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1. Introduction 

In a recent publication, "A  Method of Managing Evidential Reasoning in a 
Hierarchical Hypothesis Space" [1], Gordon and Shortliffe (G-S) study the 
application of Dempster-Shafer  (D-S) theory to evidential reasoning in a 
tree-structured hierarchy of hypotheses. They conclude: "Because the D-S 
approach allows one to attribute belief to subsets, as well as to individual 
elements of the hypothesis set, we believe that it is similar to the evidence- 
gathering process observed when human beings reason at various levels of 
abstraction," and they further state, "we are unaware of another model that 
suggests how evidence concerning hierarchically-related hypotheses might be 
combined coherently and consistently to allow inexact reasoning at whatever 
level of abstraction is appropriate for the evidence that has been gathered."  
The purpose of this note is to supplement the G-S analysis with a description of 
how evidential reasoning can be conducted in the same hypothesis space using 
a Bayesian formalism. The should give the reader an opportunity to compare 
the two approaches and judge their relative merits on both conceptual and 
computational grounds. 

2. The Domain 

We deal with a finite set H = {h~, h 2 . . . .  } of hypotheses known to be mutually 
exclusive and exhaustive. Certain subsets of H have semantic interest, and 
these form a strict hierarchy, i.e., each subset has a unique parent set that 

Artificial Intelligence 28 (1986) 9-15 
0(304-3702/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland) 

TECHNICAL REPORT 
R-51 

February 1986



10 J. P E A R L  

contains it. The subsets can be viewed as nodes in a tree, with H as the root 
and the individual hypotheses as the leaves, and each intermediate node stands 
for the disjunction of its immediate successors. Initially, each singleton hypo- 
thesis h i is quantified with a measure of belief Bel(hi), reflecting the probability 
that h i is true given all previous evidence. The belief in each intermediate- 
level hypothesis is the sum of the beliefs given to its constituents (by mutual 
exclusivity). At this point, a new piece of evidence e arrives, which directly 
bears upon one of the subsets, say S, but says nothing about S 's  constituents. 
The degree to which the evidence confirms or disconfirms S is provided either 
by direct assessment of a human expert  or, if e is referenced explicitly in some 
knowledge base, by the activation of a preassessed rule of the form e :::> S, or 
e=), ~ S. It is required to calculate the impact of e on the belief of every 
hypothesis in the hierarchy. 

3. Evidence Aggregation 

The Bayesian way of calculating the effect of evidence e consists of the 
following 3-step process: 

Step 1. Estimation. An expert determines the hypothesis set S upon which 
the evidence bears directly, and estimates the degree A s to which the evidence 
confirms or disconfirms S. A s is the likelihood ratio 

P(e] S) (1) 
As = P(e ] - -  S)" 

Confirmation is expressed by A s > 1; disconfirmation by A s < 1. 
Step 2. Weight distribution. Each singleton hypothesis hi~ S obtains 

the weight W i = A s while every hypothesis outside S receives a unity weight, 

W~=l. 
Step 3. Belief updating. The belief in each singleton hypothesis h i is updated 

from the initial value of Bei(h i) to: 

Bel'(hl) = P(hi ]e) = a s ~  Be l (h i ) ,  (2) 

where a s is a normalizing factor: 
- I  

The belief of each intermediate-level hypothesis is computed from the sum of 
the beliefs of its singleton elements.  

This 3-phase process may be conducted recursively, where the updated 
beliefs calculated for evidence e k serve as prior beliefs for the next evidence 
ek+ r The normalization phase can also be postponed until several 
pieces of evidence e x, e 2 . . . . .  e~ exert their impacts on their corresponding 



E V I D E N T I A L  R E A S O N I N G  IN A H I E R A R C H Y  1 1 

hypotheses S t, S 2 . . . . .  S.. The weights are combined multiplicatively via 

W / ( e l ,  . . en ) 1 2 . .  n . ,  = W i W  i • W i ,  

where 

(4) 

Wki=  IAsk,  if h , ~ S  k, 
t l ,  if h i E - s k . (5) 

4. Propagation-based Updating 

An alternative way of updating beliefs, which avoids the normalization step, 
would be to start with the impacted node S and propagate  the desired revisions 
up and down the tree by passing messages between neighboring nodes, as 
depicted in Fig. 1. The message-passing process is defined by the following 
rules: 

Step l. The impacted hypothesis S, with current belief Bel(S), updates its 
belief to 

BeI'(S) = asA s Bel(S),  (6) 

where 

a s = [A s Be l (S)+  1 - Be l (S) ] - ' ,  (7) 

and transmits the following messages to its neighbors: 
(a) a single message, m -  = as, A s, to each of its successors, and 
(b) a pair of messages to its father: m~ = Bel'(S), m 2 = a s. 
Step 2. Any node Y which receives a message m -  from its father, passes m -  

to all its successors and modifies its belief by a factor m- ,  i.e., 

Bel (X) 

L Bel (S) 

(a) 

FIG. 1. 

• 

(b) {c) 
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Bel'(Y) = m-Be l (Y) .  (8) 

Step 3. An)' node X which receives the message pair (m;,  m.,) from one of 
its successors (say X,), passes m +, to all its other  successors, updates its beliefs 
to 

Bel '(X) = m ~ BeI(X) + m ~ - ,,,~ BeI(X,) (9) 

and passes to its father the message pair: 

(m~)' = Be[ ' (X).  (m~)' = m 2 . 

The quantity Bel(X 0 in (9) stands for the previous m+., message that X received 
from X r 

5. Probabilistic Justification 

The operations described in the preceding sections follow from attributing a 
specific probabilistic interpretation to the statement: "evidence e bears directly 
on S but says nothing about the individual elements of S." We take this 
statement to mean that the mechanism which gave rise to the observation e is a 
unique property of the subset S, common to all its elements; therefore, 
contributes no information to make us prefer one element over another. This 
understanding is captured by the notion of conditional independence: 

P(e [ S, hi)= P(e l S) ,  h i E S ,  (10) 

stating that once we know that "S  is t rue,"  the identity of h i does not make e 
more or less likely. Simultaneously, we also assume 

P(e[ - -  S, hi )  = P(e] - -  S) ,  h i E - -  S, (11) 

stating that the mechanism causing e in the absence of S could just as easily be 
present in each of the hypotheses outside S. 

Equations (10) and (11) immediately give: 

[ P ( e I S ) ,  h i E S, (12) 
P ( e l h l ) = t P ( e I - - S ) ,  h i ~ - S ,  

and, together with Bayes' rule, lead to 

P(hi I e) = ~ a~sP(hi)  ' hi ~ S,  (13) 
[asP(hi),  h i ~ ~ S,  
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where A s is given by (1) and a s is a normalizing factor assuring that P(h ,]e )  
sum to 1: 

a s = [AsP(S)+ 1 - P ( S ) I - '  • (14) 

Note that (13) holds not only when h i is a singleton hypothesis but also for any 
subset of H, including S itself. 

The correctness of equations (1)-(5) follows by identifying Bel(hi) with P(h,), 
and Bel'(hi) with P(h i l e ) .  Note that an identical weight-distribution process, 
followed by normalization, would still be valid in a general graph hierarchy, not 
just trees. 

The legitimacy of the propagation-based updating follows from the fact that 
the normalizing constant a s can be computed directly at the impacted node S, 
giving (7) (or (14)). Moreover,  each descendant of an impacted node S receives 
the same belief-modifying weight m - =  asas; these weights combine multi- 
plicatively via (4), thus justifying the operation in (8). Similarly, since each node 
which is not a descendant or an ancestor of S should modify its belief by a 
constant factor a s, the message m 2 = as is passed down to the siblings of S, to 
the siblings of its father and so on, as in Step 3. Finally, the belief revision 
appropriate for the ancestors of S is determined by the condition that each 
node should acquire a belief equal to the sum of the beliefs absorbed by its 
immediate successors. This gives rise to (9) via 

Bel'(Siblings of X t )=  m ~ Bel(Siblings of X,) 

= m~[Bel(X) - Bel(S~)]. 

Although the belief of every singleton hypothesis can be determined without 
updating the beliefs of S's ancestors, the latter is a necessary calculation 
because subsequent evidence may directly impact any of these ancestors, and 
the magnitudes of the emerging messages depend upon the total belief that the 
impacted hypothesis merits just before the evidence arrives. 

6. Conclusions 

The updating scheme described exhibits the following characteristics: 
(1) Natural management of beliefs in a hierarchy of hypotheses. Both evidence 

and beliefs are combined coherently and consistently at whatever level of 
abstraction is appropriate for the evidence that has been gathered. To specify 
the effect of e on the entire knowledge base, the expert need only quantify the 
relation between e and S (using As), but, otherwise, is not required to apply 
any conscious effort whatsoever regarding other  propositions in the system; 
that task is fully delegated to the background process of either normalization or 
propagation. 
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This feature, together with the ability to postpone the weight-distribution 
step until appropriate conditions develop, perfectly conforms to the popular 
metaphor of storing a quantity of uncommitted mass at S, and distributing it to 
its constituents only upon receiving further refining evidence. In the Bayesian 
formalism we retain the options of either holding that mass at S (in the form of 
undistributed As), or distributing it on a provisional basis to S's constituents, to 
be retracted and rerouted later if additional evidence so warrants. 

(2) Clear distinction between (partial) confirmation and disconfirmation. An 
evidence in favor of h could not possibly be construed as partially supporting 
the negation of h. (See G-S for apprehensions regarding this issue.) Confirma- 
tion is encoded by A > 1, and disconfirmation by A < 1. Working with the 
logarithms of h. would make the distinction even more pronounced by asso- 
ciating confirmation with a positive weight and disconfirmation with a negative 
weight. The logarithmic representation also provides a closer match to the 
mass-distribution methaphor, since masses combine additively, not multi- 
plicatively. 

(3) Clearly stated assumptions. The assumptions behind the updating pro- 
cedure are stated in familiar meaningful terminologies. The expert can readily 
judge whether the conditions of equations (10) and (11) are satisfied in any 
given situation by answering basic, qualitative queries, of the type: "'Does X 
influence Y given that we know Z?"  

(4) Meaningful parameters. The expert is required to assess only one type of 
numerical parameter, the likelihood ratio A s. The epistemological meaning of 
this parameter is clearly understood (e.g. how much more likely would it be for 
e to occur under S as opposed to not-S) and, at least in principle, it can be 
derived from actual experiential data. 

(5) Transparency of inferences. One of the main advantages of updating 
beliefs by message propagation, as opposed to global normalization, is that the 
former is far more transparent in the sense that the intermediate steps can be 
given intuitively meaningful interpretation. This is so because every com- 
putational step in a propagation process only obtains inputs from neighboring, 
semantically related hypotheses, and because the activation of these steps 
proceeds along semantically familiar pathways. As a result, it is possible to 
generate qualitative justifications mechanically by tracing the sequence of 
operations along the activated pathways and giving them causal or diagnostic 
interpretations using the appropriate linguistic expressions. This transparency 
can also be maintained in other hierarchies (e.g., causal models), where the 
assumption of mutual exclusiveness no longer holds [2, 3]. 

(6) Ties to decision procedures. The probabilistic interpretation underlying the 
updated beliefs provides a simple framework of converting these beliefs into 
meaningful decisions reflecting the following cost-benefit considerations: cost- 
benefit tradeotts, uncertainties regarding the consequences of actions, and the 
utility of acquiring additional evidence. 
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