Appendix

Proof of Theorems

First, we have the following Lemmas 4 and 5 from (Li and Pearl 2019).
Lemma 4. The c-specific PNS $P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right)$ is bounded as follows:

$$
\begin{gathered}
\max \left\{\begin{array}{c}
0, \\
P\left(y_{x} \mid c\right)-P\left(y_{x^{\prime}} \mid c\right), \\
P(y \mid c)-P\left(y_{x^{\prime}} \mid c\right), \\
P\left(y_{x} \mid c\right)-P(y \mid c)
\end{array}\right\} \leq c-P N S, \\
\min \left\{\begin{array}{c}
P\left(y_{x} \mid c\right), \\
P(y, x \mid c)+P\left(y_{x^{\prime}}^{\prime} \mid c\right), \\
P\left(y_{x}, \mid c\right)-P\left(y^{\prime} \mid c\right), \\
+P\left(y, x^{\prime} \mid c\right)+P\left(y^{\prime}, x \mid c\right)+
\end{array}\right\} \geq c-P N S
\end{gathered}
$$

Lemma 5.

$$
\begin{aligned}
& P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right)-P\left(y_{x}^{\prime}, y_{x^{\prime}} \mid c\right) \\
= & P\left(y_{x} \mid c\right)-P\left(y_{x^{\prime}} \mid c\right) .
\end{aligned}
$$

Lemma 6. Given a causal diagram G and distribution compatible with G, let $Z \cup C$ be a set of variables that does not contain any descendant of X in G, then c-specific PNS $P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right)$ is bounded as follows:

$$
\begin{align*}
& \sum_{z} \max \left\{\begin{array}{c}
0, \\
P\left(y_{x} \mid z, c\right)-P\left(y_{x^{\prime}} \mid z, c\right), \\
P(y \mid z, c)-P\left(y_{x^{\prime}} \mid z, c\right), \\
P\left(y_{x} \mid z, c\right)-P(y \mid z, c)
\end{array}\right\} \\
& \times P(z \mid c) \leq c-P N S, \tag{3}\\
& \sum_{z} \min \left\{\begin{array}{c}
P\left(y_{x} \mid z, c\right), \\
P\left(y, x \mid z\left(y^{\prime} \mid z, c\right),\right. \\
P\left(y_{x} \mid z, c\right)-P\left(y^{\prime}, x^{\prime} \mid z, c\right), \\
+P\left(y, x^{\prime} \mid z, c\right)+P\left(y^{\prime}, x \mid z,+c\right)
\end{array}\right\} \\
& \times P(z \mid c) \geq c-P N S . \tag{4}
\end{align*}
$$

Proof.

$$
\begin{align*}
c \text {-PNS } & =P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right) \\
& =\sum_{z} P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z, c\right) \times P(z \mid c) . \tag{5}
\end{align*}
$$

From Lemma 4, replace c with (z, c), we have the following:

$$
\begin{align*}
& \max \left\{\begin{array}{c}
0 \\
P\left(y_{x} \mid z, c\right)-P\left(y_{x^{\prime}} \mid z, c\right), \\
P(y \mid z, c)-P\left(y_{x^{\prime}} \mid z, c\right), \\
P\left(y_{x} \mid z, c\right)-P(y \mid z, c)
\end{array}\right\} \\
& \leq P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z, c\right), \tag{6}\\
& \min \left\{\begin{array}{c}
P\left(y_{x} \mid z, c\right), \\
P\left(y_{x^{\prime}}^{\prime} \mid z, c\right), \\
(y, x \mid z, c)+P\left(y^{\prime}, x^{\prime} \mid z, c\right), \\
P\left(y_{x} \mid z, c\right)-P\left(y_{x^{\prime}} \mid z, c\right)+ \\
+P\left(y, x^{\prime} \mid z, c\right)+P\left(y^{\prime}, x \mid z, c\right)
\end{array}\right\} \\
& \geq P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z, c\right) . \tag{7}
\end{align*}
$$

Substituting Equations 6 and 7 into Equation 5, Lemma 6 holds.
Note that since we have,

$$
\begin{aligned}
& \sum_{z} \max \{0, \\
& P\left(y_{x} \mid z, c\right)-P\left(y_{x^{\prime}} \mid z, c\right), \\
& P(y \mid z, c)-P\left(y_{x^{\prime}} \mid z, c\right), \\
& \left.P\left(y_{x} \mid z, c\right)-P(y \mid z, c)\right\} \times P(z \mid c) \\
\geq & \sum_{z} 0 \times P(z \mid c) \\
= & 0, \\
& \sum_{z} \max \{0, \\
& P\left(y_{x} \mid z, c\right)-P\left(y_{x^{\prime}} \mid z, c\right), \\
& P(y \mid z, c)-P\left(y_{x^{\prime}} \mid z, c\right), \\
& \left.P\left(y_{x} \mid z, c\right)-P(y \mid z, c)\right\} \times P(z \mid c) \\
\geq & \sum_{z}\left[P\left(y_{x} \mid z, c\right)-P\left(y_{x^{\prime}} \mid z, c\right)\right] \times P(z \mid c) \\
= & P\left(y_{x} \mid c\right)-P\left(y_{x^{\prime}} \mid c\right),
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{z} \max \{0, \\
& P\left(y_{x} \mid z, c\right)-P\left(y_{x^{\prime}} \mid z, c\right) \\
& P(y \mid z, c)-P\left(y_{x^{\prime}} \mid z, c\right) \\
& \left.P\left(y_{x} \mid z, c\right)-P(y \mid z, c)\right\} \times P(z \mid c) \\
\geq & \sum_{z}\left[P(y \mid z, c)-P\left(y_{x^{\prime}} \mid z, c\right)\right] \times P(z \mid c) \\
= & P(y \mid c)-P\left(y_{x^{\prime}} \mid c\right),
\end{aligned}
$$

$$
\sum_{z} \max \{0
$$

$$
P\left(y_{x} \mid z, c\right)-P\left(y_{x^{\prime}} \mid z, c\right),
$$

$$
P(y \mid z, c)-P\left(y_{x^{\prime}} \mid z, c\right),
$$

$$
\left.P\left(y_{x} \mid z, c\right)-P(y \mid z, c)\right\} \times P(z \mid c)
$$

$$
\geq \sum_{z}\left[P\left(y_{x} \mid z, c\right)-P(y \mid z, c)\right] \times P(z \mid c)
$$

$$
=P\left(y_{x} \mid c\right)-P(y \mid c),
$$

then the lower bound in Lemma 6 is guaranteed to be no worse than the lower bound in Lemma 4. Similarly, the upper bound in Lemma 6 is guaranteed to be no worse than the upper bound in Lemma 4. Also note that, since $Z \cup C$ does not contain a descendant of X, the term $P\left(y_{x} \mid z, c\right)$ refers to experimental data under population z, c.

Lemma 7.

$$
\begin{align*}
f(c)= & \beta P\left(y_{x}, y^{\prime} \mid c\right)+\gamma P\left(y_{x}, y_{x^{\prime}} \mid c\right)+ \\
& +\theta P\left(y_{x}^{\prime}, y_{x^{\prime}}^{\prime} \mid c\right)+\delta P\left(y_{x^{\prime}}, y_{x}^{\prime} \mid c\right) \\
= & W+\sigma P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right) . \tag{8}
\end{align*}
$$

where,

$$
\begin{aligned}
& W=(\gamma-\delta) P\left(y_{x} \mid c\right)+\delta P\left(y_{x^{\prime}} \mid c\right)+\theta P\left(y_{x^{\prime}}^{\prime} \mid c\right) \\
& \sigma=\beta-\gamma-\theta+\delta
\end{aligned}
$$

Proof.

$$
\begin{align*}
& f(c) \\
= & \beta P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right)+\gamma P\left(y_{x}, y_{x^{\prime}} \mid c\right)+ \\
& +\theta P\left(y_{x}^{\prime}, y_{x^{\prime}}^{\prime} \mid c\right)+\delta P\left(y_{x}^{\prime}, y_{x^{\prime}} \mid c\right) \\
= & \beta P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right)+\gamma\left[P\left(y_{x} \mid c\right)-P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right)\right]+ \\
& +\theta\left[P\left(y_{x^{\prime}}^{\prime}\right)-P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right)\right]+\delta P\left(y_{x}^{\prime}, y_{x^{\prime}} \mid c\right) \\
= & \gamma P\left(y_{x} \mid c\right)+\theta P\left(y_{x^{\prime}}^{\prime} \mid c\right)+ \\
& +(\beta-\gamma-\theta) P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right)+\delta P\left(y_{x}^{\prime}, y_{x^{\prime}} \mid c\right) . \tag{9}
\end{align*}
$$

By Lemma 5, we have,

$$
\begin{equation*}
P\left(y_{x}^{\prime}, y_{x^{\prime}} \mid c\right)=P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right)-P\left(y_{x} \mid c\right)+P\left(y_{x^{\prime}} \mid c\right) \tag{10}
\end{equation*}
$$

Substituting Equation 10 into Equation 9, we have,

$$
\begin{aligned}
& f(c) \\
= & \gamma P\left(y_{x} \mid c\right)+\theta P\left(y_{x^{\prime}}^{\prime} \mid c\right)+ \\
& +(\beta-\gamma-\theta) P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right)+\delta P\left(y_{x}^{\prime}, y_{x^{\prime}} \mid c\right) \\
= & \gamma P\left(y_{x} \mid c\right)+\theta P\left(y_{x^{\prime}}^{\prime} \mid c\right)+ \\
& +(\beta-\gamma-\theta) P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right)+ \\
& +\delta\left[P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right)-P\left(y_{x} \mid c\right)+P\left(y_{x^{\prime}} \mid c\right)\right] \\
= & (\gamma-\delta) P\left(y_{x} \mid c\right)+\delta P\left(y_{x^{\prime}} \mid c\right)+\theta P\left(y_{x^{\prime}}^{\prime} \mid c\right)+ \\
& +(\beta-\gamma-\theta+\delta) P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right) .
\end{aligned}
$$

Theorem 1. Given a causal diagram G and distribution compatible with G, let $Z \cup C$ be a set of variables that does not contain any descendant of X in G, then the benefit function $f(c)=\beta P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right)+\gamma P\left(y_{x}, y_{x^{\prime}} \mid c\right)+\theta P\left(y_{x}^{\prime}, y_{x^{\prime}}^{\prime} \mid c\right)+$ $\delta P\left(y_{x^{\prime}}, y_{x}^{\prime} \mid c\right)$ is bounded as follows:

$$
\begin{array}{cc}
W+\sigma U \leq f \leq W+\sigma L & \text { if } \sigma<0 \\
W+\sigma L \leq f \leq W+\sigma U & \text { if } \sigma>0
\end{array}
$$

where σ, W, L, U are given by,

$$
\begin{aligned}
& \sigma=\beta-\gamma-\theta+\delta, \\
& W=(\gamma-\delta) P\left(y_{x} \mid c\right)+\delta P\left(y_{x^{\prime}} \mid c\right)+\theta P\left(y_{x^{\prime}}^{\prime} \mid c\right) \\
& L=\sum_{z} \max \left\{\begin{array}{c}
P\left(y_{x} \mid z, c\right)-P\left(y_{x^{\prime}} \mid z, c\right), \\
P(y \mid z, c)-P\left(y_{x^{\prime}} \mid z, c\right), \\
P\left(y_{x} \mid z, c\right)-P(y \mid z, c)
\end{array}\right\} \\
& \times P(z \mid c), \\
& U=\sum_{z} \min \left\{\begin{array}{c}
P\left(y_{x} \mid z, c\right), \\
P(y, x \mid z, c)+P\left(y^{\prime} \mid z, c\right), \\
P\left(y_{x}^{\prime} \mid z, c\right)-P\left(y_{x^{\prime}}^{\prime} \mid z, c\right)+ \\
+P\left(y, x^{\prime} \mid z, c\right)+P\left(y^{\prime}, x \mid z, c\right)
\end{array}\right\} \\
& \times P(z \mid c) .
\end{aligned}
$$

Proof. By Lemmas 6 and 7,
substituting Equations 3 and 4 into Equation 8, Theorem 1 holds.

Note that, if we substituting Lemma 4 into Lemma 7, we have the same results as in Li-Pearl's Theorem. We showed that in Lemma 6 that the bounds in Lemma 6 is guaranteed to be no worse than the bounds in Lemma 4, therefore, the bounds in Theorem 1 is guaranteed to be no worse than the bounds in Li-Pearl's Theorem.

Lemma 8. Given a causal diagram G and distribution compatible with G, let $Z \cup C$ be a set of variables such that $\forall x, x^{\prime} \in X: x \neq x^{\prime},\left(Y_{x} \Perp X \cup Z_{x^{\prime}} \mid Z_{x}, C\right)$ in G, then the c-PNS $P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right)$ is bounded as follows:

$$
\max \left\{\begin{array}{c}
0 \tag{11}\\
P\left(y_{x} \mid c\right)-P\left(y_{x^{\prime}} \mid c\right), \\
P(y \mid c)-P\left(y_{x^{\prime}} \mid c\right), \\
P\left(y_{x} \mid c\right)-P(y \mid c)
\end{array}\right\} \leq c-P N S
$$

$$
\min \left\{\begin{array}{c}
P\left(y_{x} \mid c\right) \tag{12}\\
P\left(y_{x^{\prime}}^{\prime} \mid c\right), \\
P(y, x \mid c)+P\left(y^{\prime}, x^{\prime} \mid c\right) \\
P\left(y_{x} \mid c\right)-P\left(y_{x^{\prime}} \mid c\right)+ \\
+P\left(y, x^{\prime} \mid c\right)+P\left(y^{\prime}, x \mid c\right), \\
\sum_{z} \sum_{z^{\prime}} \min _{2}\{P(y \mid z, x, c) \\
\left.P\left(y^{\prime} \mid z^{\prime}, x^{\prime}, c\right)\right\} \\
\times \min \left\{P\left(z_{x} \mid c\right), P\left(z_{x^{\prime}}^{\prime} \mid c\right)\right\}
\end{array}\right\} \geq c-P N S
$$

Proof.

$$
\begin{align*}
& c \text {-PNS } \\
= & P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right) \\
= & \Sigma_{z} \Sigma_{z^{\prime}} P\left(y_{x}, y_{x^{\prime}}^{\prime}, z_{x}, z_{x^{\prime}}^{\prime} \mid c\right) \\
= & \Sigma_{z} \Sigma_{z^{\prime}} P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z_{x}, z_{x^{\prime}}^{\prime}, c\right) \times P\left(z_{x}, z_{x^{\prime}}^{\prime} \mid c\right) \\
\leq & \Sigma_{z} \Sigma_{z^{\prime}} \min \left\{P\left(y_{x} \mid z_{x}, z_{x^{\prime}}^{\prime}, c\right), P\left(y_{x^{\prime}}^{\prime} \mid z_{x}, z_{x^{\prime}}^{\prime}, c\right)\right\} \\
& \times \min \left\{P\left(z_{x} \mid c\right), P\left(z_{x^{\prime}}^{\prime} \mid c\right)\right\} \\
= & \Sigma_{z} \Sigma_{z^{\prime}} \min \left\{P\left(y_{x} \mid z_{x}, c\right), P\left(y_{x^{\prime}}^{\prime} \mid z_{x^{\prime}}^{\prime}, c\right)\right\} \\
& \times \min \left\{P\left(z_{x} \mid c\right), P\left(z_{x^{\prime}}^{\prime} \mid c\right)\right\} \tag{13}\\
= & \Sigma_{z} \Sigma_{z^{\prime}} \min \left\{P\left(y \mid z_{x}, x, c\right), P\left(y^{\prime} \mid z_{x^{\prime}}^{\prime}, x^{\prime}, c\right)\right\} \\
& \times \min \left\{P\left(z_{x} \mid c\right), P\left(z_{x^{\prime}}^{\prime} \mid c\right)\right\} \tag{14}\\
= & \Sigma_{z} \Sigma_{z^{\prime}} \min \left\{P(y \mid z, x, c), P\left(y^{\prime} \mid z^{\prime}, x^{\prime}, c\right)\right\} \\
& \times \min \left\{P\left(z_{x} \mid c\right), P\left(z_{x^{\prime}}^{\prime} \mid c\right)\right\}
\end{align*}
$$

Combined with the bounds in Lemma 4, Lemma 8 holds. Note that Equation 13 is due to $Y_{x} \Perp Z_{x^{\prime}} \mid Z_{x}, C$ and $Y_{x^{\prime}} \Perp$ $Z_{x} \mid Z_{x^{\prime}}, C$. Equation 14 is due to $\forall x \in X, Y_{x} \Perp X \mid Z_{x}, C$.

Theorem 2. Given a causal diagram G and distribution compatible with G, let Z be a set of variables such that $\forall x, x^{\prime} \in X: x \neq x^{\prime},\left(Y_{x} \Perp X \cup Z_{x^{\prime}} \mid Z_{x}, C\right)$ in G, and C does not contain any descendant of X in G, then the benefit function $f(c)=\beta P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right)+\gamma P\left(y_{x}, y_{x^{\prime}} \mid c\right)+$ $\theta P\left(y_{x}^{\prime}, y_{x^{\prime}}^{\prime} \mid c\right)+\delta P\left(y_{x^{\prime}}, y_{x}^{\prime} \mid c\right)$ is bounded as follows:

$$
\begin{gathered}
W+\sigma U \leq f \leq W+\sigma L \quad \text { if } \sigma<0 \\
W+\sigma L \leq f \leq W+\sigma U \\
\text { if } \sigma>0
\end{gathered}
$$

where σ, W, L, U are given by,

$$
\begin{aligned}
& \sigma=\beta-\gamma-\theta+\delta, \\
& W=(\gamma-\delta) P\left(y_{x} \mid c\right)+\delta P\left(y_{x^{\prime}} \mid c\right)+\theta P\left(y_{x^{\prime}}^{\prime} \mid c\right), \\
& 0=\max \left\{\begin{array}{c}
P\left(y_{x} \mid c\right)-P\left(y_{x^{\prime}} \mid c\right), \\
P(y \mid c)-P\left(y_{x^{\prime}} \mid c\right), \\
P\left(y_{x} \mid c\right)-P(y \mid c)
\end{array}\right\}, \\
& P\left(y_{x} \mid c\right), \\
& P\left(y_{x^{\prime}}^{\prime} \mid c\right), \\
& U=\min \left\{\begin{array}{c}
\text { (}\left\{\begin{array}{c}
\prime \\
P(y, x \mid c)+P\left(y^{\prime}, x^{\prime} \mid c\right), \\
P\left(y_{x} \mid c\right)-P\left(y^{\prime} \mid c\right)+ \\
+P\left(y, x^{\prime} \mid c\right)+P\left(y^{\prime}, x \mid c\right) \\
\sum_{z} \sum_{z^{\prime}} \min \{P(y \mid z, x, c) \\
\left.P\left(y^{\prime} \mid z^{\prime}, x^{\prime}, c\right)\right\} \\
\times \min \left\{P\left(z_{x} \mid c\right), P\left(z_{x^{\prime}}^{\prime} \mid c\right)\right\}
\end{array}\right.
\end{array}\right\} .
\end{aligned}
$$

Proof. By Lemmas 8 and 7, substituting Equations 11 and 12 into Equation 8, Theorem 2 holds.

Note that, if we substituting Lemma 4 into Lemma 7, we have the same results as in Li-Pearl's Theorem. From the proof of Lemma 8, we know that the lower bound in Lemma 8 is the same as in Lemma 4 and the upper bound in Lemma 8 is no worse than the upper bound in Lemma 4. Therefore, the lower bound in Theorem 2 is the same as in Li-Pearl's Theorem, and the upper bound in Theorem 2 is guaranteed to be no worse than the upper bound in Li-Pearl's Theorem.

Lemma 9. Given a causal diagram G in Figure 9 and distribution that compatible with G, and C is not a descendant of X, then $c-P N S P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right)$ is bounded as follow:

Figure 9: Mediator Z with no direct effects of X on Y.

$$
\begin{align*}
& \max \left\{\begin{array}{c}
0, \\
P\left(y_{x} \mid c\right)-P\left(y_{x^{\prime}} \mid c\right), \\
P(y \mid c)-P\left(y_{x^{\prime}} \mid c\right), \\
P\left(y_{x} \mid c\right)-P(y \mid c)
\end{array}\right\} \leq c-P N S, \tag{15}\\
& P\left(y_{x} \mid c\right), \tag{16}\\
& \min \left\{\begin{array}{c}
\prime \\
P(y, x \mid c)+P\left(y_{x^{\prime}}^{\prime} \mid c\right), \\
P\left(y^{\prime}, x^{\prime} \mid c\right)-P\left(y_{x^{\prime}} \mid c\right)+ \\
+P\left(y, x^{\prime} \mid c\right)+P\left(y^{\prime}, x \mid c\right), \\
\Sigma_{z} \Sigma_{z^{\prime} \neq z} \min \{P(y \mid z, c), \\
\left.P\left(y^{\prime} \mid z^{\prime}, c\right)\right\} \\
\times \min \left\{P(z \mid x, c), P\left(z^{\prime} \mid x^{\prime}, c\right)\right\}
\end{array}\right\} \geq c-P N S .
\end{align*}
$$

Proof. First we show that in graph G, if an individual is a c-complier from X to Y, then $Z_{x} \mid c$ and $Z_{x^{\prime}} \mid c$ must have the different values. This is because the structural equations for Y and Z are $f_{y}\left(z, u_{y}, c\right)$ and $f_{z}\left(x, u_{z}, c\right)$, respectively. If an individual has the same $Z_{x} \mid c$ and $Z_{x^{\prime}} \mid c$ value, then $f_{z}\left(x, u_{z}, c\right)=f_{z}\left(x^{\prime}, u_{z}, c\right)$. This means $f_{y}\left(f_{z}\left(x, u_{z}, c\right), u_{y}, c\right)=f_{y}\left(f_{z}\left(x^{\prime}, u_{z}, c\right), u_{y}, c\right)$, i.e., $Y_{x} \mid c$ and $Y_{x^{\prime}} \mid c$ must have the same value. Thus this individual is not a c-complier. Therefore,

$$
\begin{aligned}
& c \text {-PNS } \\
= & P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right) \\
= & \Sigma_{z} \Sigma_{z^{\prime} \neq z} P\left(y_{z}, y_{z^{\prime}}^{\prime} \mid c\right) \times P\left(z_{x}, z_{x^{\prime}}^{\prime} \mid c\right) \\
\leq & \Sigma_{z} \Sigma_{z^{\prime} \neq z} \min \left\{P\left(y_{z} \mid c\right), P\left(y_{z^{\prime}}^{\prime} \mid c\right)\right\} \\
& \times \min \left\{P\left(z_{x} \mid c\right), P\left(z_{x^{\prime}}^{\prime} \mid c\right)\right\} \\
= & \Sigma_{z} \Sigma_{z^{\prime} \neq z} \min \left\{P(y \mid z, c), P\left(y^{\prime} \mid z^{\prime}, c\right)\right\} \\
& \times \min \left\{P(z \mid x, c), P\left(z^{\prime} \mid x^{\prime}, c\right)\right\} .
\end{aligned}
$$

Combined with the bounds in Lemma 4, Lemma 9 holds.
Theorem 3. Given a causal diagram G in Figure 9 and distribution compatible with G, and C does not contain any descendant of X, then the benefit function $f(c)=\beta P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right)+\gamma P\left(y_{x}, y_{x^{\prime}} \mid c\right)+\theta P\left(y_{x}^{\prime}, y_{x^{\prime}}^{\prime} \mid c\right)+$ $\delta P\left(y_{x^{\prime}}, y_{x}^{\prime} \mid c\right)$ is bounded as follows:

$$
\begin{gathered}
W+\sigma U \leq f \leq W+\sigma L \quad \text { if } \sigma<0 \\
W+\sigma L \leq f \leq W+\sigma U \quad \text { if } \sigma>0
\end{gathered}
$$

where σ, W, L, U are given by,

$$
\begin{aligned}
& \sigma=\beta-\gamma-\theta+\delta, \\
& W=(\gamma-\delta) P\left(y_{x} \mid c\right)+\delta P\left(y_{x^{\prime}} \mid c\right)+\theta P\left(y_{x^{\prime}}^{\prime} \mid c\right), \\
& L=\max \left\{\begin{array}{c}
0, \\
P\left(y_{x} \mid c\right)-P\left(y_{x^{\prime}} \mid c\right), \\
P(y \mid c)-P\left(y_{x^{\prime}} \mid c\right), \\
P\left(y_{x} \mid c\right)-P(y \mid c)
\end{array}\right\}, \\
& P\left(y_{x} \mid c\right), \\
& P\left(y_{x^{\prime}}^{\prime} \mid c\right), \\
& U=\min \left\{\begin{array}{c}
P\left(y^{\prime}, x^{\prime} \mid c\right), \\
P(y, x \mid c)+P(y)-P\left(y_{x^{\prime}} \mid c\right)+ \\
P\left(y_{x} \mid c\right)+ \\
+P\left(y, x^{\prime} \mid c\right)+P\left(y^{\prime}, x \mid c\right), \\
\Sigma_{z} \Sigma_{z^{\prime} \neq z} \min \{P(y \mid z, c) \\
\left.P\left(y^{\prime} \mid z^{\prime}, c\right)\right\} \\
\times \min \left\{P(z \mid x, c), P\left(z^{\prime} \mid x^{\prime}, c\right)\right\}
\end{array}\right\} .
\end{aligned}
$$

Proof. By Lemmas 9 and 7, substituting Equations 15 and 16 into Equation 8, Theorem 3 holds.

Note that, if we substituting Lemma 4 into Lemma 7, we have the same results as in Li-Pearl's Theorem. From the proof of Lemma 9, we know that the lower bound in Lemma 9 is the same as in Lemma 4 and the upper bound in Lemma 9 is no worse than the upper bound in Lemma 4. Therefore, the lower bound in Theorem 3 is the same as in Li-Pearl's Theorem, and the upper bound in Theorem 3 is guaranteed to be no worse than the upper bound in Li-Pearl's Theorem.

Calculation in the Examples

In order to clearly see the calculation steps, we list an equivalent form of Li-Pearl's Theorem as following (see the proof in the previous section for the equivalence):

Theorem 10. Given a causal diagram G and distribution compatible with G, let C be a set of variables that does not contain any descendant of X in G, then the benefit function $f(c)=\beta P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid c\right)+\gamma P\left(y_{x}, y_{x^{\prime}} \mid c\right)+\theta P\left(y_{x}^{\prime}, y_{x^{\prime}}^{\prime} \mid c\right)+$ $\delta P\left(y_{x^{\prime}}, y_{x}^{\prime} \mid c\right)$ is bounded as follows:

$$
\begin{aligned}
W+\sigma U \leq f(c) \leq W+\sigma L \quad & \text { if } \sigma<0 \\
W+\sigma L \leq f(c) \leq W+\sigma U & \text { if } \sigma>0
\end{aligned}
$$

where σ, W, L, U are given by,

$$
\begin{aligned}
& \sigma=\beta-\gamma-\theta+\delta, \\
& W=(\gamma-\delta) P\left(y_{x} \mid c\right)+\delta P\left(y_{x^{\prime}} \mid c\right)+\theta P\left(y_{x^{\prime}}^{\prime} \mid c\right), \\
& 0=\max \left\{\begin{array}{c}
P\left(y_{x} \mid c\right)-P\left(y_{x^{\prime}} \mid c\right), \\
P(y \mid c)-P\left(y_{x^{\prime}} \mid c\right), \\
P\left(y_{x} \mid c\right)-P(y \mid c)
\end{array}\right\}, \\
& U=\min \left\{\begin{array}{c}
P\left(y_{x} \mid c\right), \\
P\left(y_{x^{\prime}}^{\prime} \mid c\right), \\
P(y, x \mid c)+P\left(y^{\prime}, x^{\prime} \mid c\right), \\
P\left(y_{x} \mid c\right)-P\left(y_{x^{\prime}} \mid c\right)+ \\
+P\left(y, x^{\prime} \mid c\right)+P\left(y^{\prime}, x \mid c\right)
\end{array}\right\} .
\end{aligned}
$$

Company Selection First, we apply Li-Pearl's Theorem (Theorem 10) to the data in Tables 1 and 2. The benefit vector is $(100,-60,0,-140)$.
We have,

$$
\begin{aligned}
\sigma & =\beta-\gamma-\theta+\delta \\
& =100-(-60)-0+(-140) \\
& =20
\end{aligned}
$$

$$
\begin{aligned}
W= & (\gamma-\delta) P\left(r_{a} \mid c\right)+\delta P\left(r_{a^{\prime}} \mid c\right)+\theta P\left(r_{a^{\prime}}^{\prime} \mid c\right) \\
= & (-60-(-140)) \times 0.83729+0 \times 0.47405+ \\
& +(-140) \times 0.52595 \\
= & -6.64980
\end{aligned}
$$

$$
\begin{aligned}
L & =\max \left\{\begin{array}{c}
0, \\
P\left(r_{a} \mid c\right)-P\left(r_{a^{\prime}} \mid c\right), \\
P(r \mid c)-P\left(r_{a^{\prime}} \mid c\right), \\
P\left(r_{a} \mid c\right)-P(r \mid c)
\end{array}\right\} \\
& =\max \left\{\begin{array}{c}
0.83729-0.52595, \\
0.70714-0.52595 \\
0.83729-0.70714
\end{array}\right\} \\
& =0.31134
\end{aligned}
$$

$$
\begin{aligned}
U & =\min \left\{\begin{array}{c}
P\left(r_{a} \mid c\right), \\
P\left(r_{a^{\prime}}^{\prime} \mid c\right), \\
P(r, a \mid c)+P\left(r^{\prime}, a^{\prime} \mid c\right), \\
P\left(r_{a} \mid c\right)-P\left(r_{a^{\prime}} \mid c\right)+ \\
+P\left(r, a^{\prime} \mid c\right)+P\left(r^{\prime}, a \mid c\right)
\end{array}\right\} \\
& =\min \left\{\begin{array}{c}
0.83729, \\
1-0.52595 \\
0.35286+0.20143, \\
0.83729-0.52595+ \\
+0.35428+0.09143
\end{array}\right\} \\
& =0.47405
\end{aligned}
$$

$$
\begin{aligned}
& W+\sigma L \leq f(c) \leq W+\sigma U \\
& -6.64980+20 \times 0.31134 \leq f(c) \\
& \leq-6.64980+20 \times 0.47405 \\
& -0.423 \leq f(c) \leq 2.832
\end{aligned}
$$

Then, we apply Theorem 1 to the data in Tables 1 and 2. σ and W are the same as above.
And we have,

$$
\begin{aligned}
L= & \sum_{z} \max \left\{\begin{array}{c}
0, \\
P\left(r_{a} \mid z, c\right)-P\left(r_{a^{\prime}} \mid z, c\right), \\
P(r \mid z, c)-P\left(r_{a^{\prime}} \mid z, c\right), \\
P\left(r_{a} \mid z, c\right)-P(r \mid z, c)
\end{array}\right\} \\
& \times P(z \mid c) \\
= & \max \left\{\begin{array}{c}
0, \\
0.44600-0.05000, \\
0.49010-0.05000, \\
0.44600-0.49010
\end{array}\right\} \times 0.28857 \\
& +\max \left\{\begin{array}{c}
0,99600-0.71900, \\
0.79518-0.71900, \\
0.99600-0.79518
\end{array}\right\} \times 0.71143 \\
= & 0.44010 \times 0.28857+0.27700 \times 0.71143 \\
= & 0.32407
\end{aligned}
$$

$$
\begin{aligned}
& U= \sum_{z} \min \left\{\begin{array}{c}
P\left(r_{a} \mid z, c\right) \\
P\left(r_{a^{\prime}}^{\prime} \mid z, c\right) \\
P(r, a \mid z, c)+P\left(r^{\prime}, a^{\prime} \mid z, c\right), \\
P\left(r_{a} \mid z, c\right)-P\left(r_{a^{\prime}} \mid z, c\right)+ \\
+P\left(r, a^{\prime} \mid z, c\right)+P\left(r^{\prime}, a \mid z, c\right)
\end{array}\right\} \\
& \times P(z \mid c) \begin{array}{c}
0.44600, \\
1-0.05000 \\
=
\end{array} \\
& \min \left\{\begin{array}{c}
0.44555+0.20297, \\
0.44600-0.05000+ \\
+0.04455+0.30693
\end{array}\right\} \times 0.28857 \\
&+\min \left\{\begin{array}{c}
0.99600, \\
1-0.71900 \\
0.31526+0.20080 \\
0.99600-0.71900+ \\
+0.47992+0.00402
\end{array}\right\} \times 0.71143 \\
&= 0.44600 \times 0.28857+0.28100 \times 0.71143
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& W+\sigma L \leq f(c) \leq W+\sigma U \\
& -6.64980+20 \times 0.32407 \leq f(c) \\
& \leq-6.64980+20 \times 0.32862 \\
& -0.168 \leq f(c) \leq-0.077
\end{aligned}
$$

Effective Patients of a Drug First, the set $\{C\}$ satisfied the back-door criterion for both (A, Z) and (A, R). By Pearl's adjustment formula, the experimental data needed are:

$$
\begin{aligned}
& P\left(r_{a} \mid c\right)=P(r \mid a, c)=0.66666 \\
& P\left(r_{a^{\prime}} \mid c\right)=P\left(r \mid a^{\prime}, c\right)=0.33265 \\
& P\left(z_{a} \mid c\right)=P(z \mid a, c)=0.68878 \\
& P\left(z_{a^{\prime}}^{\prime} \mid c\right)=P\left(z^{\prime} \mid a^{\prime}, c\right)=0.01232
\end{aligned}
$$

Then, we apply Li-Pearl's Theorem (Theorem 10) to the data in Table 3 and the above experimental data. The benefit vector is $(1,-1,-1,-1)$.
We have,

$$
\begin{aligned}
\sigma= & \beta-\gamma-\theta+\delta \\
& =1-(-1)-(-1)+(-1) \\
= & 2
\end{aligned} \begin{aligned}
& W=(\gamma-\delta) P\left(r_{a} \mid c\right)+\delta P\left(r_{a^{\prime}} \mid c\right)+\theta P\left(r_{a^{\prime}}^{\prime} \mid c\right) \\
&=(-1+1) P\left(r_{a} \mid c\right)-P\left(r_{a^{\prime}} \mid c\right)-P\left(r_{a^{\prime}}^{\prime} \mid c\right) \\
&=-1 \\
& L= \max \left\{\begin{array}{c}
P\left(r_{a} \mid c\right)-P\left(r_{a^{\prime}} \mid c\right), \\
P(r \mid c)-P\left(y_{a^{\prime}} \mid c\right), \\
P\left(r_{a} \mid c\right)-P(r \mid c)
\end{array}\right\} \\
& 0, \\
&= \max \left\{\begin{array}{c}
0.66666-0.33265, \\
0.51535-0.33265, \\
0.66666-0.51535
\end{array}\right\} \\
&= 0.33401
\end{aligned}
$$

$$
\begin{aligned}
U & =\min \left\{\begin{array}{c}
P\left(r_{a} \mid c\right) \\
P\left(r_{a^{\prime}}^{\prime} \mid c\right) \\
P(r, a \mid c)+P\left(r^{\prime}, a^{\prime} \mid c\right), \\
P\left(r_{a} \mid c\right)-P\left(r_{a^{\prime}} \mid c\right)+ \\
+P\left(r, a^{\prime} \mid c\right)+P\left(r^{\prime}, a \mid c\right)
\end{array}\right\} \\
& =\min \left\{\begin{array}{c}
0.66666 \\
1-0.33265 \\
0.36465+0.30233 \\
0.66666-0.33265+ \\
+0.15070+0.18232
\end{array}\right\} \\
& =0.66666
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& W+\sigma L \leq f(c) \leq W+\sigma U \\
& -1+2 \times 0.33401 \leq f(c) \\
& \leq-1+2 \times 0.66666 \\
& -0.3320 \leq f(c) \leq 0.3333
\end{aligned}
$$

Then, we apply Theorem 2 to the data in Table 3 and the above experimental data. σ, W, and L are the same as above. And we have,

$$
\left.\left.\begin{array}{rl}
U= & \min \left\{\begin{array}{c}
P\left(r_{a} \mid c\right), \\
P\left(r_{a^{\prime}}^{\prime} \mid c\right), \\
P(r, a \mid c)+P\left(r^{\prime}, a^{\prime} \mid c\right), \\
P\left(r_{a} \mid c\right)-P\left(r_{a^{\prime}} \mid c\right)+ \\
+P\left(r, a^{\prime} \mid c\right)+P\left(r^{\prime}, a \mid c\right), \\
\sum_{z} \sum_{z^{\prime}} \min \{P(r \mid z, a, c), \\
\left.P\left(r^{\prime} \mid z^{\prime}, a^{\prime}, c\right)\right\} \\
\times \min \left\{P\left(z_{a} \mid c\right), P\left(z_{a^{\prime}}^{\prime} \mid c\right)\right\}
\end{array}\right\} \\
0.66666, \\
1-0.33265, \\
0.36465+0.30233, \\
0.66666-0.33265+ \\
+0.15070+0.18232, \\
\min \{0.92593,0.66944\} \times \\
\min \{0.68878,0.98768\}+ \\
\min \{0.92593,0.50000\} \times \\
\min \{0.68878,0.01232\}+ \\
\min \{0.09290,0.66944\} \times \\
\min \{0.31122,0.98768\}+ \\
\min \{0.09290,0.50000\} \times \\
\min \{0.31122,0.01232\}
\end{array}\right\}, ~ \begin{array}{c}
\min
\end{array}\right\}
$$

Therefore,

$$
\begin{aligned}
& W+\sigma L \leq f(c) \leq W+\sigma U \\
& -1+2 \times 0.33401 \leq f(c) \\
& \leq-1+2 \times 0.49731 \\
& -0.3320 \leq f(c) \leq-0.0054
\end{aligned}
$$

```
Algorithm 1: Generate sample distributions for non-
descendant covariates
Input: \(n\), number of sample distributions needed.
Output: \(n\) sample distributions (observational data and ex-
perimental data).
    for \(i=1\) to \(n\) do
        \(/ / \operatorname{rand}(0,1)\) is the function that random uniformly
        generate a number from 0 to 1 .
        // \(t_{1}, t_{2}, t_{3}\), and \(t_{4}\) can be interpreted as the number of
        individuals such that \(x \wedge z, x^{\prime} \wedge z, x \wedge z^{\prime}\), and \(x^{\prime} \wedge z^{\prime}\)
        respectively.
        \(t_{1}=\operatorname{rand}(0,1) \times 1000 ;\)
        \(t_{2}=\operatorname{rand}(0,1) \times\left(1000-t_{1}\right) ;\)
        \(t_{3}=\operatorname{rand}(0,1) \times\left(1000-t_{1}-t_{2}\right) ;\)
        \(t_{4}=1000-t_{1}-t_{2}-t_{3}\);
        \(/ / o_{1}, o_{2}, o_{3}\), and \(o_{4}\) can be interpreted as the number
        of individuals such that \(x \wedge z \wedge y, x^{\prime} \wedge z \wedge y, x \wedge z^{\prime} \wedge y\),
        and \(x^{\prime} \wedge z^{\prime} \wedge y\) respectively.
        \(o_{1}=\operatorname{rand}(0,1) \times t_{1}\);
        \(o_{2}=\operatorname{rand}(0,1) \times t_{2} ;\)
        \(o_{3}=\operatorname{rand}(0,1) \times t_{3}\);
        \(o_{4}=\operatorname{rand}(0,1) \times t_{4}\);
        // Each \(c_{i}\) corresponding to a sample distribution.
        // The following are experimental data that satisfied
        the general bounds provided by Tian and Pearl.
        \(P\left(y \mid d o(x), z, c_{i}\right)=\operatorname{rand}(0,1) \times \frac{t_{2}}{t_{1}+t_{2}}+\frac{o_{1}}{t_{1}+t_{2}} ;\)
        \(P\left(y \mid d o\left(x^{\prime}\right), z, c_{i}\right)=\operatorname{rand}(0,1) \times \frac{t_{1}}{t_{1}+t_{2}}+\frac{o_{2}}{t_{1}+t_{2}} ;\)
        \(P\left(y \mid d o(x), z^{\prime}, c_{i}\right)=\operatorname{rand}(0,1) \times \frac{t_{4}}{t_{3}+t_{4}}+\frac{o_{3}}{t_{3}+t_{4}} ;\)
        \(P\left(y \mid d o\left(x^{\prime}\right), z^{\prime}, c_{i}\right)=\operatorname{rand}(0,1) \times \frac{t_{3}}{t_{3}+t_{4}}+\frac{o_{4}}{t_{3}+t_{4}} ;\)
        // The following are observational data.
        \(P\left(x, y, z \mid c_{i}\right)=o_{1} / 1000\);
        \(P\left(x, y, z^{\prime} \mid c_{i}\right)=o_{3} / 1000\);
        \(P\left(x, y^{\prime}, z \mid c_{i}\right)=\left(t_{1}-o_{1}\right) / 1000 ;\)
        \(P\left(x, y^{\prime}, z^{\prime} \mid c_{i}\right)=\left(t_{3}-o_{3}\right) / 1000\);
        \(P\left(x^{\prime}, y, z \mid c_{i}\right)=o_{2} / 1000\);
        \(P\left(x^{\prime}, y, z^{\prime} \mid c_{i}\right)=o_{4} / 1000\);
        \(P\left(x^{\prime}, y^{\prime}, z \mid c_{i}\right)=\left(t_{2}-o_{2}\right) / 1000\);
        \(P\left(x^{\prime}, y^{\prime}, z^{\prime} \mid c_{i}\right)=\left(t_{4}-o_{4}\right) / 1000 ;\)
    end for
```


Distribution Generating Algorithms

Here, the sample distribution generating algorithms in simulated studies are presented.

Non-descendant Covariates The Algorithm 1 is the sample distribution generating algorithm in the simulated study of non-descendant covariates case. It generated both experimental and observational data compatible with Figure 5 (X, Y, Z are binary) that satisfy the general relation provided by Tian and Pearl (i.e., the general relation between experimental and observational data).

Partial Mediators The observational data compatible with Figure 1 (X, Y, Z are binary) in the simulated study of partial mediators case was generated by Algorithm 2. The experimental data needed was computed via adjustment formula because the set $\{C\}$ satisfied the back-door criterion for both

```
Algorithm 2: Generate sample distributions for partial media-
tors
Input: \(n\), number of sample distributions needed.
Output: \(n\) sample distributions (observational data in condi-
tional probability tables).
    for \(i=1\) to \(n\) do
        \(/ /\) rand \((0,1)\) is the function that random uniformly
        generate a number from 0 to 1 .
        // Each \(c_{i}\) corresponding to a sample distribution.
        \(P\left(x \mid c_{i}\right)=\operatorname{rand}(0,1)\);
        \(P\left(z \mid x, c_{i}\right)=\operatorname{rand}(0,1)\);
        \(P\left(z \mid x^{\prime}, c_{i}\right)=\operatorname{rand}(0,1)\);
        \(P\left(y \mid x, z, c_{i}\right)=\operatorname{rand}(0,1)\);
        \(P\left(y \mid x^{\prime}, z, c_{i}\right)=\operatorname{rand}(0,1)\);
        \(P\left(y \mid x, z^{\prime}, c_{i}\right)=\operatorname{rand}(0,1) ;\)
        \(P\left(y \mid x^{\prime}, z^{\prime}, c_{i}\right)=\operatorname{rand}(0,1)\);
    end for
```

```
Algorithm 3: Generate sample distributions for pure media-
tors
Input: \(n\), number of sample distributions needed.
Output: \(n\) sample distributions (observational data in condi-
tional probability tables).
    for \(i=1\) to \(n\) do
        \(/ / \operatorname{rand}(0,1)\) is the function that random uniformly
        generate a number from 0 to 1 .
        // Each \(c_{i}\) corresponding to a sample distribution.
        \(P\left(x \mid c_{i}\right)=\operatorname{rand}(0,1)\);
        \(P\left(z \mid x, c_{i}\right)=\operatorname{rand}(0,1)\);
        \(P\left(z \mid x^{\prime}, c_{i}\right)=\operatorname{rand}(0,1)\);
        \(P\left(y \mid z, c_{i}\right)=\operatorname{rand}(0,1)\);
        \(P\left(y \mid z^{\prime}, c_{i}\right)=\operatorname{rand}(0,1)\)
    end for
```

(X, Z) and (X, Y).

Pure Mediators The observational data compatible with Figure 2 (X, Y, Z are binary) in the simulated study of pure mediators case was generated by Algorithm 3. The experimental data needed was computed via adjustment formula because the set $\{C\}$ satisfied the back-door criterion for (X, Y).

