
Appendix
Proof of Theorems
First, we have the following Lemmas 4 and 5 from (Li and
Pearl 2019).
Lemma 4. The c-specific PNS P (yx, y

′
x′ |c) is bounded as

follows:

max


0,

P (yx|c)− P (yx′ |c),
P (y|c)− P (yx′ |c),
P (yx|c)− P (y|c)

 ≤ c-PNS,

min


P (yx|c),
P (y′x′ |c),

P (y, x|c) + P (y′, x′|c),
P (yx|c)− P (yx′ |c)+

+P (y, x′|c) + P (y′, x|c)

 ≥ c-PNS.

Lemma 5.
P (yx, y

′
x′ |c)− P (y′x, yx′ |c)

= P (yx|c)− P (yx′ |c).

Lemma 6. Given a causal diagram G and distribution com-
patible with G, let Z ∪ C be a set of variables that does
not contain any descendant of X in G, then c-specific PNS
P (yx, y

′
x′ |c) is bounded as follows:

∑
z

max


0,

P (yx|z, c)− P (yx′ |z, c),
P (y|z, c)− P (yx′ |z, c),
P (yx|z, c)− P (y|z, c)


×P (z|c) ≤ c-PNS, (3)

∑
z

min


P (yx|z, c),
P (y′x′ |z, c),

P (y, x|z, c) + P (y′, x′|z, c),
P (yx|z, c)− P (yx′ |z, c)+

+P (y, x′|z, c) + P (y′, x|z, c)


×P (z|c) ≥ c-PNS. (4)

Proof.
c-PNS = P (yx, y

′
x′ |c)

=
∑
z

P (yx, y
′
x′ |z, c)× P (z|c). (5)

From Lemma 4, replace c with (z, c), we have the following:

max


0,

P (yx|z, c)− P (yx′ |z, c),
P (y|z, c)− P (yx′ |z, c),
P (yx|z, c)− P (y|z, c)


≤ P (yx, y

′
x′ |z, c), (6)

min


P (yx|z, c),
P (y′x′ |z, c),

P (y, x|z, c) + P (y′, x′|z, c),
P (yx|z, c)− P (yx′ |z, c)+

+P (y, x′|z, c) + P (y′, x|z, c)


≥ P (yx, y

′
x′ |z, c). (7)

Substituting Equations 6 and 7 into Equation 5, Lemma 6
holds.
Note that since we have,

∑
z

max{0,

P (yx|z, c)− P (yx′ |z, c),
P (y|z, c)− P (yx′ |z, c),
P (yx|z, c)− P (y|z, c)} × P (z|c)

≥
∑
z

0× P (z|c)

= 0,∑
z

max{0,

P (yx|z, c)− P (yx′ |z, c),
P (y|z, c)− P (yx′ |z, c),
P (yx|z, c)− P (y|z, c)} × P (z|c)

≥
∑
z

[P (yx|z, c)− P (yx′ |z, c)]× P (z|c)

= P (yx|c)− P (yx′ |c),∑
z

max{0,

P (yx|z, c)− P (yx′ |z, c),
P (y|z, c)− P (yx′ |z, c),
P (yx|z, c)− P (y|z, c)} × P (z|c)

≥
∑
z

[P (y|z, c)− P (yx′ |z, c)]× P (z|c)

= P (y|c)− P (yx′ |c),∑
z

max{0,

P (yx|z, c)− P (yx′ |z, c),
P (y|z, c)− P (yx′ |z, c),
P (yx|z, c)− P (y|z, c)} × P (z|c)

≥
∑
z

[P (yx|z, c)− P (y|z, c)]× P (z|c)

= P (yx|c)− P (y|c),

then the lower bound in Lemma 6 is guaranteed to be no
worse than the lower bound in Lemma 4. Similarly, the upper
bound in Lemma 6 is guaranteed to be no worse than the
upper bound in Lemma 4. Also note that, since Z ∪ C does
not contain a descendant of X , the term P (yx|z, c) refers to
experimental data under population z, c.

Lemma 7.

f(c) = βP (yx, y
′
x′ |c) + γP (yx, yx′ |c) +

+θP (y′x, y
′
x′ |c) + δP (yx′ , y′x|c)

= W + σP (yx, y
′
x′ |c). (8)
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where,

W = (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),
σ = β − γ − θ + δ.

Proof.

f(c)

= βP (yx, y
′
x′ |c) + γP (yx, yx′ |c) +

+θP (y′x, y
′
x′ |c) + δP (y′x, yx′ |c)

= βP (yx, y
′
x′ |c) + γ[P (yx|c)− P (yx, y

′
x′ |c)] +

+θ[P (y′x′)− P (yx, y
′
x′ |c)] + δP (y′x, yx′ |c)

= γP (yx|c) + θP (y′x′ |c) +

+(β − γ − θ)P (yx, y
′
x′ |c) + δP (y′x, yx′ |c). (9)

By Lemma 5, we have,

P (y′x, yx′ |c) = P (yx, y
′
x′ |c)− P (yx|c) + P (yx′ |c). (10)

Substituting Equation 10 into Equation 9, we have,

f(c)

= γP (yx|c) + θP (y′x′ |c) +

+(β − γ − θ)P (yx, y
′
x′ |c) + δP (y′x, yx′ |c)

= γP (yx|c) + θP (y′x′ |c) +

+(β − γ − θ)P (yx, y
′
x′ |c) +

+δ[P (yx, y
′
x′ |c)− P (yx|c) + P (yx′ |c)]

= (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c) +

+(β − γ − θ + δ)P (yx, y
′
x′ |c).

Theorem 1. Given a causal diagramG and distribution com-
patible with G, let Z ∪ C be a set of variables that does not
contain any descendant of X in G, then the benefit function
f(c) = βP (yx, y

′
x′ |c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) +

δP (yx′ , y′x|c) is bounded as follows:

W + σU ≤ f ≤W + σL if σ < 0,

W + σL ≤ f ≤W + σU if σ > 0,

where σ,W,L,U are given by,

σ = β − γ − θ + δ,

W = (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),

L =
∑
z

max


0,

P (yx|z, c)− P (yx′ |z, c),
P (y|z, c)− P (yx′ |z, c),
P (yx|z, c)− P (y|z, c)


×P (z|c),

U =
∑
z

min


P (yx|z, c),
P (y′x′ |z, c),

P (y, x|z, c) + P (y′, x′|z, c),
P (yx|z, c)− P (yx′ |z, c)+

+P (y, x′|z, c) + P (y′, x|z, c)


×P (z|c).

Proof. By Lemmas 6 and 7,
substituting Equations 3 and 4 into Equation 8, Theorem 1
holds.

Note that, if we substituting Lemma 4 into Lemma 7, we
have the same results as in Li-Pearl’s Theorem. We showed
that in Lemma 6 that the bounds in Lemma 6 is guaranteed
to be no worse than the bounds in Lemma 4, therefore, the
bounds in Theorem 1 is guaranteed to be no worse than the
bounds in Li-Pearl’s Theorem.

Lemma 8. Given a causal diagram G and distribution com-
patible with G, let Z ∪ C be a set of variables such that
∀x, x′ ∈ X : x 6= x′, (Yx ⊥⊥ X ∪ Zx′ | Zx, C) in G, then
the c-PNS P (yx, y

′
x′ |c) is bounded as follows:

max


0,

P (yx|c)− P (yx′ |c),
P (y|c)− P (yx′ |c),
P (yx|c)− P (y|c)

 ≤ c-PNS, (11)

min



P (yx|c),
P (y′x′ |c),

P (y, x|c) + P (y′, x′|c),
P (yx|c)− P (yx′ |c)+

+P (y, x′|c) + P (y′, x|c),∑
z

∑
z′ min{P (y|z, x, c),
P (y′|z′, x′, c)}

×min{P (zx|c), P (z′x′ |c)}


≥ c-PNS.

(12)

Proof.
c-PNS

= P (yx, y
′
x′ |c)

= ΣzΣz′P (yx, y
′
x′ , zx, z

′
x′ |c)

= ΣzΣz′P (yx, y
′
x′ |zx, z′x′ , c)× P (zx, z

′
x′ |c)

≤ ΣzΣz′ min{P (yx|zx, z′x′ , c), P (y′x′ |zx, z′x′ , c)}
×min{P (zx|c), P (z′x′ |c)}

= ΣzΣz′ min{P (yx|zx, c), P (y′x′ |z′x′ , c)}
×min{P (zx|c), P (z′x′ |c)} (13)

= ΣzΣz′ min{P (y|zx, x, c), P (y′|z′x′ , x′, c)}
×min{P (zx|c), P (z′x′ |c)} (14)

= ΣzΣz′ min{P (y|z, x, c), P (y′|z′, x′, c)}
×min{P (zx|c), P (z′x′ |c)}.

Combined with the bounds in Lemma 4, Lemma 8 holds.
Note that Equation 13 is due to Yx ⊥⊥ Zx′ | Zx, C and Yx′ ⊥⊥
Zx | Zx′ , C. Equation 14 is due to ∀x ∈ X,Yx ⊥⊥ X |Zx, C.

Theorem 2. Given a causal diagram G and distribution
compatible with G, let Z be a set of variables such that
∀x, x′ ∈ X : x 6= x′, (Yx ⊥⊥ X ∪ Zx′ | Zx, C) in G, and
C does not contain any descendant of X in G, then the
benefit function f(c) = βP (yx, y

′
x′ |c) + γP (yx, yx′ |c) +

θP (y′x, y
′
x′ |c) + δP (yx′ , y′x|c) is bounded as follows:

W + σU ≤ f ≤W + σL if σ < 0,

W + σL ≤ f ≤W + σU if σ > 0,



where σ,W,L, U are given by,

σ = β − γ − θ + δ,

W = (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),

L = max


0,

P (yx|c)− P (yx′ |c),
P (y|c)− P (yx′ |c),
P (yx|c)− P (y|c)

 ,

U = min



P (yx|c),
P (y′x′ |c),

P (y, x|c) + P (y′, x′|c),
P (yx|c)− P (yx′ |c)+

+P (y, x′|c) + P (y′, x|c),∑
z

∑
z′ min{P (y|z, x, c),
P (y′|z′, x′, c)}

×min{P (zx|c), P (z′x′ |c)}


.

Proof. By Lemmas 8 and 7,
substituting Equations 11 and 12 into Equation 8, Theorem 2
holds.

Note that, if we substituting Lemma 4 into Lemma 7, we
have the same results as in Li-Pearl’s Theorem. From the
proof of Lemma 8, we know that the lower bound in Lemma
8 is the same as in Lemma 4 and the upper bound in Lemma
8 is no worse than the upper bound in Lemma 4. Therefore,
the lower bound in Theorem 2 is the same as in Li-Pearl’s
Theorem, and the upper bound in Theorem 2 is guaranteed to
be no worse than the upper bound in Li-Pearl’s Theorem.

Lemma 9. Given a causal diagram G in Figure 9 and distri-
bution that compatible with G, and C is not a descendant of
X , then c-PNS P (yx, y

′
x′ |c) is bounded as follow:

C

Z

X Y

Figure 9: Mediator Z with no direct effects of X on Y .

max


0,

P (yx|c)− P (yx′ |c),
P (y|c)− P (yx′ |c),
P (yx|c)− P (y|c)

 ≤ c-PNS, (15)

min



P (yx|c),
P (y′x′ |c),

P (y, x|c) + P (y′, x′|c),
P (yx|c)− P (yx′ |c)+

+P (y, x′|c) + P (y′, x|c),
ΣzΣz′ 6=z min{P (y|z, c),

P (y′|z′, c)}
×min{P (z|x, c), P (z′|x′, c)}


≥ c-PNS.

(16)

Proof. First we show that in graph G, if an individual
is a c-complier from X to Y , then Zx|c and Zx′ |c must
have the different values. This is because the structural
equations for Y and Z are fy(z, uy, c) and fz(x, uz, c),
respectively. If an individual has the same Zx|c and
Zx′ |c value, then fz(x, uz, c) = fz(x′, uz, c). This means
fy(fz(x, uz, c), uy, c) = fy(fz(x′, uz, c), uy, c), i.e., Yx|c
and Yx′ |c must have the same value. Thus this individual is
not a c-complier. Therefore,

c-PNS
= P (yx, y

′
x′ |c)

= ΣzΣz′ 6=zP (yz, y
′
z′ |c)× P (zx, z

′
x′ |c)

≤ ΣzΣz′ 6=z min{P (yz|c), P (y′z′ |c)}
×min{P (zx|c), P (z′x′ |c)}

= ΣzΣz′ 6=z min{P (y|z, c), P (y′|z′, c)}
×min{P (z|x, c), P (z′|x′, c)}.

Combined with the bounds in Lemma 4, Lemma 9 holds.

Theorem 3. Given a causal diagram G in Figure 9
and distribution compatible with G, and C does not
contain any descendant of X , then the benefit function
f(c) = βP (yx, y

′
x′ |c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) +

δP (yx′ , y′x|c) is bounded as follows:

W + σU ≤ f ≤W + σL if σ < 0,

W + σL ≤ f ≤W + σU if σ > 0,

where σ,W,L,U are given by,

σ = β − γ − θ + δ,

W = (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),

L = max


0,

P (yx|c)− P (yx′ |c),
P (y|c)− P (yx′ |c),
P (yx|c)− P (y|c)

 ,

U = min



P (yx|c),
P (y′x′ |c),

P (y, x|c) + P (y′, x′|c),
P (yx|c)− P (yx′ |c)+

+P (y, x′|c) + P (y′, x|c),
ΣzΣz′ 6=z min{P (y|z, c),

P (y′|z′, c)}
×min{P (z|x, c), P (z′|x′, c)}


.

Proof. By Lemmas 9 and 7,
substituting Equations 15 and 16 into Equation 8, Theorem 3
holds.

Note that, if we substituting Lemma 4 into Lemma 7, we
have the same results as in Li-Pearl’s Theorem. From the
proof of Lemma 9, we know that the lower bound in Lemma
9 is the same as in Lemma 4 and the upper bound in Lemma
9 is no worse than the upper bound in Lemma 4. Therefore,
the lower bound in Theorem 3 is the same as in Li-Pearl’s
Theorem, and the upper bound in Theorem 3 is guaranteed to
be no worse than the upper bound in Li-Pearl’s Theorem.



Calculation in the Examples

In order to clearly see the calculation steps, we list an equiva-
lent form of Li-Pearl’s Theorem as following (see the proof
in the previous section for the equivalence):

Theorem 10. Given a causal diagram G and distribution
compatible with G, let C be a set of variables that does not
contain any descendant of X in G, then the benefit function
f(c) = βP (yx, y

′
x′ |c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) +

δP (yx′ , y′x|c) is bounded as follows:

W + σU ≤ f(c) ≤W + σL if σ < 0,

W + σL ≤ f(c) ≤W + σU if σ > 0,

where σ,W,L,U are given by,

σ = β − γ − θ + δ,

W = (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),

L = max


0,

P (yx|c)− P (yx′ |c),
P (y|c)− P (yx′ |c),
P (yx|c)− P (y|c)

 ,

U = min


P (yx|c),
P (y′x′ |c),

P (y, x|c) + P (y′, x′|c),
P (yx|c)− P (yx′ |c)+

+P (y, x′|c) + P (y′, x|c)

 .

Company Selection First, we apply Li-Pearl’s Theorem
(Theorem 10) to the data in Tables 1 and 2. The benefit vector
is (100,−60, 0,−140).
We have,

σ = β − γ − θ + δ

= 100− (−60)− 0 + (−140)

= 20

W = (γ − δ)P (ra|c) + δP (ra′ |c) + θP (r′a′ |c)
= (−60− (−140))× 0.83729 + 0× 0.47405 +

+(−140)× 0.52595

= −6.64980

L = max


0,

P (ra|c)− P (ra′ |c),
P (r|c)− P (ra′ |c),
P (ra|c)− P (r|c)


= max


0,

0.83729− 0.52595,
0.70714− 0.52595,
0.83729− 0.70714


= 0.31134

U = min


P (ra|c),
P (r′a′ |c),

P (r, a|c) + P (r′, a′|c),
P (ra|c)− P (ra′ |c)+

+P (r, a′|c) + P (r′, a|c)


= min


0.83729,

1− 0.52595,
0.35286 + 0.20143,
0.83729− 0.52595+
+0.35428 + 0.09143


= 0.47405

Therefore,

W + σL ≤ f(c) ≤W + σU,

−6.64980 + 20× 0.31134 ≤ f(c)

≤ −6.64980 + 20× 0.47405,

−0.423 ≤ f(c) ≤ 2.832.

Then, we apply Theorem 1 to the data in Tables 1 and 2. σ
and W are the same as above.
And we have,

L =
∑
z

max


0,

P (ra|z, c)− P (ra′ |z, c),
P (r|z, c)− P (ra′ |z, c),
P (ra|z, c)− P (r|z, c)


×P (z|c)

= max


0,

0.44600− 0.05000,
0.49010− 0.05000,
0.44600− 0.49010

× 0.28857

+ max


0,

0.99600− 0.71900,
0.79518− 0.71900,
0.99600− 0.79518

× 0.71143

= 0.44010× 0.28857 + 0.27700× 0.71143

= 0.32407



U =
∑
z

min


P (ra|z, c),
P (r′a′ |z, c),

P (r, a|z, c) + P (r′, a′|z, c),
P (ra|z, c)− P (ra′ |z, c)+

+P (r, a′|z, c) + P (r′, a|z, c)


×P (z|c)

= min


0.44600,

1− 0.05000,
0.44555 + 0.20297,
0.44600− 0.05000+
+0.04455 + 0.30693

× 0.28857

+ min


0.99600,

1− 0.71900,
0.31526 + 0.20080,
0.99600− 0.71900+
+0.47992 + 0.00402

× 0.71143

= 0.44600× 0.28857 + 0.28100× 0.71143

= 0.32862

Therefore,
W + σL ≤ f(c) ≤W + σU,

−6.64980 + 20× 0.32407 ≤ f(c)

≤ −6.64980 + 20× 0.32862,

−0.168 ≤ f(c) ≤ −0.077.

Effective Patients of a Drug First, the set {C} satisfied
the back-door criterion for both (A,Z) and (A,R). By
Pearl’s adjustment formula, the experimental data needed
are:

P (ra|c) = P (r|a, c) = 0.66666,

P (ra′ |c) = P (r|a′, c) = 0.33265,

P (za|c) = P (z|a, c) = 0.68878,

P (z′a′ |c) = P (z′|a′, c) = 0.01232.

Then, we apply Li-Pearl’s Theorem (Theorem 10) to the data
in Table 3 and the above experimental data. The benefit vector
is (1,−1,−1,−1).
We have,

σ = β − γ − θ + δ

= 1− (−1)− (−1) + (−1)

= 2

W = (γ − δ)P (ra|c) + δP (ra′ |c) + θP (r′a′ |c)
= (−1 + 1)P (ra|c)− P (ra′ |c)− P (r′a′ |c)
= −1

L = max


0,

P (ra|c)− P (ra′ |c),
P (r|c)− P (ya′ |c),
P (ra|c)− P (r|c)


= max


0,

0.66666− 0.33265,
0.51535− 0.33265,
0.66666− 0.51535


= 0.33401

U = min


P (ra|c),
P (r′a′ |c),

P (r, a|c) + P (r′, a′|c),
P (ra|c)− P (ra′ |c)+

+P (r, a′|c) + P (r′, a|c)


= min


0.66666,

1− 0.33265,
0.36465 + 0.30233,
0.66666− 0.33265+
+0.15070 + 0.18232


= 0.66666

Therefore,

W + σL ≤ f(c) ≤W + σU,

−1 + 2× 0.33401 ≤ f(c)

≤ −1 + 2× 0.66666,

−0.3320 ≤ f(c) ≤ 0.3333.

Then, we apply Theorem 2 to the data in Table 3 and the
above experimental data. σ, W , and L are the same as above.
And we have,

U = min



P (ra|c),
P (r′a′ |c),

P (r, a|c) + P (r′, a′|c),
P (ra|c)− P (ra′ |c)+

+P (r, a′|c) + P (r′, a|c),∑
z

∑
z′ min{P (r|z, a, c),
P (r′|z′, a′, c)}

×min{P (za|c), P (z′a′ |c)}



= min



0.66666,
1− 0.33265,

0.36465 + 0.30233,
0.66666− 0.33265+
+0.15070 + 0.18232,

min{0.92593, 0.66944}×
min{0.68878, 0.98768}+
min{0.92593, 0.50000}×
min{0.68878, 0.01232}+
min{0.09290, 0.66944}×
min{0.31122, 0.98768}+
min{0.09290, 0.50000}×
min{0.31122, 0.01232}


= 0.49731

Therefore,

W + σL ≤ f(c) ≤W + σU,

−1 + 2× 0.33401 ≤ f(c)

≤ −1 + 2× 0.49731,

−0.3320 ≤ f(c) ≤ −0.0054.



Algorithm 1: Generate sample distributions for non-
descendant covariates
Input: n, number of sample distributions needed.
Output: n sample distributions (observational data and ex-
perimental data).

1: for i = 1 to n do
2: //rand(0, 1) is the function that random uniformly

generate a number from 0 to 1.
3: // t1, t2, t3, and t4 can be interpreted as the number of

individuals such that x ∧ z, x′ ∧ z, x ∧ z′, and x′ ∧ z′
respectively.

4: t1 = rand(0, 1)× 1000;
5: t2 = rand(0, 1)× (1000− t1);
6: t3 = rand(0, 1)× (1000− t1 − t2);
7: t4 = 1000− t1 − t2 − t3;
8: // o1, o2, o3, and o4 can be interpreted as the number

of individuals such that x∧z∧y, x′∧z∧y, x∧z′∧y,
and x′ ∧ z′ ∧ y respectively.

9: o1 = rand(0, 1)× t1;
10: o2 = rand(0, 1)× t2;
11: o3 = rand(0, 1)× t3;
12: o4 = rand(0, 1)× t4;
13: // Each ci corresponding to a sample distribution.
14: // The following are experimental data that satisfied

the general bounds provided by Tian and Pearl.
15: P (y|do(x), z, ci) = rand(0, 1)× t2

t1+t2
+ o1

t1+t2
;

16: P (y|do(x′), z, ci) = rand(0, 1)× t1
t1+t2

+ o2
t1+t2

;
17: P (y|do(x), z′, ci) = rand(0, 1)× t4

t3+t4
+ o3

t3+t4
;

18: P (y|do(x′), z′, ci) = rand(0, 1)× t3
t3+t4

+ o4
t3+t4

;
19: // The following are observational data.
20: P (x, y, z|ci) = o1/1000;
21: P (x, y, z′|ci) = o3/1000;
22: P (x, y′, z|ci) = (t1 − o1)/1000;
23: P (x, y′, z′|ci) = (t3 − o3)/1000;
24: P (x′, y, z|ci) = o2/1000;
25: P (x′, y, z′|ci) = o4/1000;
26: P (x′, y′, z|ci) = (t2 − o2)/1000;
27: P (x′, y′, z′|ci) = (t4 − o4)/1000;
28: end for

Distribution Generating Algorithms
Here, the sample distribution generating algorithms in simu-
lated studies are presented.

Non-descendant Covariates The Algorithm 1 is the sam-
ple distribution generating algorithm in the simulated study of
non-descendant covariates case. It generated both experimen-
tal and observational data compatible with Figure 5 (X,Y, Z
are binary) that satisfy the general relation provided by Tian
and Pearl (i.e., the general relation between experimental and
observational data).

Partial Mediators The observational data compatible with
Figure 1 (X,Y, Z are binary) in the simulated study of partial
mediators case was generated by Algorithm 2. The experi-
mental data needed was computed via adjustment formula
because the set {C} satisfied the back-door criterion for both

Algorithm 2: Generate sample distributions for partial media-
tors
Input: n, number of sample distributions needed.
Output: n sample distributions (observational data in condi-
tional probability tables).

1: for i = 1 to n do
2: //rand(0, 1) is the function that random uniformly

generate a number from 0 to 1.
3: // Each ci corresponding to a sample distribution.
4: P (x|ci) = rand(0, 1);
5: P (z|x, ci) = rand(0, 1);
6: P (z|x′, ci) = rand(0, 1);
7: P (y|x, z, ci) = rand(0, 1);
8: P (y|x′, z, ci) = rand(0, 1);
9: P (y|x, z′, ci) = rand(0, 1);

10: P (y|x′, z′, ci) = rand(0, 1);
11: end for

Algorithm 3: Generate sample distributions for pure media-
tors
Input: n, number of sample distributions needed.
Output: n sample distributions (observational data in condi-
tional probability tables).

1: for i = 1 to n do
2: //rand(0, 1) is the function that random uniformly

generate a number from 0 to 1.
3: // Each ci corresponding to a sample distribution.
4: P (x|ci) = rand(0, 1);
5: P (z|x, ci) = rand(0, 1);
6: P (z|x′, ci) = rand(0, 1);
7: P (y|z, ci) = rand(0, 1);
8: P (y|z′, ci) = rand(0, 1);
9: end for

(X,Z) and (X,Y ).

Pure Mediators The observational data compatible with
Figure 2 (X,Y, Z are binary) in the simulated study of pure
mediators case was generated by Algorithm 3. The experi-
mental data needed was computed via adjustment formula
because the set {C} satisfied the back-door criterion for
(X,Y ).
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