generated distribu-
tions are more likely to yield causal effects of approximately
0.5. However, the average gap of the proposed bounds among
100 samples, 0.0676, is much smaller than the average gap
of the Tian-Pearl bounds among 100 samples, 0.5102. This
means that the midpoints of the proposed bounds are more
convincing, because the bounds are narrower.

Discussion
Here, we discuss additional features of bounds on causal
effects.

First, if a whole set of back-door or front-door variables
are unobserved, the causal effects have the naivest bounds in
Equation 3. When the back-door or front-door variables are
gradually observed, the bounds of the causal effects become
increasingly narrow. Finally, when the back-door or front-
door variables are fully observed, the bounds shrink into
point estimates, which are identifiable. This also tells us
that, when we pick p in Algorithm 1, we should pick the
largest p for which the sample size is sufficient to estimate
the observational distributions.

Next, bounds in Theorems 4 and 5 are given by non-linear
optimizations. Therefore, the quality of the bounds also de-
pends on the optimization solver. The examples and simu-
lated results in this paper are all obtained from the simplest
“SLSQP” solver from 1988. The quality of the bounds can
be improved if more advanced solvers are applied. Inspired
by the idea of Balke’s linear programming (Balke and Pearl
1997b), we may obtain parametric solutions to non-linear
optimizations in Theorems 4 and 5, we then do not need a
non-linear optimization solver. However, the problem related
to a non-linear optimization solver is not the scope of this
paper.

Moreover, the midpoint of the bounds are used in this
paper, however, the information that the bounds provided
are far more than the midpoint. The lower (upper) bound
represents the minimal (maximal) causal effects. One can
define their own way to use the bounds, but this is not the
scope of this paper.

In addition, the constraints in Theorems 4 and 5 are only
based on the basic back-door or front-door criterion. We can
also add constraints of independencies in a specific graph.
For instance, W and U are independent in the causal diagram
of Figure 4, we can then add the constraints that reflect P (W )
and P (U) as being independent. The greater the number of
constraints that are added to the optimizations, the better the
bounds we can obtain.

Moreover, if one believes they have a sufficient sample
size to estimate causal effects with high dimensionality ad-
justment variables, the framework in the section Application
to High Dimensionality of Adjustment Variables could be
evidence validating whether the sample size is indeed suffi-
cient.

Next, in the section Application to High Dimensional-
ity of Adjustment Variables, we transformed (G,O) into
(G′, O′) to obtain the bounds on causal effects with high
dimensionality adjustment variables. However, for a tuple
(G,O), multiple equivalent tuples exist by picking a different
p in Algorithm 1, and each of the equivalent tuple has bounds
for the original causal effects. We can compute bounds for
as many equivalent tuples as we want and take the maximal
lower bounds and the minimal upper bounds.

Finally, based on numerous experiments, we realized that
when P (U) or P (W ) is specific (i.e., closer to 0 or 1), the
proposed bounds are almost identified (i.e., the bounds shrink
to point estimates). Therefore, in practice, we can always
pick the equivalent tuple to transform, in which the P (U) or
P (W ) is close to 0 or 1.

Conclusion
We demonstrated how to estimate causal effects when ad-
justment variables in the back-door or front-door criterion
are partially observable by bounding the causal effects using
solutions to non-linear optimizations. We provided examples
and simulated results illustrating that the proposed method is
sufficient to estimate the causal effects. We also proposed a
framework for estimating causal effects when the adjustment
variables have a high dimensionality. In summary, we ana-
lyzed and demonstrated how causal effects can be gained in
practice using a causal diagram.
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Estimating high-dimensional intervention effects from obser-
vational data. The Annals of Statistics, 37(6A): 3133–3164.
Pearl, J. 1995. Causal diagrams for empirical research.
Biometrika, 82(4): 669–688.
Pearl, J. 2009. Causality. Cambridge university press, 2nd
edition.
Pearl, J. 2014. Probabilistic reasoning in intelligent systems:
Networks of plausible inference. Morgan Kaufmann.
Roscoe, J. T. 1975. Fundamental research statistics for the
behavioral sciences. Number v. 2 in Editors’ Series in Mar-
keting. Holt, Rinehart and Winston. ISBN 9780030919343.
SciPyCommunity. 2020. Scipy Reference Guide.
Spirtes, P.; Glymour, C. N.; Scheines, R.; and Heckerman, D.
2000. Causation, prediction, and search. MIT press.
Tian, J.; and Pearl, J. 2000. Probabilities of causation: Bounds
and identification. Annals of Mathematics and Artificial
Intelligence, 28(1-4): 287–313.



Appendix
Proof of Theorem 4
Theorem 4. Given a causal diagram G and a distribution
compatible with G, let W ∪ U be a set of variables satisfy-
ing the back-door criterion in G relative to an ordered pair
(X,Y ), where W ∪ U is partially observable, i.e., only prob-
abilities P (X,Y,W ) and P (U) are given, the causal effects
of X on Y are then bounded as follows:

LB ≤ P (y|do(x)) ≤ UB

where LB is the solution to the non-linear optimization prob-
lem in Equation 9 and UB is the solution to the non-linear
optimization problem in Equation 10.

LB = min
∑
w,u

aw,ubw,u

cw,u
, (9)

UB = max
∑
w,u

aw,ubw,u

cw,u
, (10)

where,∑
u

aw,u = P (x, y, w),
∑
u

bw,u = P (w),∑
u

cw,u = P (x,w) for all w ∈W ;

and for all w ∈W and u ∈ U,

bw,u ≥ cw,u ≥ aw,u,

max{0, p(x, y, w) + p(u)− 1} ≤ aw,u,

min{P (x, y, w), p(u)} ≥ aw,u,

max{0, p(w) + p(u)− 1} ≤ bw,u,

min{P (w), p(u)} ≥ bw,u,

max{0, p(x,w) + p(u)− 1} ≤ cw,u,

min{P (x,w), p(u)} ≥ cw,u.

Proof. To show that the LB and UB bound the actual
causal effects, we only need to show that there exists a
point in feasible space of the non-linear optimization that∑

w,u
aw,ubw,u

cw,u
is equal to the actual causal effects.

Since W ∪U satisfies the back-door criterion, by adjustment
formula in Equation 1, we have,

P (y|do(x)) =
∑
w,u

P (y|x,w, u)P (w, u)

=
∑
w,u

P (x, y, w, u)P (w, u)

P (x,w, u)

Let

aw,u = P (x, y, w, u)

bw,u = P (w, u)

cw,u = P (x,w, u)

We now show that the above set of aw,u, bw,u, cw,u are in
feasible space.

We have,

for w ∈W,∑
u

aw,u =
∑
u

P (x, y, w, u) = P (x, y, w),∑
u

bw,u =
∑
u

P (w, u) = P (w),∑
u

cw,u =
∑
u

P (x,w, u) = P (x,w);

and,

for all w ∈W and u ∈ U,

bw,u = P (w, u) ≥ P (x,w, u) = cw,u,

cw,u = P (x,w, u) ≥ P (x, y, w, u) = aw,u,

aw,u = P (x, y, w, u) ≤ min{P (x, y, w), p(u)},
bw,u = P (w, u) ≤ min{P (w), p(u)},
cw,u = P (x,w, u) ≤ min{P (x,w), p(u)},
aw,u = P (x, y, w, u) ≥
max{0, p(x, y, w) + p(u)− 1},
bw,u = P (w, u) ≥ max{0, p(w) + p(u)− 1},
cw,u = P (x,w, u) ≥ max{0, p(x,w) + p(u)− 1}.

Therefore, the above set of aw,u, bw,u, cw,u are in feasible
space, and thus, the UB and LB bound the actual causal
effects.

Proof of Theorem 5
Theorem 5. Given a causal diagram G and distribution com-
patible with G, let W ∪U be a set of variables satisfying the
front-door criterion in G relative to an ordered pair (X,Y ),
where W ∪ U is partially observable, i.e., only probabilities
P (X,Y,W ) and P (U) are given and P (x,W,U) > 0, the
causal effects of X on Y are then bounded as follows:

LB ≤ P (y|do(x)) ≤ UB

where LB is the solution to the non-linear optimization prob-
lem in Equation 11 and UB is the solution to the non-linear
optimization problem in Equation 12.

LB = min
∑
w,u

bx,w,u

P (x)

∑
x′

ax′,w,uP (x′)

bx′,w,u
, (11)

UB = max
∑
w,u

bx,w,u

P (x)

∑
x′

ax′,w,uP (x′)

bx′,w,u
, (12)

where,∑
u

ax,w,u = P (x, y, w),
∑
u

bx,w,u = P (x,w)

for all x ∈ X and w ∈W ;

and for all x ∈ X ,w ∈W , and u ∈ U,

bx,w,u ≥ ax,w,u,

max{0, p(x, y, w) + p(u)− 1} ≤ ax,w,u,

min{P (x, y, w), p(u)} ≥ ax,w,u,

max{0, p(x,w) + p(u)− 1} ≤ bx,w,u,

min{P (x,w), p(u)} ≥ bx,w,u.



Proof. To show that the LB and UB bound the actual
causal effects, we only need to show that there exists a
point in feasible space of the non-linear optimization that∑

w,u
bx,w,u

P (x)

∑
x′

ax′,w,uP (x′)

bx′,w,u
is equal to the actual causal

effects.
Since W ∪ U satisfies front-door criterion and
P (u,W,U) > 0, by adjustment formula in Equation
2, we have,

P (y|do(x)) =
∑
w,u

P (w, u|x)
∑
x′

P (y|x′, w, u)P (x′)

=
∑
w,u

P (x,w, u)

P (x)

∑
x′

P (x′, y, w, u)P (x′)

P (x′, w, u)
.

Let

ax,w,u = P (x, y, w, u),

bx,w,u = P (x,w, u).

Similarly to the proof of Theorem 4, it is easy to show that the
above set of ax,w,u, bx,w,u are in feasible space, and therefore,
LB and UB bound the actual causal effects.

Proof of Theorem 7
Theorem 7. Let G be a causal diagram containing nodes
{V1, ..., Vn−3, X, Y, Z}. Let O be any observational data
compatible with G. Suppose there exists a set of variables
that satisfies the back-door or front-door criterion relative
to (X,Y ) in G, then, (G,O) is equivalent to (G′, O′) (G′
containing nodes {V1, ..., Vn−3, X, Y,W,U}; O′ is observa-
tional data compatible with G′), where the number of states
in W times the number of states in U is equal to the number
of states in Z, and the structure of G′ and the observational
data O′ are obtained as follows:

Structure of G′:
Let ParentsG(H) be the parents of H in causal diagram G.
ParentsG′(U) = ParentsG(Z), ParentsG′(W ) =
ParentsG(Z) ∪ {U},
ParentsG′(H) = ParentsG(H) if Z /∈ ParentsG(H)
for H ∈ {V1, ..., Vn−3, X, Y },
ParentsG′(H) = ParentsG(H) \ {Z} ∪ {W,U} if Z ∈
ParentsG(H) for H ∈ {V1, ..., Vn−3, X, Y }.

Note that, let Q be the set of variables in G that satisfies
the back-door or front-door criterion relative to (X,Y ), then
Q′ satisfies the back-door or front-door criterion relative to
(X,Y ) in G′ , where
Q′ = Q if Z /∈ Q,
Q′ = Q \ {Z} ∪ {W,U} if Z ∈ Q.

Observational data:
Let the number of states in W be p, and let the number of
states in U be q.
The states of Z is the Cartesian product of the states of W and
the states of U.
In detail, (wj , uk) is equivalent to z(j−1)∗q+k, wj is
equivalent to ∨qk=1(wj , uk) = ∨qk=1z(j−1)∗q+k, and
uk is equivalent to ∨pj=1(wj , uk) = ∨pj=1z(j−1)∗q+k,
i.e., P (wj , uk, V ) = P (z(j−1)∗q+k, V ) for any V ⊆
{V1, ..., Vn−3, X, Y }.

Proof. First, we show that Q′ satisfies the back-door or
front-door criterion relative to (X,Y ) in G′.

If Q satisfies the back-door criterion relative to (X,Y ) in
G, we need to show that,

• no node in Q′ is a descendant of X .

• Q′ blocks every path between X and Y that contains an
arrow into X .

It is easy to show that if there is a node in Q′ that is a descen-
dant of X in G′, then there is a node in Q that is a descendant
of X in G. And if there is a path between X and Y that
contains an arrow into X does not blocked by Q′ in G′, then
there is a path between X and Y that contains an arrow into
X does not blocked by Q in G. Thus, Q′ satisfies the back-
door criterion relative to (X,Y ) in G′. Similarly, we can
show that if Q satisfies the front-door criterion relative to
(X,Y ) in G, then Q′ satisfies the front-door criterion relative
to (X,Y ) in G′.

Now, we show that (G,O) is equivalent to (G′, O′), i.e.,
show that P (y|do(x)) is the same between (G,O) and
(G′, O′). Suppose Q satisfies the back-door criterion relative
to (X,Y ) in G. By adjustment formula in Equation 1, we
have,
P (y|do(x)) =

∑
q∈Q P (y|x, q) × P (q) =∑

q∈Q
P (x,y,q)×P (q)

P (x,q) .
And in G′,
P (y|do(x)) =

∑
q∈Q′ P (y|x, q) × P (q) =∑

q∈Q′
P (x,y,q)×P (q)

P (x,q) ,
it is obviously that these two causal effects are the
same, because P (wj , uk, V ) = P (z(j−1)∗q+k, V ) for any
V ⊆ {V1, ..., Vn−3, X, Y }.
Similarly, we can show that if Q satisfies the front-door
criterion relative to (X,Y ) in G, (G,O) is equivalent to
(G′, O′).

Simulation Algorithm for Generating Sample
Distributions

The two sample distributions generated in the paper (in two
Simulation Results sections) were generated by Algorithm 2
with D equal to the uniform distribution.



Algorithm 2: Generate-cpt()
Input: n causal diagram nodes (X1, ..., Xn); Distribution D.
Output: n conditional probability tables for
P (Xi|Parents(Xi)).

1: for i = 1 to n do
2: s = num instantiates(Xi);
3: p = num instantiates(Parents(Xi));
4: for k = 1 to p do
5: sum = 0;
6: for j = 1 to s do
7: aj = sample(D);
8: sum = sum+ aj ;
9: end for

10: for j = 1 to s do
11: P (xij |Parents(Xi)k) = aj/sum;
12: end for
13: end for
14: end for

Construction of the Data in Table 4

P (u,w) = P (z1),

P (u,w′) = P (z2),

P (u′, w) = P (z3),

P (u′, w′) = P (z4),

P (u) = P (u,w) + P (u,w′)

= P (z1) + P (z2) = 0.5,

P (w|u) = P (u,w)/p(u)

= P (z1)/P (u) = 0.3/0.5 = 0.6,

P (w|u′) = P (u′, w)/p(u′)

= P (z3)/(1− P (u)) = 0.2/0.5 = 0.4,

P (x|u,w) = P (x|z1) = 0.1,

P (x|u,w′) = P (x|z2) = 0.4,

P (x|u′, w) = P (x|z3) = 0.5,

P (x|u′, w′) = P (x|z4) = 0.7,

P (y|x, u, w) = P (y|x, z1) = 0.2,

P (y|x′, u, w) = P (y|x′, z1) = 0.3,

P (y|x, u, w′) = P (y|x, z2) = 0.7,

P (y|x′, u, w′) = P (y|x′, z2) = 0.1,

P (y|x, u′, w) = P (y|x, z3) = 0.6,

P (y|x′, u′, w) = P (y|x′, z3) = 0.5,

P (y|x, u′, w′) = P (y|x, z4) = 0.5,

P (y|x′, u′, w′) = P (y|x′, z4) = 0.4.

Construction of the Distribution in the Example of
Dimensionality Reduction
Here is how the data used in the example of Dimen-
sionality Reduction were generated (both P (X,Y, Z) and
P (X,Y,W ), P (U)). Instead of providing the resulting 1024
rows of the observational data, we provide the details for
regenerating the observational data as following steps.
• Generate P (X,Y, Z) using Algorithm 2.

• Let P (X,Y,wj , uk) = P (X,Y, z(j−1)∗16+k).

• Let P (X,Y,wj) =
∑q

k=1 P (X,Y,wj , uk).

• Let P (X,Y, uk) =
∑p

j=1 P (X,Y,wj , uk).

• Let P (uk) =
∑

X,Y P (X,Y, uk).

For example,

P (u1)

=
∑
X,Y

P (X,Y, u1)

= P (x, y, u1) + P (x, y′, u1) +

+P (x′, y, u1) + P (x′, y′, u1)

=

16∑
j=1

P (x, y, wj , u1) +

16∑
j=1

P (x, y′, wj , u1) +

+

16∑
j=1

P (x′, y, wj , u1) +

16∑
j=1

P (x′, y′, wj , u1)

=

16∑
j=1

P (x, y, z(j−1)∗16+1) +

+

16∑
j=1

P (x, y′, z(j−1)∗16+1) +

16∑
j=1

P (x′, y, z(j−1)∗16+1) +

+

16∑
j=1

P (x′, y′, z(j−1)∗16+1),

P (x, y, w1)

=

16∑
k=1

P (x, y, w1, uk)

=

16∑
k=1

P (x, y, zk).




