Appendix

Proof of Theorem 4

Theorem 4. Given a causal diagram G and a distribution compatible with G, let $W \cup U$ be a set of variables satisfying the back-door criterion in G relative to an ordered pair (X, Y), where $W \cup U$ is partially observable, i.e., only probabilities P(X, Y, W) and P(U) are given, the causal effects of X on Y are then bounded as follows:

$$LB \le P(y|do(x)) \le UB$$

where LB is the solution to the non-linear optimization problem in Equation 9 and UB is the solution to the non-linear optimization problem in Equation 10.

$$LB = \min \sum_{w,u} \frac{a_{w,u} b_{w,u}}{c_{w,u}},\tag{9}$$

$$UB = \max \sum_{w,u} \frac{a_{w,u}b_{w,u}}{c_{w,u}},\tag{10}$$

where,

$$\sum_{u} a_{w,u} = P(x, y, w), \sum_{u} b_{w,u} = P(w),$$

$$\sum_{u} c_{w,u} = P(x, w) \text{ for all } w \in W;$$

and for all $w \in W$ and $u \in U$,
 $b_{w,u} \ge c_{w,u} \ge a_{w,u},$

$$\begin{aligned} & \max\{0, p(x, y, w) + p(u) - 1\} \le a_{w,u}, \\ & \min\{P(x, y, w), p(u)\} \ge a_{w,u}, \\ & \max\{0, p(w) + p(u) - 1\} \le b_{w,u}, \\ & \min\{P(w), p(u)\} \ge b_{w,u}, \\ & \max\{0, p(x, w) + p(u) - 1\} \le c_{w,u}, \\ & \min\{P(x, w), p(u)\} \ge c_{w,u}. \end{aligned}$$

Proof. To show that the LB and UB bound the actual causal effects, we only need to show that there exists a point in feasible space of the non-linear optimization that $\sum_{w,u} \frac{a_{w,u}b_{w,u}}{c_{w,u}}$ is equal to the actual causal effects. Since $W \cup U$ satisfies the back-door criterion, by adjustment

formula in Equation 1, we have,

$$\begin{split} P(y|do(x)) &= \sum_{w,u} P(y|x,w,u)P(w,u) \\ &= \sum_{w,u} \frac{P(x,y,w,u)P(w,u)}{P(x,w,u)} \end{split}$$

Let

$$a_{w,u} = P(x, y, w, u)$$

$$b_{w,u} = P(w, u)$$

$$c_{w,u} = P(x, w, u)$$

We now show that the above set of $a_{w,u}, b_{w,u}, c_{w,u}$ are in feasible space.

We have,

for
$$w \in W$$
,
 $\sum_{u} a_{w,u} = \sum_{u} P(x, y, w, u) = P(x, y, w),$
 $\sum_{u} b_{w,u} = \sum_{u} P(w, u) = P(w),$
 $\sum_{u} c_{w,u} = \sum_{u} P(x, w, u) = P(x, w);$

and,

$$\begin{array}{l} \text{for all } w \in W \text{ and } u \in U, \\ b_{w,u} = P(w,u) \geq P(x,w,u) = c_{w,u}, \\ c_{w,u} = P(x,w,u) \geq P(x,y,w,u) = a_{w,u}, \\ a_{w,u} = P(x,y,w,u) \leq \min\{P(x,y,w),p(u)\}, \\ b_{w,u} = P(w,u) \leq \min\{P(w),p(u)\}, \\ c_{w,u} = P(x,w,u) \leq \min\{P(x,w),p(u)\}, \\ a_{w,u} = P(x,y,w,u) \geq \\ \max\{0,p(x,y,w) + p(u) - 1\}, \\ b_{w,u} = P(w,u) \geq \max\{0,p(w) + p(u) - 1\}, \\ c_{w,u} = P(x,w,u) \geq \max\{0,p(x,w) + p(u) - 1\}. \end{array}$$

Therefore, the above set of $a_{w,u}, b_{w,u}, c_{w,u}$ are in feasible space, and thus, the UB and LB bound the actual causal effects.

Proof of Theorem 5

Theorem 5. Given a causal diagram G and distribution compatible with G, let $W \cup U$ be a set of variables satisfying the front-door criterion in G relative to an ordered pair (X, Y), where $W \cup U$ is partially observable, i.e., only probabilities P(X, Y, W) and P(U) are given and P(x, W, U) > 0, the causal effects of X on Y are then bounded as follows:

$$LB \le P(y|do(x)) \le UB$$

where LB is the solution to the non-linear optimization problem in Equation 11 and UB is the solution to the non-linear optimization problem in Equation 12.

$$LB = \min \sum_{w,u} \frac{b_{x,w,u}}{P(x)} \sum_{x'} \frac{a_{x',w,u}P(x')}{b_{x',w,u}}, \qquad (11)$$

$$UB = \max \sum_{w,u} \frac{b_{x,w,u}}{P(x)} \sum_{x'} \frac{a_{x',w,u}P(x')}{b_{x',w,u}}, \quad (12)$$

where,

$$\sum_{u} a_{x,w,u} = P(x, y, w), \sum_{u} b_{x,w,u} = P(x, w)$$

for all $x \in X$ and $w \in W$;
and for all $x \in X, w \in W$, and $u \in U$,

$$b_{x,w,u} \ge a_{x,w,u}, \\ \max\{0, p(x, y, w) + p(u) - 1\} \le a_{x,w,u}, \\ \min\{P(x, y, w), p(u)\} \ge a_{x,w,u}, \\ \max\{0, p(x, w) + p(u) - 1\} \le b_{x,w,u}, \\ \min\{P(x, w), p(u)\} \ge b_{x,w,u}.$$

Proof. To show that the LB and UB bound the actual causal effects, we only need to show that there exists a point in feasible space of the non-linear optimization that $\sum_{w,u} \frac{b_{x,w,u}}{P(x)} \sum_{x'} \frac{a_{x',w,u}P(x')}{b_{x',w,u}}$ is equal to the actual causal effects.

Since $W \cup U$ satisfies front-door criterion and P(u, W, U) > 0, by adjustment formula in Equation 2, we have,

$$P(y|do(x)) = \sum_{w,u} P(w,u|x) \sum_{x'} P(y|x',w,u)P(x')$$

=
$$\sum_{w,u} \frac{P(x,w,u)}{P(x)} \sum_{x'} \frac{P(x',y,w,u)P(x')}{P(x',w,u)}$$

Let

$$a_{x,w,u} = P(x, y, w, u),$$

$$b_{x,w,u} = P(x, w, u).$$

Similarly to the proof of Theorem 4, it is easy to show that the above set of $a_{x,w,u}$, $b_{x,w,u}$ are in feasible space, and therefore, LB and UB bound the actual causal effects.

Proof of Theorem 7

Theorem 7. Let G be a causal diagram containing nodes $\{V_1, ..., V_{n-3}, X, Y, Z\}$. Let O be any observational data compatible with G. Suppose there exists a set of variables that satisfies the back-door or front-door criterion relative to (X, Y) in G, then, (G, O) is equivalent to (G', O') (G' containing nodes $\{V_1, ..., V_{n-3}, X, Y, W, U\}$; O' is observational data compatible with G'), where the number of states in W times the number of states in U is equal to the number of states in Z, and the structure of G' and the observational data O' are obtained as follows:

Structure of G':

Let $Parents_G(H)$ be the parents of H in causal diagram G. $Parents_{G'}(U) = Parents_G(Z), Parents_{G'}(W) = Parents_G(Z) \cup \{U\},$

 $Parents_{G'}(H) = Parents_G(H) \text{ if } Z \notin Parents_G(H)$ for $H \in \{V_1, ..., V_{n-3}, X, Y\}$,

 $Parents_{G'}(H) = Parents_G(H) \setminus \{Z\} \cup \{W, U\} \text{ if } Z \in Parents_G(H) \text{ for } H \in \{V_1, ..., V_{n-3}, X, Y\}.$

Note that, let Q be the set of variables in G that satisfies the back-door or front-door criterion relative to (X, Y), then Q' satisfies the back-door or front-door criterion relative to (X, Y) in G', where

Q' = Q if $Z \notin Q$,

 $Q' = Q \setminus \{Z\} \cup \{W, U\}$ if $Z \in Q$. Observational data:

Let the number of states in W be p, and let the number of states in U be q.

The states of Z is the Cartesian product of the states of W and the states of U.

In detail, (w_j, u_k) is equivalent to $z_{(j-1)*q+k}$, w_j is equivalent to $\lor_{k=1}^q(w_j, u_k) = \lor_{k=1}^q z_{(j-1)*q+k}$, and u_k is equivalent to $\lor_{j=1}^p(w_j, u_k) = \lor_{j=1}^p z_{(j-1)*q+k}$, *i.e.*, $P(w_j, u_k, V) = P(z_{(j-1)*q+k}, V)$ for any $V \subseteq \{V_1, ..., V_{n-3}, X, Y\}$. *Proof.* First, we show that Q' satisfies the back-door or front-door criterion relative to (X, Y) in G'.

If Q satisfies the back-door criterion relative to (X, Y) in G, we need to show that,

- no node in Q' is a descendant of X.
- Q' blocks every path between X and Y that contains an arrow into X.

It is easy to show that if there is a node in Q' that is a descendant of X in G', then there is a node in Q that is a descendant of X in G. And if there is a path between X and Y that contains an arrow into X does not blocked by Q' in G', then there is a path between X and Y that contains an arrow into X does not blocked by Q' in G', then there is a path between X and Y that contains an arrow into X does not blocked by Q in G. Thus, Q' satisfies the backdoor criterion relative to (X, Y) in G'. Similarly, we can show that if Q satisfies the front-door criterion relative to (X, Y) in G, then Q' satisfies the front-door criterion relative to (X, Y) in G'.

Now, we show that (G, O) is equivalent to (G', O'), i.e., show that P(y|do(x)) is the same between (G, O) and (G', O'). Suppose Q satisfies the back-door criterion relative to (X, Y) in G. By adjustment formula in Equation 1, we have,

it is obviously that these two causal effects are the same, because $P(w_j, u_k, V) = P(z_{(j-1)*q+k}, V)$ for any $V \subseteq \{V_1, ..., V_{n-3}, X, Y\}.$

Similarly, we can show that if Q satisfies the front-door criterion relative to (X, Y) in G, (G, O) is equivalent to (G', O').

Simulation Algorithm for Generating Sample Distributions

The two sample distributions generated in the paper (in two Simulation Results sections) were generated by Algorithm 2 with D equal to the uniform distribution.

Algorithm 2: Generate-cpt()

Input: *n* causal diagram nodes $(X_1, ..., X_n)$; Distribution *D*. **Output**: *n* conditional probability tables for $P(X_i | Parents(X_i)).$ 1: for i = 1 to n do 2: $s = num_instantiates(X_i);$ 3: $p = num_instantiates(Parents(X_i));$ 4: for k = 1 to p do sum = 0;5: 6: for j = 1 to s do 7: $a_j = sample(D);$ $sum = sum + a_i;$ 8: 9: end for for j = 1 to s do 10: $P(x_{i_i}|Parents(X_i)_k) = a_j/sum;$ 11: 12: end for 13: end for 14: end for

Construction of the Data in Table 4

$$\begin{split} P(u,w) &= P(z_1), \\ P(u,w') &= P(z_2), \\ P(u',w) &= P(z_3), \\ P(u',w') &= P(z_4), \\ P(u) &= P(u,w) + P(u,w') \\ &= P(z_1) + P(z_2) = 0.5, \\ P(w|u) &= P(u,w)/p(u) \\ &= P(z_1)/P(u) = 0.3/0.5 = 0.6, \\ P(w|u') &= P(u',w)/p(u') \\ &= P(z_3)/(1-P(u)) = 0.2/0.5 = 0.4, \\ P(x|u,w) &= P(x|z_1) = 0.1, \\ P(x|u,w) &= P(x|z_2) = 0.4, \\ P(x|u,w) &= P(x|z_3) = 0.5, \\ P(x|u',w) &= P(x|z_4) = 0.7, \\ P(y|x,u,w) &= P(y|x,z_1) = 0.2, \\ P(y|x',u,w) &= P(y|x,z_1) = 0.3, \\ P(y|x,u,w') &= P(y|x',z_2) = 0.1, \\ P(y|x,u,w') &= P(y|x,z_3) = 0.6, \\ P(y|x',u',w) &= P(y|x',z_3) = 0.6, \\ P(y|x',u',w) &= P(y|x',z_4) = 0.5, \\ P(y|x',u',w') &= P(y|x',z_4) = 0.5, \\ P(y|x',u',w') &= P(y|x',z_4) = 0.4. \end{split}$$

Construction of the Distribution in the Example of Dimensionality Reduction

Here is how the data used in the example of Dimensionality Reduction were generated (both P(X, Y, Z) and P(X, Y, W), P(U)). Instead of providing the resulting 1024 rows of the observational data, we provide the details for regenerating the observational data as following steps.

• Generate P(X, Y, Z) using Algorithm 2.

- Let $P(X, Y, w_j, u_k) = P(X, Y, z_{(j-1)*16+k}).$
- Let $P(X, Y, w_j) = \sum_{k=1}^{q} P(X, Y, w_j, u_k).$
- Let $P(X, Y, u_k) = \sum_{j=1}^{p} P(X, Y, w_j, u_k).$
- Let $P(u_k) = \sum_{X \mid Y} P(X, Y, u_k).$

For example,

$$\begin{aligned} &P(u_1) \\ = &\sum_{X,Y} P(X,Y,u_1) \\ = &P(x,y,u_1) + P(x,y',u_1) + \\ &+ P(x',y,u_1) + P(x',y',u_1) \\ = &\sum_{j=1}^{16} P(x,y,w_j,u_1) + \sum_{j=1}^{16} P(x,y',w_j,u_1) + \\ &+ \sum_{j=1}^{16} P(x',y,w_j,u_1) + \sum_{j=1}^{16} P(x',y',w_j,u_1) \\ = &\sum_{j=1}^{16} P(x,y,z_{(j-1)*16+1}) + \\ &+ \sum_{j=1}^{16} P(x',y,z_{(j-1)*16+1}) + \\ &+ \sum_{j=1}^{16} P(x',y,z_{(j-1)*16+1}) + \\ &+ \sum_{j=1}^{16} P(x',y,u_1) \\ = &\sum_{k=1}^{16} P(x,y,w_1,u_k) \\ = &\sum_{k=1}^{16} P(x,y,z_k). \end{aligned}$$