Appendix

Proof of Theorem 4

Theorem 4. Given a causal diagram G and a distribution compatible with G, let $W \cup U$ be a set of variables satisfying the back-door criterion in G relative to an ordered pair (X, Y), where $W \cup U$ is partially observable, i.e., only probabilities $P(X, Y, W)$ and $P(U)$ are given, the causal effects of X on Y are then bounded as follows:

$$
L B \leq P(y \mid d o(x)) \leq U B
$$

where $L B$ is the solution to the non-linear optimization problem in Equation 9 and UB is the solution to the non-linear optimization problem in Equation 10.

$$
\begin{align*}
& L B=\min \sum_{w, u} \frac{a_{w, u} b_{w, u}}{c_{w, u}} \tag{9}\\
& U B=\max \sum_{w, u} \frac{a_{w, u} b_{w, u}}{c_{w, u}} \tag{10}
\end{align*}
$$

where,
$\sum_{u} a_{w, u}=P(x, y, w), \sum_{u} b_{w, u}=P(w)$,
$\sum_{u} c_{w, u}=P(x, w)$ for all $w \in W ;$
and for all $w \in W$ and $u \in U$,
$b_{w, u} \geq c_{w, u} \geq a_{w, u}$,
$\max \{0, p(x, y, w)+p(u)-1\} \leq a_{w, u}$,
$\min \{P(x, y, w), p(u)\} \geq a_{w, u}$,
$\max \{0, p(w)+p(u)-1\} \leq b_{w, u}$,
$\min \{P(w), p(u)\} \geq b_{w, u}$,
$\max \{0, p(x, w)+p(u)-1\} \leq c_{w, u}$,
$\min \{P(x, w), p(u)\} \geq c_{w, u}$.
Proof. To show that the LB and UB bound the actual causal effects, we only need to show that there exists a point in feasible space of the non-linear optimization that $\sum_{w, u} \frac{a_{w, u} b_{w, u}}{c_{w, u}}$ is equal to the actual causal effects.
Since $W \cup U$ satisfies the back-door criterion, by adjustment formula in Equation 1, we have,

$$
\begin{aligned}
P(y \mid d o(x)) & =\sum_{w, u} P(y \mid x, w, u) P(w, u) \\
& =\sum_{w, u} \frac{P(x, y, w, u) P(w, u)}{P(x, w, u)}
\end{aligned}
$$

Let

$$
\begin{aligned}
a_{w, u} & =P(x, y, w, u) \\
b_{w, u} & =P(w, u) \\
c_{w, u} & =P(x, w, u)
\end{aligned}
$$

We now show that the above set of $a_{w, u}, b_{w, u}, c_{w, u}$ are in feasible space.

We have,
for $w \in W$,

$$
\begin{aligned}
\sum_{u} a_{w, u} & =\sum_{u} P(x, y, w, u)=P(x, y, w), \\
\sum_{u} b_{w, u} & =\sum_{u} P(w, u)=P(w), \\
\sum_{u} c_{w, u} & =\sum_{u} P(x, w, u)=P(x, w) ;
\end{aligned}
$$

and,

$$
\begin{aligned}
& \text { for all } w \in W \text { and } u \in U, \\
& b_{w, u}=P(w, u) \geq P(x, w, u)=c_{w, u}, \\
& c_{w, u}=P(x, w, u) \geq P(x, y, w, u)=a_{w, u}, \\
& a_{w, u}=P(x, y, w, u) \leq \min \{P(x, y, w), p(u)\}, \\
& b_{w, u}=P(w, u) \leq \min \{P(w), p(u)\}, \\
& c_{w, u}=P(x, w, u) \leq \min \{P(x, w), p(u)\}, \\
& a_{w, u}=P(x, y, w, u) \geq \\
& \max \{0, p(x, y, w)+p(u)-1\}, \\
& b_{w, u}=P(w, u) \geq \max \{0, p(w)+p(u)-1\}, \\
& c_{w, u}=P(x, w, u) \geq \max \{0, p(x, w)+p(u)-1\} .
\end{aligned}
$$

Therefore, the above set of $a_{w, u}, b_{w, u}, c_{w, u}$ are in feasible space, and thus, the UB and LB bound the actual causal effects.

Proof of Theorem 5

Theorem 5. Given a causal diagram G and distribution compatible with G, let $W \cup U$ be a set of variables satisfying the front-door criterion in G relative to an ordered pair (X, Y), where $W \cup U$ is partially observable, i.e., only probabilities $P(X, Y, W)$ and $P(U)$ are given and $P(x, W, U)>0$, the causal effects of X on Y are then bounded as follows:

$$
L B \leq P(y \mid d o(x)) \leq U B
$$

where $L B$ is the solution to the non-linear optimization problem in Equation 11 and UB is the solution to the non-linear optimization problem in Equation 12.

$$
\begin{align*}
& L B=\min \sum_{w, u} \frac{b_{x, w, u}}{P(x)} \sum_{x^{\prime}} \frac{a_{x^{\prime}, w, u} P\left(x^{\prime}\right)}{b_{x^{\prime}, w, u}}, \tag{11}\\
& U B=\max \sum_{w, u} \frac{b_{x, w, u}}{P(x)} \sum_{x^{\prime}} \frac{a_{x^{\prime}, w, u} P\left(x^{\prime}\right)}{b_{x^{\prime}, w, u}}, \tag{12}
\end{align*}
$$

where,
$\sum_{u} a_{x, w, u}=P(x, y, w), \sum_{u} b_{x, w, u}=P(x, w)$
for all $x \in X$ and $w \in W$;
and for all $x \in X, w \in W$, and $u \in U$,
$b_{x, w, u} \geq a_{x, w, u}$,
$\max \{0, p(x, y, w)+p(u)-1\} \leq a_{x, w, u}$,
$\min \{P(x, y, w), p(u)\} \geq a_{x, w, u}$,
$\max \{0, p(x, w)+p(u)-1\} \leq b_{x, w, u}$,
$\min \{P(x, w), p(u)\} \geq b_{x, w, u}$.

Proof. To show that the LB and UB bound the actual causal effects, we only need to show that there exists a point in feasible space of the non-linear optimization that $\sum_{w, u} \frac{b_{x, w, u}}{P(x)} \sum_{x^{\prime}} \frac{a_{x^{\prime}, w, u} P\left(x^{\prime}\right)}{b_{x^{\prime}, w, u}}$ is equal to the actual causal effects.
Since $W \cup U$ satisfies front-door criterion and $P(u, W, U)>0$, by adjustment formula in Equation 2, we have,

$$
\begin{aligned}
P(y \mid d o(x)) & =\sum_{w, u} P(w, u \mid x) \sum_{x^{\prime}} P\left(y \mid x^{\prime}, w, u\right) P\left(x^{\prime}\right) \\
& =\sum_{w, u} \frac{P(x, w, u)}{P(x)} \sum_{x^{\prime}} \frac{P\left(x^{\prime}, y, w, u\right) P\left(x^{\prime}\right)}{P\left(x^{\prime}, w, u\right)} .
\end{aligned}
$$

Let

$$
\begin{aligned}
& a_{x, w, u}=P(x, y, w, u), \\
& b_{x, w, u}=P(x, w, u)
\end{aligned}
$$

Similarly to the proof of Theorem 4 , it is easy to show that the above set of $a_{x, w, u}, b_{x, w, u}$ are in feasible space, and therefore, LB and UB bound the actual causal effects.

Proof of Theorem 7

Theorem 7. Let G be a causal diagram containing nodes $\left\{V_{1}, \ldots, V_{n-3}, X, Y, Z\right\}$. Let O be any observational data compatible with G. Suppose there exists a set of variables that satisfies the back-door or front-door criterion relative to (X, Y) in G, then, (G, O) is equivalent to $\left(G^{\prime}, O^{\prime}\right)\left(G^{\prime}\right.$ containing nodes $\left\{V_{1}, \ldots, V_{n-3}, X, Y, W, U\right\} ; O^{\prime}$ is observational data compatible with G^{\prime}), where the number of states in W times the number of states in U is equal to the number of states in Z, and the structure of G^{\prime} and the observational data O^{\prime} are obtained as follows:

Structure of G^{\prime} :
Let Parents $_{G}(H)$ be the parents of H in causal diagram G.
Parents $_{G^{\prime}}(U)=$ Parents $_{G}(Z)$, Parents $_{G^{\prime}}(W)=$ Parents $_{G}(Z) \cup\{U\}$,
Parents $_{G^{\prime}}(H)=$ Parents $_{G}(H)$ if $Z \notin$ Parents $_{G}(H)$ for $H \in\left\{V_{1}, \ldots, V_{n-3}, X, Y\right\}$,
Parents $_{G^{\prime}}(H)=$ Parents $_{G}(H) \backslash\{Z\} \cup\{W, U\}$ if $Z \in$ Parents $_{G}(H)$ for $H \in\left\{V_{1}, \ldots, V_{n-3}, X, Y\right\}$.

Note that, let Q be the set of variables in G that satisfies the back-door or front-door criterion relative to (X, Y), then Q^{\prime} satisfies the back-door or front-door criterion relative to (X, Y) in G^{\prime}, where
$Q^{\prime}=Q$ if $Z \notin Q$,
$Q^{\prime}=Q \backslash\{Z\} \cup\{W, U\}$ if $Z \in Q$.

Observational data:

Let the number of states in W be p, and let the number of states in U be q.
The states of Z is the Cartesian product of the states of W and the states of U.
In detail, $\left(w_{j}, u_{k}\right)$ is equivalent to $z_{(j-1) * q+k}, w_{j}$ is equivalent to $\vee_{k=1}^{q}\left(w_{j}, u_{k}\right)=\vee_{k=1}^{q} z_{(j-1) * q+k}$, and u_{k} is equivalent to $\vee_{j=1}^{p}\left(w_{j}, u_{k}\right)=\vee_{j=1}^{p} z_{(j-1) * q+k}$, i.e., $P\left(w_{j}, u_{k}, V\right)=P\left(z_{(j-1) * q+k}, V\right)$ for any $V \subseteq$ $\left\{V_{1}, \ldots, V_{n-3}, X, Y\right\}$.

Proof. First, we show that Q^{\prime} satisfies the back-door or front-door criterion relative to (X, Y) in G^{\prime}.

If Q satisfies the back-door criterion relative to (X, Y) in G, we need to show that,

- no node in Q^{\prime} is a descendant of X.
- Q^{\prime} blocks every path between X and Y that contains an arrow into X.

It is easy to show that if there is a node in Q^{\prime} that is a descendant of X in G^{\prime}, then there is a node in Q that is a descendant of X in G. And if there is a path between X and Y that contains an arrow into X does not blocked by Q^{\prime} in G^{\prime}, then there is a path between X and Y that contains an arrow into X does not blocked by Q in G. Thus, Q^{\prime} satisfies the backdoor criterion relative to (X, Y) in G^{\prime}. Similarly, we can show that if Q satisfies the front-door criterion relative to (X, Y) in G, then Q^{\prime} satisfies the front-door criterion relative to (X, Y) in G^{\prime}.

Now, we show that (G, O) is equivalent to $\left(G^{\prime}, O^{\prime}\right)$, i.e., show that $P(y \mid d o(x))$ is the same between (G, O) and $\left(G^{\prime}, O^{\prime}\right)$. Suppose Q satisfies the back-door criterion relative to (X, Y) in G. By adjustment formula in Equation 1, we have,
$P(y \mid d o(x)) \quad=\quad \sum_{q \in Q} P(y \mid x, q) \times P(q)=$ $\sum_{q \in Q} \frac{P(x, y, q) \times P(q)}{P(x, q)}$.
And in G^{\prime},
$P(y \mid d o(x))=\quad \sum_{q \in Q^{\prime}} P(y \mid x, q) \times P(q)=$ $\sum_{q \in Q^{\prime}} \frac{P(x, y, q) \times P(q)}{P(x, q)}$,
it is obviously that these two causal effects are the same, because $P\left(w_{j}, u_{k}, V\right)=P\left(z_{(j-1) * q+k}, V\right)$ for any $V \subseteq\left\{V_{1}, \ldots, V_{n-3}, X, Y\right\}$.
Similarly, we can show that if Q satisfies the front-door criterion relative to (X, Y) in $G,(G, O)$ is equivalent to $\left(G^{\prime}, O^{\prime}\right)$.

Simulation Algorithm for Generating Sample Distributions

The two sample distributions generated in the paper (in two Simulation Results sections) were generated by Algorithm 2 with D equal to the uniform distribution.

```
Algorithm 2: Generate-cpt()
Input: \(n\) causal diagram nodes \(\left(X_{1}, \ldots, X_{n}\right)\); Distribution \(D\).
Output: \(n\) conditional probability tables for
\(P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)\).
    for \(i=1\) to \(n\) do
        \(s=\) num_instantiates \(\left(X_{i}\right) ;\)
        \(p=\) num_instantiates \(\left(\operatorname{Parents}\left(X_{i}\right)\right)\);
        for \(k=1\) to \(p\) do
            sum \(=0\);
            for \(j=1\) to \(s\) do
            \(a_{j}=\operatorname{sample}(D)\);
            sum \(=\) sum \(+a_{j} ;\)
            end for
            for \(j=1\) to \(s\) do
            \(P\left(x_{i_{j}} \mid \operatorname{Parents}\left(X_{i}\right)_{k}\right)=a_{j} /\) sum;
            end for
        end for
    end for
```


Construction of the Data in Table 4

$$
\begin{aligned}
& P(u, w)=P\left(z_{1}\right) \\
& P\left(u, w^{\prime}\right)=P\left(z_{2}\right) \\
& P\left(u^{\prime}, w\right)=P\left(z_{3}\right) \\
& P\left(u^{\prime}, w^{\prime}\right)=P\left(z_{4}\right) \\
& P(u)=P(u, w)+P\left(u, w^{\prime}\right) \\
& \quad=P\left(z_{1}\right)+P\left(z_{2}\right)=0.5 \\
& P(w \mid u)=P(u, w) / p(u) \\
& \quad=P\left(z_{1}\right) / P(u)=0.3 / 0.5=0.6 \\
& P\left(w \mid u^{\prime}\right)=P\left(u^{\prime}, w\right) / p\left(u^{\prime}\right) \\
& \quad=P\left(z_{3}\right) /(1-P(u))=0.2 / 0.5=0.4, \\
& P(x \mid u, w)=P\left(x \mid z_{1}\right)=0.1 \\
& P\left(x \mid u, w^{\prime}\right)=P\left(x \mid z_{2}\right)=0.4 \\
& P\left(x \mid u^{\prime}, w\right)=P\left(x \mid z_{3}\right)=0.5 \\
& P\left(x \mid u^{\prime}, w^{\prime}\right)=P\left(x \mid z_{4}\right)=0.7 \\
& P(y \mid x, u, w)=P\left(y \mid x, z_{1}\right)=0.2 \\
& P\left(y \mid x^{\prime}, u, w\right)=P\left(y \mid x^{\prime}, z_{1}\right)=0.3 \\
& P\left(y \mid x, u, w^{\prime}\right)=P\left(y \mid x, z_{2}\right)=0.7 \\
& P\left(y \mid x^{\prime}, u, w^{\prime}\right)=P\left(y \mid x^{\prime}, z_{2}\right)=0.1 \\
& P\left(y \mid x, u^{\prime}, w\right)=P\left(y \mid x, z_{3}\right)=0.6 \\
& P\left(y \mid x^{\prime}, u^{\prime}, w\right)=P\left(y \mid x^{\prime}, z_{3}\right)=0.5 \\
& P\left(y \mid x, u^{\prime}, w^{\prime}\right)=P\left(y \mid x, z_{4}\right)=0.5 \\
& P\left(y \mid x^{\prime}, u^{\prime}, w^{\prime}\right)=P\left(y \mid x^{\prime}, z_{4}\right)=0.4
\end{aligned}
$$

Construction of the Distribution in the Example of Dimensionality Reduction

Here is how the data used in the example of Dimensionality Reduction were generated (both $P(X, Y, Z)$ and $P(X, Y, W), P(U)$). Instead of providing the resulting 1024 rows of the observational data, we provide the details for regenerating the observational data as following steps.

- Generate $P(X, Y, Z)$ using Algorithm 2.
- Let $P\left(X, Y, w_{j}, u_{k}\right)=P\left(X, Y, z_{(j-1) * 16+k}\right)$.
- Let $P\left(X, Y, w_{j}\right)=\sum_{k=1}^{q} P\left(X, Y, w_{j}, u_{k}\right)$.
- Let $P\left(X, Y, u_{k}\right)=\sum_{j=1}^{p} P\left(X, Y, w_{j}, u_{k}\right)$.
- Let $P\left(u_{k}\right)=\sum_{X, Y} P\left(X, Y, u_{k}\right)$.

For example,

$$
\begin{aligned}
& P\left(u_{1}\right) \\
= & \sum_{X, Y} P\left(X, Y, u_{1}\right) \\
= & P\left(x, y, u_{1}\right)+P\left(x, y^{\prime}, u_{1}\right)+ \\
& +P\left(x^{\prime}, y, u_{1}\right)+P\left(x^{\prime}, y^{\prime}, u_{1}\right) \\
= & \sum_{j=1}^{16} P\left(x, y, w_{j}, u_{1}\right)+\sum_{j=1}^{16} P\left(x, y^{\prime}, w_{j}, u_{1}\right)+ \\
& +\sum_{j=1}^{16} P\left(x^{\prime}, y, w_{j}, u_{1}\right)+\sum_{j=1}^{16} P\left(x^{\prime}, y^{\prime}, w_{j}, u_{1}\right)
\end{aligned}
$$

$$
=\sum_{j=1}^{16} P\left(x, y, z_{(j-1) * 16+1}\right)+
$$

$$
+\sum_{j=1}^{16} P\left(x, y^{\prime}, z_{(j-1) * 16+1}\right)+
$$

$$
\sum_{j=1}^{16} P\left(x^{\prime}, y, z_{(j-1) * 16+1}\right)+
$$

$$
+\sum_{j=1}^{16} P\left(x^{\prime}, y^{\prime}, z_{(j-1) * 16+1}\right)
$$

$$
P\left(x, y, w_{1}\right)
$$

$$
=\sum_{k=1}^{16} P\left(x, y, w_{1}, u_{k}\right)
$$

$$
=\sum_{k=1}^{16} P\left(x, y, z_{k}\right)
$$

