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Abstract: The study of causal inference has seen recent momentum in machine learning and artificial
intelligence (AI), particularly in the domains of transfer learning, reinforcement learning, automated di-
agnostics, and explainability (among others). Yet, despite its increasing application to address many of
the boundaries in modern AI, causal topics remain absent in most AI curricula. This work seeks to bridge
this gap by providing classroom-ready introductions that integrate into traditional topics in AI, suggests
intuitive graphical tools for application to both new and traditional lessons in probabilistic and causal
reasoning, and presents avenues for instructors to impress the merit of climbing the “causal hierarchy”
to address problems at the levels of associational, interventional, and counterfactual inference. Lastly, this
study shares anecdotal instructor experiences, successes, and challenges integrating these lessons at multiple
levels of education.
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1 Introduction
The study of causality seeks to model and reason about systems using a formal language of cause and
effect, and has undertaken a number of important endeavors across a diverse set of disciplines, including:
causal diagrams to inform empirical research [1], structural equation models for econometric analysis [2],
systems-thinking in the philosophy of science [3–5], modeling elements of human cognition and learning
[6–8], and many others [9].

Yet, for its long history in other disciplines, causal inference has only recently begun to penetrate tradi-
tional topics in machine learning and the design of artificial agents. Although perhaps overshadowed by the
impressive advances from deep learning, the AI community is turning to causality to address many of its
boundaries, such as to avoid overfitting and to transfer learning [10, 11], reasoning beyond observed exam-
ples as through counterfactual inference [12], providing meta-cognitive avenues for reinforcement learners
in confounded decision-making scenarios [13, 14], improving medical diagnostics beyond mere association
of symptoms [15, 16], reducing bias in machine learning models through formalizations of fairness [17, 18],
among others [19, 20].

Despite these clarion calls for causality from many prominent researchers and practitioners [21–23], it
remains a missing topic in the vast majority of traditional AI curricula. This lag can be explained by a
number of factors, including the recency of causal developments in the domain, the lack of a bridge between
the topics of causality that statisticians and empirical scientists care about and those that computer
scientists do, and the lack of templated lesson plans for integration into such curricula; even causality
textbooks oriented at undergraduate introduction lack direct examples relating to AI [24]. Although efforts
do exist in the literature towards bridging causality in AI [25, 26], this work serves as a motivator, primer,
and introductory handbook for educators to bring causality into the AI classroom, and focuses especially
on the tools of graphical causality to intuitively introduce its topics to novices. Specifically, it provides
motivated, detailed, and numerical examples of causal topics as they apply to AI, discusses common
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pitfalls in the course of student learning experiences, and a number of other tools ready to be deployed by
instructors teaching topics in AI and ML at the high-school and college levels.

As such, the main contributions of the present work are as follows:
1. Provides brief, classroom-ready introductions to the three tiers of data and queries that compose the

causal hierarchy: associations, interventions, and counterfactuals.
2. Suggests intuitive graphical depictions of core lessons in probabilistic and causal reasoning that enable

multi-modal instruction.
3. Demonstrates and motivate examples wherein causal concepts can be easily integrated into typical

lessons in AI, alongside novel, interactive learning tools to help concrete select topics.
4. Shares anecdotal successes, challenges, and instructor experiences from causally-motivated lessons de-

ployed at both undergraduate and high-school levels.

Forward

Before embarking on the journey outlined above, it is important to contextualize this work with respect to
its intended audience, target domains of application, and source experiences from which anecdotal student
experiences are shared.

Intended Audience. This work represents an invitation to instructors to concert topics in AI and
causality, and is thus appropriate for the following readers:
1. Instructors with a background in causality who are looking to incorporate more AI / ML examples

and assignments into their courses–either by extending existing lessons in AI / ML with causal topics,
or by incorporating AI / ML examples into courses primarily on causal inference.

2. Instructors teaching AI / ML courses who are looking for entry points / motivations to introduce
causality but who may be unfamiliar with causal formalisms or procedures.

For readers of category 1, we include brief refreshers on the formal lessons of causality alongside intuitive
examples that are classroom-ready supplements, both for the foundational concepts and those marketed
specifically for AI / ML applications. For readers of category 2, please note that this work is not intended
as an in-depth primer for all causal topics (the textbooks referenced in the introduction are better suited
for this), but instead, contains examples and problems that we hope compel the integration of causality in
many avenues of traditional AI / ML.

Source Experiences and Target Domains. Given these specifications, we include several example
syllabi and suggested entry points for causal topics in traditional AI curricula within Appendix A. Of these,
two are from the authors’ deployments at (a) the high school level in a course entirely on causality, and (b)
at the undergraduate level in a course on causal reinforcement-learning (mingling the two topics at depth).
In the shared experiences in teaching these courses that are mentioned throughout this work, note that the
authors enjoyed classes high in student engagement and enjoyment, but for which only anecdotal evidence
is available, making no objective claims that must instead be studied empirically. With wider adoption
of causal topics in AI curricula, we invite future study to examine its potential benefits at a more robust
population level.

2 Background
Etiology is core to scientific discovery and philosophical concerns since humans first started asking why
things are the way they are. Humans possess a natural ability to learn cause and effect that allows us
to understand, deduce, and reason about the data we take in through our senses [27]. Modern tools for
inferring causes allow us to systematically interpret these causal connections at a more fundamental level
with increased confidence, less data, and fewer assumptions. With this deeper causal knowledge, causal
inference serves to make accurate predictions, estimate effects of interventions, and decipher imagined
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scenarios. Similar to the importance in statistical models, the benefits of causal inference depend on the
accuracy and completeness of the assumed causal model.

The distinction between these tasks, their underlying types of data, and the inferences possible given
assumptions about the system are delineated in the Pearlian Causal Hierarchy (PCH) [28]. The PCH is
organized into three tiers / layers of information, each building upon the expressiveness of the last:
L1 Associations: Observing evidence and assessing changes in belief about some variable, e.g., determining

the probability of having some disease given presentation of certain symptoms.
L2 Interventions: Assessing the probability of some causal effect under a manipulation, e.g., determining

the efficacy of a drug in treating some condition.
L3 Counterfactuals: Determining the probability of some outcome under hypothetical manipulation that

is contrary to what happened in reality, e.g., determining whether a headache would have persisted
had one not taken aspirin.

The ability to traverse the different layers of the PCH often demands causal assumptions to be stated in a
mathematical language that clearly disambiguates between them. As will be demonstrated in the following
sections, certain interventional (L2) and counterfactual (L3) queries of interest cannot be answered using
data and traditional observational statistics alone, but can be enabled by an explanation of the system
under scrutiny as through a Structural Causal Model (SCM).

Definition 2.1. (Structural Causal Model) [9, pp. 203-207] A Structural Causal Model is a 4-tuple,
M = 〈U, V, F, P (u)〉 where:
1. U is a set of background variables (also called exogenous), whose values are determined by factors

outside the model.
2. V is a set {V1, V2, ..., Vn} of endogenous variables whose values are each determined by other variables

in U ∪ V .
3. F is a set of functions {f1, f2, ..., fn} such that each fi is a mapping from (the respective domains of)

Ui ∪ PAi to Vi where Ui ⊆ U and PAi ⊆ V \ Vi and the entire set F forms a mapping from U to V .
In other words, each fi in vi = fi(pai, ui), i = 1, ..., n assigns a value to Vi that depends on (the values
of) a select set of variables.

4. P (u) is a probability density defined on the domain of U .

The inputs to the functions in F within an SCM induce a causal diagram in the form of a directed graph.
We will only consider SCMs that induce a directed acyclic graph (DAG) in this introductory work as in
Figure 2. A DAG alone is therefore a partial causal model in itself. This nonparametric causal model can
come from expert knowledge and is often the only portion of the SCM to which we have access.

Definition 2.2. (Causal Diagram) Given any SCM M , its associated causal diagram G is a directed,
acyclic graph (DAG) that encodes:
1. The set of endogenous variables V , represented as solid nodes (vertices).
2. The set of exogenous variables U , represented as hollow nodes (sometimes omitted for brevity).
3. The functional relationships, F , between variables, represented by directed edges that connect two vari-

ables Vc → Ve for Vc, Ve ∈ V if Vc appears as a parameter in fVe
(Vc, ...) (i.e. if Vc has a causal influence

on Ve).
4. Spurious correlations between variables, represented by a bidirected, dashed edge connects two variables

Va ← − → Vb if their corresponding exogenous parents Ua, Ub are dependent, or if fVa
, fVb

share an
exogenous variable Ui as a parameter to their functions.

Intuitively, causal diagrams characterize cause-effect relationships between variables in a system of func-
tional relationships such that effect ← f(cause1, cause2, ...). Equivalently, a DAG provides extra-data in-
formation to answer many causal queries that rely on the structure of these relationships, even with (parts
of) the data generating process hidden. Consequently, DAGs allow for the computation of causal effects,
real or counterfactual, despite an absence of experimental data.
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2.1 Motivating Causal Inference

Causal inference is thus the umbrella label for tools used to compute queries (generally, those at L2 and
L3) from an existing causal model. There are many different types of causal queries at these higher tiers
of inference, and before formalizing any of them, students will appreciate some intuition surrounding why
they are interesting from a data-scientific perspective.

Example 2.1. Pharmicological Observations to Policies. Consider some observational data collected
on medical records relating whether or not patients took some over-the-counter drug X (e.g., aspirin),
presented with some condition Y (e.g., heart disease), and accounting for some pre-treatment covariates Z
(e.g., age) and some post-treatment covariates M (e.g., blood-pressure). There are many interesting causal
queries that could be posed to such a system, e.g.:
1. How much of the causal effect of aspirin on heart-disease is explained by the aspirin itself vs. its indirect

effect on blood pressure?
2. In total, to what degree does taking aspirin help or hurt incidence of heart disease?
3. On average across age groups, is aspirin harmful or helpful? What about for patients of specific ages?

Note how answers to each of the questions in Example 2.1 have implications for medical policy, e.g., it
may be helpful within certain age ranges but harmful in others, it may only be helpful due to its influence
on blood-pressure (in which case, other prescriptions may more directly help to prevent heart disease),
etc. However, from observational data alone (i.e., outside of the laboratory randomized clinical trial),
associations between these variables can complicate the answers to causal questions. SCMs provide formal
characterizations and procedures for answering each of these causal questions by applying a structured
explanation of the system of causes and effects that serves as a lens through which to view the data’s
associations. Consider an example characterization of this system as diagrammed in Figure 1.

Z

X Y

M

Figure 1. Possible causal graph explaining the relationship between variables in Example 2.1.

With the extra explanatory power of an SCM layered atop the data it fits, we can intuitively define
several different types of causal questions based on its structure, some of the recipes for which will be
formalized later:

Definition 2.3. (Causal Effects [Intuition])[24] Given any SCM M and its associated causal diagram
G, the measurement of causal effects can be informally defined as the controlled influence of some variable
X on some outcome Y through so-called causal pathways that are descendant of the intervention X in G.
More specific ways of dissecting these causal pathways (referencing Figure 2.1) are as follows:
– The direct effect (DE) of X on Y is its unmediated influence on the outcome, as through the path

X → Y indicating the direct effect of aspirin on heart-disease.
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– The indirect effect (IE) of X on Y is the sum of its mediated influences on the outcome, as through the
path X → M → Y indicating the effect of aspirin on heart-disease as mediated through its influence
on blood-pressure.1

– The total effect (TE) of X on Y is the sum of its direct and indirect effects.
– The average causal effect (ACE) of X on Y is its total effect averaged across subpopulations (e.g., the

total effect of aspirin on heart-disease averaged across controlled age ranges) [31].

The above represents only a sample of the many causal effects of interest for practitioners wishing to
translate their data into actionable policy (e.g., see [32–34]). However brief, the above serves as a simple
example motivating causal inference and intuiting the SCMs that can be used to address them. That said,
introductory lessons in causality are dominated by examples like the above; a major deliverable of this
work is to shift the same lessons motivated by these in the empirical sciences to settings that AI scientists
will find applicable.

2.2 Motivating Causal Discovery

Given the capabilities of SCMs to answer interesting causal queries like those in Example 2.1, students
will likely be curious to learn about the sources of these models. Thus, as an oft close-companion to causal
inference, causal discovery techniques focus on the construction or learning of SCMs from data. Causal
discovery supports the assembly of DAGs, or parts of DAGs, largely by examining independence relations
among variables (potentially conditioned on other variables), to offer a mechanism to uncover their causal
relationships. In this sense, data alone is sometimes enough for causal inference, but when it is not, a partial
DAG (also known as a pattern or equivalence class) can inform practitioners of what else is required to
disambiguate. Children instinctively comprehend this and employ playful manipulation to better grasp
their environment when information from their senses is insufficient [7]; adults and scientists also perform
experiments to confirm their causal hypotheses. Causal discovery with DAGs may provide a systematic
way for machines to better understand causal situations beyond the traditional machine learning task of
prediction [23].

X

Z

Y

(a) Chain

Z

X Y

(b) Fork

Z

X Y

(c) Collider

Figure 2. Causal “triplets” demonstrating the rules of conditional independence from the d-separation criterion.

All DAGs, regardless of complexity, can be constructed from paths of the three basic structures depicted
in Figure 2. The chain in Figure 2a consists of X causing Z, followed by Z causing Y . The fork in Figure 2b
consists of Z having a causal influence on both X and Y . In this case, even though X has no causal effect on
Y , knowing the value of X does help predict the value of Y , quintessential correlation without causation.
In both the chain and the fork, X is independent of Y if and only if conditioning on Z (X ⊥⊥ Y |Z):
P (Y = y|Z = z,X = x) = P (Y = y|Z = z) and P (Y = y|X = x) 6= P (Y = y)2.

1 The distinction between direct and indirect effects (among others) has fallen under the umbrella of mediation analysis,
a prevalent field of study in the data and empirical sciences [29, 30].
2 See Section 2.3 for rare cases where independencies are hidden in the graph and assumptions made to avoid this.
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Colliders, as illustrated in Figure 2c, behave the opposite to chains and forks in regards to independence.
Specifically, X ⊥⊥ Y without conditioning on Z: P (Y = y|X = x) = P (Y = y). However, X and Y notably
become dependent when conditioning on Z: P (Y = y|Z = z,X = x) 6= P (Y = y|Z = z). By holding the
common effect Z to a particular value, any change to X would be compensated by a change to Y .

Anecdotally, students have appreciated causal stories to explain these rules of dependence in a causal
graph, which may also serve as mnemonics. For each of the following examples, a fruitful exercise can be to
have students provide a graphical explanation for the story, which then motivates the rules of independence
expected of any graphs with the same patterns.

Example 2.2. Mediation: Smoking, Tar, and Lung Cancer. In medical records, smoking cigarettes,
X, has been shown to be positively correlated with incidence of lung cancer, Y . It is known that smoking
causes deposits of tar, Z, in the lungs, which leads to cancer Y . However, knowing whether or not a patient
has lung tar Z makes its source (e.g., whether or not they smoked, X) independent from their propensity
for lung cancer, Y . Z is thus known as a mediator between X and Y , making the causal structure a chain,
X → Z → Y .

Example 2.3. Confounding: Heat, Crime, and Ice Cream. Data reveals that sales of ice cream,
X, are positively correlated with crime rates, Y , yielding the amusing possibilities that criminals enjoy a
post-crime ice cream or that ice cream leads people to commit crime. However, the two become independent
after controlling for a confounder, temperature, Z, that is responsible for both (and could not be affected
by either). Z is known as a confounder that “explains away” the non-causal relationship between X,Y ,
making the causal structure a fork, X ← Z → Y .

Example 2.4. Colliders: Coin Flips and Coffee. You and your roommates have a game that decides
when you will break for coffee: if two of you flip fair coins X,Y , and they both come up heads or both tails,
then you will ring a bell Z to summon your dorm to get coffee, C. Alone, the coin flip outcomes X,Y
are independent from one another; however, if you hear a bell ring, and know that X = heads, you know
also that Y = heads. The same is true if, instead of hearing the bell, you witness your dorm leave to get
coffee. This relationship is thus a collider structure with X → Z ← Y , and demonstrates the effects of
conditioning upon the descendant of a collider, Z → C.

The graphical nature of these types of exercises can engender high engagement among students compared
to typical probability syntax alone. Causal intuition and probabilistic understanding in this puzzle-like
context is thus concerted and enhanced. Building upon these intuitions, we can establish independence or
isolate effects in more complex graphs by blocking paths from one node to another through a structural
criteria called d-separation (directional separation) [35]; d-separation is already taught alongside traditional
AI coverage of Bayesian Networks, and succinctly stated as follows.

Definition 2.4. (d-separation) [24, pp. 46-47] A path p between X,Y is blocked by a set of nodes Z if
and only if
1. p contains a chain of nodes A → B → C or a fork A ← B → C such that the middle node B is in Z

(i.e., B is conditioned on), or
2. p contains a collider A→ B ← C such that the collision node B is not in Z, and no descendant of B

is in Z.

If all paths between X,Y are blocked given Z, they are said to be “d-separated” and thus X ⊥⊥ Y | Z.

With causal models being core to causal inference, d-separation provides us with an important testing
mechanism. Because a DAG demonstrates which variables are independent from each other given a subset
of the remaining variables to condition on, probabilities can be estimated from data to confirm these condi-
tional independencies. The fitness of a causal model can therefore be validated (to a degree of confidence),
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and debugging simplified from global fitness tests to d-separation’s ability to pinpoint error localities. Un-
fortunately, it is not possible to test every causal relationship between nodes in a DAG, meaning that
causal discovery does not always yield the complete DAG, nor are these validity measures a guarantee that
a recovered graph represents the true reality [21].

Still, certain structural hints provide hope of recovering causal localities. For instance, a v-structure is
defined as a pair of nonadjacent nodes, such as X and Y in Figure 2c, with a common effect (Z in the same
figure). These v-structures are often embedded throughout larger causal graphs. An example of a testable
implication is to check that Z is not included in the set of nodes that render X ⊥⊥ Y .

A simple approach to causal discovery is to find every possible DAG compatible with a set of variables
and their independence relationships in a dataset. In general, better approaches require further assumptions,
but this is an active area of research [36–38]. The set of compatible DAGs is called an equivalence class,
which, for some causal queries, can be sufficient for identifying causal effects even with partial structures.
If further experimentation is necessary, an equivalence class can help target those variables on which
experiments need be performed to discover the true structure [39, 40].

The Inductive Causation (IC) algorithm3 [9, pp. 204] is a simple approach to causal discovery:
1. For each pair of variables a and b in V , search for a set Sab such that (a ⊥⊥ b|Sab) holds in P̂ (stable

distribution of V ). Construct an undirected graph G such that vertices a and b are connected with an
edge if and only if no set Sab can be found.

2. For each pair of nonadjacent variables a and b with a common neighbor c, check if c ∈ Sab. If it is not,
then add arrowheads a→ c← b.

3. In the partially directed graph that results, orient as many of the undirected edges as possible subject
to two conditions: (i) Any alternative orientation would yield a new v-structure; or (ii) Any alternative
orientation would yield a directed cycle.

The first step constructs a complete skeleton. While not all arrowheads in the second and third steps can
always be discovered from data alone, systems can also prompt humans for clarity on parts of nonpara-
metric causal models to resolve ambiguity. Robotic algorithms can even perform necessary experiments to
disambiguate certain localities of the causal structure.

The whole process of constructing a causal model can be challenging for students not familiar with
modeling. The following example demonstrates a simple workflow students can engage in:

Example 2.5. Workflow: Causal Model Construction. A workflow might consist of using the above
IC algorithm to generate a partial DAG. A probability distribution drawn from pharmicological data from
Example 2.1 is presented in Table 14.

The IC algorithm will generate the graph in Figure 4, leaving three edges undirected: X − Z, X − Y ,
and X −M . In order to determine the directions of those edges, three techniques can be employed:
– New or existing experiment. A Randomized Controlled Trial (RCT) was previously performed and the

proportion of individuals with condition Y in the treatment (X) group differed from the proportion in
the control group. This provides evidence for directed edge X → Y . If this RCT did not exist, a new
RCT could be conducted.

– Expert knowledge. Consulting a researcher provides evidence that covariate Z (age) affects decisions to
take this drug. Therefore, edge Z → X is now directed.

– Re-evaluation. The only edge remaining undirected is X −M . The direction X ← M would create a
V-structure (nonadjacent parents Z and M to X). V-structures are detected in the IC algorithm’s step
2. Since IC didn’t detect this, the directed edge must be X →M .

Finally the constructed DAG ends up equivalent to the DAG in Figure 1.

3 More advanced algorithms increase efficiency and accommodate latent structures [9, pp. 50-54].
4 Tetrad (https://www.ccd.pitt.edu/tools/) was used to generate data and aid in the DAG reassembly process. The
complete dataset can be downloaded at https://learn.ci/data/causal_education.csv.

https://www.ccd.pitt.edu/tools/
https://learn.ci/data/causal_education.csv
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Figure 3. Causal discovery exercise editor.

Z

X Y

M

Figure 4. Equivalence class of graphs constructed from probability distribution in Table 1.

This work introduces a companion causal inference learning system5 to help students practice and absorb
concepts in causal discovery. Depicted in Figure 3, a teacher simply writes the structural functions and data
generating processes of the exogenous variables, and students are presented with the resulting probability
distribution and nodes of the equivalence class to connect. Causal discovery exercises such as these provide
engaging exploration into the etiology of data generation missing in many statistically-focused curricula.

2.3 Assumptions

The above background on chains, forks, colliders, and d-separation affords us basic building blocks for
powerful causal inference tools. As important caveats to be discussed with students, the power of a causal
model depends on having a correct representation of the system. There are some criteria for assessing
whether a model is a fair representation of the underlying data or data generating process. However,
some assumptions are sometimes necessary to be asserted. The first that we have assumed is infinite data,

5 CI learning tools in development at: https://learn.ci
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Z X M Y P (.)

0 0 0 0 0.0392

0 0 0 1 0.0098

0 0 1 0 0.1372

0 0 1 1 0.0588

0 1 0 0 0.0399

0 1 0 1 0.0021

0 1 1 0 0.05355

0 1 1 1 0.00945

1 0 0 0 0.0286

1 0 0 1 0.0234

1 0 1 0 0.0832

1 0 1 1 0.1248

1 1 0 0 0.1014

1 1 0 1 0.0546

1 1 1 0 0.117

1 1 1 1 0.117

Z X M Y P (Y |Z,X,M)

0 0 0 1 0.2

0 0 1 1 0.3

0 1 0 1 0.05

0 1 1 1 0.15

1 0 0 1 0.45

1 0 1 1 0.6

1 1 0 1 0.35

1 1 1 1 0.5

X M P (M |X)

0 1 0.8

1 1 0.6

Z X P (X|Z)
0 1 0.3

1 1 0.6

Z P (Z)

1 0.65

Table 1. Probability distribution of pharmocological data of Example 2.1. Conditional probability tables (CPTs) from the
model in Figure 4 are given, but truncated only to necessary probabilities.

leaving the statistical analysis of quantifying uncertainty with finite samples to be dealt with separately.
The second is a property known as stability / faithfulness: we assume independencies remain invariant when
P (U) changes. This means that the conditional independencies in the underlying probability distribution
are reflected in the DAG. As a basic violation of this, imagine a child who only eats vegetables (Y ) if
their parents convince them (X). The child’s parents are always trying to convince them, P (X = 1) = 1.
Therefore, we might declare X independent of Y , since P (Y = y|X = x) = P (Y = y). However, that
equality only holds under parameterizations of P (U) in which P (X = 1) = 1. If the parents sometimes
relent, then P (Y = y|X = x) 6= P (Y = y) and X and Y would be dependent. Stated formally:

Definition 2.5. (Stability / Faithfulness) [9, pp. 48] Let I(P ) denote the set of all conditional in-
dependence relationships embodied in P . A causal model M = 〈D,ΘD〉 generates a stable distribution if
and only if P (〈D,ΘD〉) contains no extraneous independences - that is, if and only if I(P (〈D,ΘD〉)) ⊆
I(P (〈D,Θ′D〉)) for any set of parameters Θ′D.

The remainder of this work focuses on the potential of causal inference to both elucidate traditional topics
in AI and ML and to inspire new avenues for students to explore. Using the preliminaries outlined in this
section, students will be equipped to understand the challenges and opportunities at each tier of the PCH.

Instructor Reflections

Intuiting the motivations for causal inference is a challenge to instill in students who have dealt little with
real data and the many complex questions that data may or may not be equipped to answer alone. Leading
any introductory causal lesson with the intuitions presented in Example 2.1 and Def. 2.3 can spark the
important questions that motivated the PCH; questions as simple as “Does obesity shorten life, or is it the
soda?” [33] are enough to elicit lively classroom discussion just to introduce the distinctions of types of
causal effects and how these are difficult to disentangle from mere associations without the aid of a model.
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The above caveats in place, anecdotally, students treat exercises involving the design and interpretation
of compounded conditional independence graphs as puzzles rather than monotonous calculations that may
lack translation to purpose. This has elicited classroom enjoyment, which feeds into participatory graph
modifications in the spirit of causal discovery. The discussions and debates that ensue develops intuition
through active engagement, which can be especially important at the high-school level for engendering
intuition before formalism.

For assignments, instructors may find it useful to generate mock datasets (like that in Example 2.5) to
help students to understand crucial lessons in causal discovery, d-separation, and challenges like observa-
tional equivalence and unobserved confounding. Various software packages exist for this endeavor, though
Tetrad and Causal Fusion have been popular choices that students can pick up without large amounts of
tutorial.6 It is likewise important to instill that causal discovery is a difficult exercise that is far from a
magic-wand to be waved over a dataset to produce a trustworthy model; as an ongoing field of inquiry,
even in ideal situations, extracting the causal graph can be difficult and many times rests on extra-data
sources of information to implement properly. Given these challenges, there are a myriad of reasons and
scenarios in which to pursue their solution, many of which we highlight in the coming sections.

3 Associations
SCMs are capable of answering a wide swath of queries, the most fundamental being the associational.
Queries at this first tier, or layer L1, consist of predictions based on what has been observed. For instance,
after observing many labeled CT scans with and without tumors, an ML algorithm can predict the presence
of a tumor in a previously unseen scan. Traditional supervised learning algorithms have excelled in their
ability to answer L1 queries, typically trained on data consisting of large feature vectors along with their
associated label. If X is an n-dimensional feature vector with X1, X2, . . . , Xn as the individual features,
and Y is the output variable, a model such as a trained neural network will calculate P (Y |X1 = x1, X2 =
x2, . . . , Xn = xn). However, this predictive capacity can be stretched thin when faced with important
queries that are not associational; indeed, many pains of modern ML techniques can be blamed on their
inability to move beyond this tier, as demonstrated over the following examples.

3.1 Simpson’s Paradox

Example 3.1. AdBot Consider an online advertising agent attempting to maximizing clickthroughs on
studying assistance applications catered differently to college and graduate vs. high-school and primary
students, with X ∈ {0, 1} representing two ads for different products, Y ∈ {0, 1} whether or not it was
clicked upon, and Z ∈ {0, 1} whether the viewer is younger than 18 (Z = 0, typically pre-college age) or
older (Z = 1, typically undergraduate or professional studies). A marketing team collects the following data
on purchases following ads shown to focus groups to be used by AdBot:

Ad X = 0 Ad X = 1

Pre-College Age, Z = 0 108/120 (90%) 340/400 (85%)

In- and Post-College Age, Z = 1 266/380 (70%) 65/100 (65%)

Total 374/500 (75%) 405/500 (81%)

Table 2. Clickthroughs in the AdBot setting striated by the ad shown to participants in a focus group, and the age parti-
tion of the viewer.

6 Tetrad can be found at https://www.ccd.pitt.edu/tools/ and Causal Fusion at causalfusion.net.
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Table 2 shows P (Y = 1|X = 1) = 0.81 > P (Y = 1|X = 0) = 0.75, which may lead AdBot to conclude
that Ad 1 is always more effective. However, the same data also shows within age-specific strata that
P (Y = 1|X = 1, Z = 0) = 0.85 < P (Y = 1|X = 0, Z = 0) = 0.9 and P (Y = 1|X = 1, Z = 1) = 0.65 <
P (Y = 1|X = 0, Z = 1) = 0.7, indicating that Ad 0 is better. AdBot thus faces a dilemma: if the age of a
viewer is not known, which ad is the best choice? This conflict is known as Simpson’s paradox, which long
haunted practitioners using only L1 tools without causal considerations. Its solution, and those to many
other problems, can be found in the next tier.

3.2 Linear Regression

Linear regression is a common topic in introductory statistics and machine learning (ML) courses. This is
due, in part, to linear regression’s interpretability, limited overfitting, and simplicity. As seen below, a linear
model’s coefficients explain the impact each variable has on the outcome. This provides intuition behind how
causal structure affects learned parameters. Linear regression falso provides a base to launch more complex
machine learning models and algorithms. Parameters, degrees of freedom, and non-linearity can be added
incrementally. The simplicity of linear regression makes it ideal as a starting point for introducing causality
to machine learning. Although this simplicity will seldom yield highly predictive algorithms with real-world
data, linear regression can clearly illustrate the value of causal constructs through coding exercises. Student
discussion can be fostered through debate about linearity assumptions among exercises and examples.

Other work has provided examples for inferring causal effects from associational multivariate linear
regression ([41]), but which we adapt herein as useful exercises for ML students to start examining problems
from different tiers of the causal hierarchy. A first exercise corresponds to the chain DAG of Figure 2a.

Example 3.2. Athletic Performance Consider an athletic sport where the goal is to predict an athlete’s
performance. An ML model uses features X and Z, corresponding to training intensity and skill level,
respectively. The outcome, Y , is level of athletic performance. The following PyTorch code7 generates
example data:

x = torch.randn(n, 1) # training intensity for n individuals
z = 2 * x + torch.randn(n, 1) # skill level for n individuals
features = torch.cat([x, z], 1) # feature vector with training intensity and skill level
y = 3 * z + torch.randn(n, 1) # athletic performance for n individuals

The next step is to train an ML model that lacks non-linear activation functions. The weights of the model
can then be analyzed:

model = train_model(features, y) # train 1-layer model on features {X,Z}, and outcome Y
weights, bias = model.parameters() # retrieve weights and bias for the neural network
print(weights.tolist()) # print the weights for X and Z to the console
# [[-0.00918455421924591, 2.9990761280059814]]
print(bias.item()) # print the bias to the console
# -0.004577863961458206

The weight on X has a negligible8 impact on the result. This also makes intuitive sense as the model
was trained on both X and Z, while Y only “listens to” Z (i.e., since Y is a function of Z, fy(z, uy)).
Looking only at the weights, it would seem that training intensity is irrelevant to athletic performance.
If an analyst wanted to predict the performance of someone with increased training intensity, using this

7 Full source code is at: https://github.com/CausalEd/exercises.
8 A traditional linear model can provide a confidence interval that will very likely contain 0.

https://github.com/CausalEd/exercises
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model they would observe no difference in performance. On the other hand, if the model had been trained
only on X:

model = train_model(x, y) # train model only on X instead of both X and Z
weights, bias = model.parameters()
print(weights.tolist())
# [[6.0043745040893555]]
print(bias.item())
# 0.0020016487687826157

Here, X clearly plays a major role in predicting performance. This time, making a prediction using this
model with increased training intensity will yield increased athletic performance.

Which feature vector do we use for our ML model? This decision isn’t clear because predicting athletic
performance when changing only training intensity is an intervention. Thus, this is a causal question
requiring tools from L2 covered in the following section.

Example 3.3. Competitiveness How an athlete fares in a competition against others depends, among
other things, on their athletic ability and preparation. Unfortunately, The Tortoise and the Hare taught us
that high performers often suffer from overconfidence, which reduces their preparation time and effort. In
order to predict an athlete’s level of competitiveness, Y , an ML model uses features X and Z, corresponding
to preparation and athletic performance. The following PyTorch code generates example data accordingly:

z = torch.randn(n, 1) # athletic performance for n individuals
x = -2 * z + torch.randn(n, 1) # preparation level for n individuals
features = torch.cat([x, z], 1) # feature vector with preparation and performance
y = x + 3 * z + torch.randn(n, 1) # competitiveness level for n individuals

The DAG of Figure 5a corresponds to this scenario. Similar to example 3.2, an ML model can be trained on
features X and Z or just on X. First, a feature vector consisting of both X and Z produces the following
weights and bias:

model = train_model(features, y)
weights, bias = model.parameters()
print(weights.tolist())
# [[1.0000419616699219, 3.0182747840881348]]
print(bias.item())
# -0.0009028307977132499

The weight on X indicates a positive impact on the outcome. Predicting the level of competitiveness of
someone with increased preparation time would yield an increased level of competitiveness. This makes
sense as the example data was generated where Y was calculated with a positive multiple of X (1 to be
precise). Next, a singleton feature vector of X produces the following weights and bias:

model = train_model(x, y)
weights, bias = model.parameters()
print(weights.tolist())
# [[-0.21623165905475616]]
print(bias.item())
# -0.023961037397384644

This time, the weight on X is negative, indicating a negative impact on the outcome. It would seem that
increasing preparation in this model decreases competitiveness.
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These two models have very different weights on X. Which model is correct? The answer depends on
the quantity of interest. A causal question, such as, “what is the effect of preparation on competitiveness?”
requires an analysis in L2.

Example 3.4. Money How much money does an athlete earn? This depends, among other things, on
their previous athletic performance and their ability to negotiate. Can an ML model predict an athlete’s
negotiating skill based on their performance? The following PyTorch code generates example data for athletic
performance, X, negotiating skill, Y , and salary, Z:

x = torch.randn(n, 1) # athletic performance for n individuals
y = torch.randn(n, 1) # negotiating skill for n individuals
z = 2 * x + y + torch.randn(n, 1) # salary for n individuals
features = torch.cat([x, z], 1) # feature vector with athletic performance and salary

Since Z listens to both X and Y , the associated collider DAG is in Figure 2c. An ML model trained with
a feature vector consisting of both X and Z produces the following weights and bias:

model = train_model(features, y)
weights, bias = model.parameters()
print(weights.tolist())
# [[-1.0020248889923096, 0.5002512335777283]]
print(bias.item())
# 0.011319190263748169

The weight on X indicates an inverse relationship between athletic performance and negotiating skill. Are
better athletes worse negotiators? Using a singleton feature vector of X paints a different picture:

model = train_model(x, y)
weights, bias = model.parameters()
print(weights.tolist())
# [[0.0004336435522418469]]
print(bias.item())
# 0.021031389012932777

This time, the weight on X is negligible. We know, from the code that generated the example data,
that negotiating skill and athletic performance are uncorrelated. So, this appears to be a better model
for understanding the causal effect of negotiating skill on athletic performance (a null causal effect). In
addition to the two previous examples, this is another example where L2 tools are necessary to know which
variables to include in the feature vector.

Examining the weights is helpful to get an intuition for why feature selection is critical in understanding
causal relationships and queries. As students investigate more expressive, non-linear, models (for which
libraries like PyTorch provide a number of tools), weights become less interpretable despite what may be
an increase in accuracy. Still, these causal intuitions to feature selection, their relationship to SCMs, and
how they may bias queries remain.

Instructor Reflections

Within the courses in which these causal concepts have been tested, students have exhibited surprise when
first exposed to Simpson’s paradox. This revelation is their first hint that the story behind the data is crucial
for thorough and valid interpretations of the results. This is a prime opportunity for active learning. Using
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DAGs as a discussion source [42], students review and debate both the diagrams and the need to be careful
about which features to train their ML models on and how to utilize their results.

For many students, learning the mathematics of probability and statistics may feel mechanical, thus
missing the forest (the ability to use these as tools to inform decisions, automated or otherwise) for the
trees (the rote computation) [43, 44]. Examples such as the above break the mold of this script and ask
students to make a defendable choice with the data and assumptions at-hand because such acts are causal
questions often unanswerable by the data alone.

The causal “solutions” to these problems have intuitive, graphical criteria that students tend to find
more appealing than reasoning over the symbolic or numerical parameters of each system alone. What
follows is an overview of these approaches that can both enhance student understanding of traditional
tools in L1, as well as understanding their limits: both when and how to seek solutions to questions at
higher tiers of the causal hierarchy.

4 Interventions
The second tier in the causal hierarchy is the interventional layer, L2. Queries of this nature ask what
happens when we intervene and change an input as opposed to seeing the input of the associational layer.
Analyzing Table 2 in the AdBot example, the question of what outcome we can predict based on which ad
was shown is answered by seeing that Ad 1 received more clicks. However, the causal question of which ad
causes more clicks is a different question, predicated on determining the effect of changing the ad that was
seen despite its natural causes.

To isolate these causal effects, the randomized controlled trial (RCT) was invented [45], free of so
called “confounding bias” that can make spurious correlation masquerade as causal effect. Unfortunately,
experiments are not always feasible, affordable, nor ethical: if we consider an example experiment to discern
the effects of smoking on lung cancer, and confess that while there are valuable techniques for dealing with
imperfect compliance [9, 46], a study that forced certain groups to smoke and others to abstain would not
be ethically sound.

4.1 Resolving Simpson’s Paradox

As such, practitioners are often left with causal questions but only observational data, like in Example 3.1.
Herein, we witness an instance of Simpson’s paradox, when a better outcome is predicted for one treatment
versus another, but the reverse is true when calculating treatment effects for each subgroup.

Z

X Y

(a) Observed confounder Z between X and Y .

Z

U1 U2

X Y

(b) M-graph with unobserved confounders U1, U2 between X,Z
and Z, Y , respectively.

Figure 5. Potential models explaining Simpson’s paradox.

Resolving Simpson’s paradox demands that we understand the underlying data-generating causal sys-
tem, which in general may cause confusion through only the associational lens. Examining Figure 5, these
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two observationally equivalent causal models of the data in Example 3.1 tell two different interventional
stories. In (a), Z is a confounder whose influence in the observational data must be controlled to isolate
the causal effect of X → Y . In (b), Z is only spuriously correlated with {X,Y }, and so controlling for Z in
this setting will actually enable confounding bias (by the rules of d-separation, since U1 → Z ← U2 forms
a collider). Practically, this means that if (a) is our explanation of the observed data, then AdBot should
consult the age-specific clickthrough rates and display Ad 0; if (b) is our explanation, then we consult the
aggregate data and display Ad 1. In this specific scenario, model (a) is the more defendable since there
cannot be latent confounders that affect someone’s age as in model (b).

Generalizing the intuitions above, the foundational tool from the interventional tier is known as do-
calculus [47], which allows analysts to take both observational data and a causal model, and answer inter-
ventional queries.

Definition 4.1. (Intervention) An intervention represents an external force that fixes a variable to a
constant value (akin to random assignment if an experiment), and is denoted do(X = x), meaning that X
is fixed to the value x. This amounts to replacing the structural equation for the intervened variable with its
fixed constant such that fX = x (eliciting the “mutilated submodel” Mx). This operation is also represented
graphically by severing all inbound edges to X in G, resulting in an “interventional subgraph” Gx.

To compare quantities at associational (L1) and interventional (L2) tiers, the probability of event Y
happening given that variable X was observed to be x is denoted by P (Y |X = x). The probability of event
Y happening given that variable X was intervened upon and made to be x is denoted by P (Y |do(X = x)).
For instance, in Figure 5a, the effect of intervention do(X = x) would be to sever the edge Z → X.

Formally, to compute the average causal effect (ACE, Def. 2.3) of an ad on clickthroughs in Example
3.1, and assuming our setting conforms to the model in Figure 5a, we must compute X’s influence on Y
in homogeneous conditions of Z, weighted by the likelihood of each condition Z = z. This adjustment is
accomplished through the graphical recipe specified by the Backdoor Criterion:

Definition 4.2. (Backdoor Criterion) [24, pp. 61] Given an ordered pair of variables (X,Y ) in a
directed acyclic graph G, a set of variables Z satisfies the backdoor criterion relative to (X,Y ) if:
1. No node in Z is a descendant of X
2. Z blocks every path between X and Y that contains an arrow into X

The Backdoor Adjustment formula for computing causal effects (L2) from observational data (L1) is thus:

P (Y |do(X)) =
∑
z∈Z

P (Y |X,Z = z) · P (Z = z)

By employing the backdoor criterion, we control for the spurious correlative pathway X ← Z → Y to
isolate the desired causal pathway X → Y in estimation of P (Y |do(X)). Numerically applied to the AdBot
Example 3.1 (with back-door admissible covariate Z = {0, 1} ), and assuming the model in Figure 5a:

P (Y = 1|do(X = 0)) = P (Y = 1|X = 0, Z = 0)P (Z = 0) + P (Y = 1|X = 0, Z = 1)P (Z = 1)
= 0.70 ∗ 0.48 + 0.90 ∗ 0.52
≈ 0.80

P (Y = 1|do(X = 1)) = P (Y = 1|X = 1, Z = 0)P (Z = 0) + P (Y = 1|X = 1, Z = 1)P (Z = 1)
= 0.65 ∗ 0.48 + 0.85 ∗ 0.52
≈ 0.75
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From this adjustment, we confirm that displaying Ad X = 0 has the highest average causal effect
on clickthrough rates. In summary, we arrive at this conclusion through the following steps, which are
beneficial to highlight for students applying this recipe in general:
1. Example 3.1 demanded that we compute an Average Causal Effect (ACE) of ad choice X on click-

through rates Y in cases that the viewer’s age Z is unknown; this is an L2 query of the format
P (Y = 1|do(X)) whose computation can suffer from Simpson’s Paradox given that the inclusion or
exclusion of Z as a control delivers different answers of the optimal ad-choice.

2. To resolve this “paradox” and compute the ACE requires assumptions about the causal structure to
determine which, if any, spurious pathways demanded control. We encoded these assumptions in the
SCM with graphical structure from Figure 5a.

3. Given this structure, we applied the back-door adjustment criteria to find P (Y = 1|do(X = x)) ∀X = x

controlling for back-door admissible variable Z, and concluded that the highest likelihood action X = 0
was the best for maximizing clickthroughs.

4.2 Causal Recipes for Feature Selection

The power of do-calculus means ML algorithms can utilize causal effects without having to perform ex-
periments or be trained on experimental data.9 This has implications for ML feature-selection: bias may
be introduced if the causal structure is not consulted. For example, a collider might be conditioned on
without conditioning on non-colliders along the path from action X to outcome Y . Consider the M -graph
of Figure 5b: variables U1 and U2 cannot be included in the feature vector of an ML model because they
are unobserved, and if Z is included in the feature vector, this model will produce correlative (L1), but not
causal (L2+), predictions.

Notably, if the requested query is indeed correlative, the criteria for feature selection is different than
if it were causal, and the addition of features that provide information about the outcome can aid in
accuracy without causal considerations. However, queries at tiers above the first must be careful with
controlled covariates lest they inadvertently bias the outcome. Reflecting on the Pharmacology Example
2.1, we can conceive of queries at different tiers:
L1 What is the incidence of heart disease amongst those who take aspirin?
L2 What is the average causal effect of aspirin on incidence of heart disease?
In the L2 query above, and assuming the causal graph in Figure 1, we would intuitively wish to include Z
(age) as a feature to block the back-door path X ← Z → Y , and avoid including M (blood-pressure) as a
feature lest we intercept part of aspirin’s effect on heart disease mediated through blood-pressure. These
intuitions are formalized in the back-door criterion.

Concretely, revisiting the three linear regression examples of section 3.2, Example 3.2 poses a decision
to use a feature vector consisting of 〈X,Z〉 or just 〈X〉. Since the data generating process makes Z a
function of X, and Y a function of Z, the DAG of figure 2a corresponds to this model. The DAG makes
it clear that by including Z in the feature vector, we are conditioning on a mediator, thus blocking X’s
influence on Y and preventing the correct calculation of the causal effect of X on Y . This can be seen from
the fact that Y ⊥⊥ X | Z, therefore, E(Y |do(X), Z) = E(Y |Z):

Since there are no backdoor paths from X to Y , the causal effect can be predicted by not including
Z in the feature vector. Students are then left to debate the linearity assumption. Does every additional
level of training intensity, within a reasonable range, yield the same increase in athletic performance? This
application of L2 tools to get the causal effect of interest by including only X in the feature vector doesn’t
depend on linearity. So, the linearity discussions can aid intuition and lead to the generalization of dropping
the linearity assumption.

9 The Backdoor Criterion is a special case of the do-calculus ruleset, which is proven complete: If its rules are insufficient
for identifying a causal effect from observational data, then it is not possible to identify that causal effect.
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Example 3.3 showcases the same feature vector decision, 〈X,Z〉 or 〈X〉. This time the corresponding
DAG is Figure 5a, which was used to explain Simpson’s paradox. The backdoor path X ← Z → Y must be
blocked in order to have a model that predicts the causal effect of X, preparation, on Y , competitiveness.
Blocking this backdoor between X,Y is accomplished by including Z in the feature vector.

Example 3.4 is a collider scenario depicted in the DAG of Figure 2c. Here, attention must be paid to
including the collider Z in the feature vector. By including Z predictions will be far more accurate (in fact,
excluding Z will make predictions simply the mean of Y ). However, doing so opens a spurious pathway
between X and Y , making the causal effect of X on Y naïvely appear to be non-zero, but the DAG makes
it clear that the causal effect should be null. Therefore, we must exclude Z from the feature vector if the
ML model is to determine the causal effect of X, athletic performance, on Y , negotiating skill.

Students can extend the insights gained from the above (which are useful in eliciting insights distin-
guishing L1 and L2 in simple settings) in more complex models like the following that demands a synthesis
of these modular lessons.10

Example 4.1. Feature Selection Playground Consider the SCM in Figure 6 with treatment X, outcome
Y , and covariates {R, T,W, V }. Determine which of the covariates should be included in addition to X in
the feature vector Z to provide: (1) the most precise observational estimate of Y , P (Y |X,Z), and (2) an
unbiased estimates of the causal effect of X on Y , P (Y |do(X), Z).

X W Y

TR

V

Figure 6. Feature selection playground on causal diagram with treatment X, outcome Y , and other covariates.

In Figure 6, conventional wisdom allows for the inclusion of all covariates Z = {R, T,W, V } to maximize
precise prediction of Y for the L1 quantity P (Y |X,R,W, T, V ), but the causal quantity requires more
selectivity. To control for all non-causal pathways requires that Z = {R} alone, because (1) controlling for
T opens the backdoor path from X ↔ T ↔ Y , (2) controlling for W blocks the chain from X →W → Y ,
and (3) controlling for V opens a spurious pathway at collider X → V ← Y . Thus, Z = {R} serves as a
back-door admissible set to allow for estimation of P (Y |do(X)) via adjustment as in Example 3.1.

4.3 Transportability & Data Fusion

Although much of traditional ML education focuses on the ability or suitability of models to fit a particular
dataset, there are several adjacent discussions that are commonly omitted, including: the qualitative differ-
ences between observational (L1) and experimental (L2) data, how these datasets can often be “fused” to
support certain inference tasks, and how to take data collected at some tier in one environment / population
and transport it to another. This transportability problem [49, 50] has long been studied in the empirical
sciences under the heading of external validity [51, 52], and has received attention from the AI and ML
communities under a variety of related tasks like transfer learning [53, 54] and model generalization [55–57].
Many modern techniques have focused on the ability to take a model trained in one environment and then

10 Additional modular examples of “good and bad controls” using regression and SCMs can be found in [48].
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to adapt it to a new setting that may differ in key respects. This capability is particularly palatable to fields
that train agents in simulation settings to be later deployed in the real world, often because it is too risky,
expensive, or otherwise impractical to perform the bulk of training in reality [58–60]. In general, when the
training domain differs from the deployment domain (even slightly), predictions are biased, sometimes with
significant model degradation. This often occurs when data from the deployment environment is limited,
otherwise the ML model could have been trained on deployment data. To illustrate the utility of causal
tools for this task, we provide a simple example in the domain of recommender systems that motivates
distinctions in environments with heterogeneous data.

Example 4.2. DietBot. You are designing an app that recommends diets X ∈ {0, 1} (starting with only
2 for simplicity) that have been shown to interact with two strata of age Z ∈ {< 65,≥ 65} = {0, 1} in how
they predict heart health Y ∈ {unhealthy, healthy} = {0, 1}. The challenge: your model has been trained on
experimental data from randomized diet assignment in a source environment, π (yielding the L2 distribution
P (Y,Z|do(X))) that differs in its population’s age distribution compared to a target environment, π∗ in
which you wish to deploy your app. From this target environment, you have only observations from surveys
(yielding the L1 distribution P ∗(X,Y, Z)), and (due to your budget) cannot conduct an experiment in this
domain to determine the best diets to recommend to its population. Your task: without having to collect
more data, determine the best policy your agent should adopt in π∗ for maximizing the likelihood of users’
health, i.e., find: x∗ = argmax

x
P ∗(Y = 1|do(X = x)).

Z

X Y

(a) Target/Deployment environment π∗,
causal graph G, eliciting P∗(X,Y, Z).

Z

do(X) Y

(b) Source/Training environment π, sub-
model Gx, eliciting P (Z, Y |do(X)).

Z S

X Y

(c) Selection diagram D constructed from
shared graph G.

Figure 7. Causal and selection diagrams for data collected in different environments but with same causal graph G.

The training and deployment causal diagrams of Example 4.2 are depicted in Figure 7. Notably, because
we conducted an experiment (i.e., performed an intervention) in environment π (Figure 7b, represented
by the interventional subgraph Gx), the intervention do(X) severs any of the would-be inbound edges
to X in the observational setting that we see in the target environment π∗ (Figure 7b, representing the
unintervened graph G). Graphically, the challenge in the target environment becomes clear: we wish to
estimate P ∗(Y = 1|do(X = x)), but this causal effect is not identifiable because it is impossible to control
for all backdoor paths between X,Y due to the presence of unobserved confounders indicated by the
bidirected arcs. Yet, by assumption, the only difference between the two environments is the difference in
age distributions such that P (Z) 6= P ∗(Z), so insights from the experiment conducted in π (in which the
direct effect of X → Y has been isolated) may yet transport into π∗. To encode these assumptions of where
structural differences occur between environments, and thus to determine if and how to transport we can
make use of another graphical tool known as a selection diagram.

Definition 4.3. (Selection Diagram)[61] Let 〈M,M∗〉 be two SCMs relative to environments 〈π, π∗〉
sharing a causal diagram G. By introducing selection nodes, boxed variables representing causes of variables
that differ between source and target environment, 〈M,M∗〉 is said to induce a selection diagram D if D
is constructed as follows:
1. Every edge in G is also an edge in D.
2. D contains an extra edge Si → Vi (i.e., between a selection node and some other variable) whenever

there might exist a discrepancy fi 6= f∗i or P (Ui) 6= P ∗(Ui) between M and M∗.
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Importantly, selection diagrams encode both the differences in causal mechanisms between environments
(via the presence of a selection node) and the similarities, with the assumption that any absence of a selec-
tion node represents the same local causal mechanisms between environments at that variable. In Example
4.2, the selection diagram requires only a single addition to G (Figure 7a): a selection node S representing
the difference in age distributions at Z. Notationally, this also allows us to represent distributions in terms
of the S variable, such that S = s∗ indicates that the population under consideration is the target π∗.
Similarly, we can re-write distributions that are sensitive to selection like P ∗(Z) = P (Z|S = s∗) and our
target query from Example 4.2, P ∗(Y = 1|do(X)) = P (Y = 1|do(X), S = s∗). Doing so provides us a
starting point for adjustment, similar to the backdoor adjustment from Example 3.1, wherein (using the
rules of do-calculus) if we are able to find a sequence of rules to transform the target causal effect into an
expression where the do-operator is independent from the selection variables, transportability is possible
[62]. In the present DietBot Example, the goal is thus to phrase P (Y = 1|do(X), S = s∗) in terms of our
available data, P (Z, Y |do(X)) and P ∗(X,Y, Z). Such a derivation is as follows:

P (Y = 1|do(X = x), S = s∗) =
∑

z

P (Y = 1, Z = z|do(X = x), S = s∗) (1)

=
∑

z

P (Y = 1|do(X = x), Z = z, S = s∗)P (Z = z|do(X = x), S = s∗) (2)

=
∑

z

P (Y = 1|do(X = x), Z = z)P (Z = z|do(X = x), S = s∗) (3)

=
∑

z

P (Y = 1|do(X = x), Z = z)P (Z = z|S = s∗) (4)

=
∑

z

P (Y = 1|do(X = x), Z = z)P ∗(Z = z) (5)

(6)

Eqn. (1) follows from the law of total probability, (2) from the product rule, (3) from d-separation
(because Y ⊥⊥ S | Z, do(X = x)), (4) from do-calculus (because, examining Gx, Z ⊥⊥ do(X = x))11, and
(5) is simply a notational equivalence for the distribution of Z belonging to π∗.

P (Y = 1|Z, do(X)) Z = 0 Z = 1

X = 0 0.3 0.7
X = 1 0.4 0.6

P (Z) P ∗(Z)

Z = 0 0.2 0.9
Z = 1 0.8 0.1

Table 3. Select distributions from environments π, π∗ in Example 4.2.

While many theoretical lessons may end at the derivation of the transport formula concluding in Eqn.
5, including the numerical walkthrough using the parameters of Table 3 serves as an effective dramatization
for why transportability has important implications for heterogeneous data and policy formation. Consider
the scenario wherein the agent designer did not perform a transport adjustment between source and target
domains, using only the model that would have been fit during training. In this risky setting, the agent
would maximize the source environment’s P (Y = 1|do(X = x)):

11 This rule is more formally stated in the specific rules of do-calculus as Rule 3: Deletion of Actions, whose full
coverage may be a diversion from topics in traditional AI courses, though would feature prominently on a course with
focus in causal inference. See [1].
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P (Y = 1|do(X = x)) =
∑

z

P (Y = 1|do(X = x), Z = z)P (Z = z)

P (Y = 1|do(X = 0)) = P (Y = 1|do(X = 0), Z = 0)P (Z = 0) + P (Y = 1|do(X = 0), Z = 1)P (Z = 1)
= 0.3 ∗ 0.2 + 0.7 ∗ 0.8
= 0.62

P (Y = 1|do(X = 1)) = P (Y = 1|do(X = 1), Z = 0)P (Z = 0) + P (Y = 1|do(X = 1), Z = 1)P (Z = 1)
= 0.4 ∗ 0.2 + 0.6 ∗ 0.8
= 0.56

Above, P (Y = 1|do(X = 0)) > P (Y = 1|do(X = 1)), meaning that the optimal choice in the training
environment is X = 0. However, by properly applying the transport formula, we find that the opposite is
true in the deployment environment:

P ∗(Y = 1|do(X = x)) =
∑

z

P (Y = 1|do(X = x), Z = z)P ∗(Z = z)

P ∗(Y = 1|do(X = 0)) = 0.3 ∗ 0.9 + 0.7 ∗ 0.1
= 0.34

P ∗(Y = 1|do(X = 1)) = 0.4 ∗ 0.9 + 0.6 ∗ 0.1
= 0.42

The DietBot Example provides a host of important lessons at L2 of the causal hierarchy, juxtaposing
different causal inferences that would be obtained in different environments, demonstrating the utility of
graphical models and do-calculus, and the dangers of unobserved confounding. Though these theoretical
premises are typically taught in the study of causality in the empirical sciences, its practical utility in AI and
ML can be driven home by casting transportability in terms of “training and deployment” environments,
and by showing the surprise of opposite inferences that would be drawn with and without adjustment.
As learning data scientists, students also obtain insights into the risks and opportunities of heterogeneous
data, and how their fusion can overcome an otherwise difficult task of training and deployment environment
differences. Plainly, in practice, adjustment formulae would not necessarily be computed by hand like in the
above, but the experience of the demonstration is valuable for students; a fuller treatment of automated
tools used in transportability can be found in [10, 50, 62].

Instructor Reflections

Within previous offerings of these lessons, the student surprise experienced in associational exercises and
questions of Section 3 continues with the interventional exercises for feature selection, transportability, and
data fusion. More than just discussions arising from the revelations L2 brings, high school students have
shown a keen interest in immediately using L2 tools to explain everyday experiences, and then learning
how to encode those using a formal vocabulary.

Instructors of introductory courses in artificial intelligence have expressed frustrations discussing prob-
abilistic models like Bayesian networks as ad-hoc or supporting topics that lack an impactful conclusion.
However, examining these graphical models through the causal lens yields a fruitful experience for stu-
dents to move beyond the probability calculus and the mantra that “correlation does not equal causation.”
Though this mantra is indeed true in general, there is a lesson to be learned in its dual: causation does
bestow some structure to observed correlations, and this structure can be harnessed in support of many
tasks that lead beyond the data alone.
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By using the intuitions of d-separation as the structure of independence relationships in Bayesian
networks, this strictly graphical explanation of the data serves as an effective stepping stone into Causal
Bayesian Networks (CBNs) and SCMs; by completing this transition, instructors can more fully develop
students’ understanding of how probability leads to policy. This insight is clearly illustrated by use of
graphical models in which observations and interventions can disagree (as in Example 3.1, P (Y |X) 6=
P (Y |do(X))), how the environments and circumstances of data collection powerfully matter (as in Example
4.2, argmaxx P (Y = 1|do(X = x)) 6= argmaxx P

∗(Y = 1|do(X = x))), and in causal discovery exercises
for which an equivalence class of observationally equivalent models may explain some dataset, only some
of which may follow a defendable causal explanation.

Along this path, students may struggle to understand the notion of latent variables and unobserved
confounding unless the following are explained in unison: (1) the graphical depiction provides a causal
explanation for where latent, outside influences may be present, and (2) how these influences outside of the
model yield differences in causal L2 and non-causal L1 inferences that the data can provide.

5 Counterfactuals
The counterfactual layer of the hierarchy, L3, both subsumes and expands upon the previous two, newly
allowing for an expression of queries akin to asking: “What if an event had happened differently than it
did in reality?” Humans compute such queries often and with ease (as can be elicited from a classroom),
especially through the experience of regret, which envisions a better outcome to an unchosen action.
Regret is of great utility for dynamic agents, as it informs policy changes for future actions made in similar
circumstances (e.g., the utterance of “Had I only exited the freeway earlier, I would not have gotten stuck
in traffic” may bias future trips along the route to take side streets instead).

Counterfactual expressions are valuable to reasoning agents for a number of reasons, including that:
(1) they allow for insights beyond the observed data, as it is not possible to rewind time and observe the
outcome of a different event than what happened; (2) they can be used to establish precedent of necessary
and sufficient causes, important for agents needing to understand how actions affect their environment (e.g.,
“Would the patient have recovered had they not taken the drug?”); and (3) they can be used to quantify an
agent’s regret, which can be used for specific kinds of policy iteration in even confounded decision-making
scenarios.

5.1 Structural Counterfactuals

Despite the expressive and creative potential of counterfactuals, the common student’s initial exposure to
them risks being overly formal and notationally-heavy, often beginning with the following definition:

Definition 5.1. (Counterfactual) [9, pp. 204] In a SCM M , Let X and Y be two subsets of endogenous
variables such that {X,Y } ∈ V . The counterfactual sentence “Y would be y (in situation / instantiation
of exogenous variables U = u), had X been x” is interpreted as the equality with Yx(u) = y, where Yx(u)
encodes the solution for Y in the mutilated structural system Mx where for every Vi ∈ X, the equation fi

is replaced with the constant x. Alternatively, we can write:

YMx
(u) = Yx(u) = Yx

Ostensibly, a counterfactual appears similar to the definition of an intervention. However, whereas the do-
operator expresses a population-level intervention across all possible situations u ∈ U ∀ u, a counterfactual
computes an intervention for a particular unit / individual / situation U = u. This new syntax allows us to
write queries of the format P (YX=x = y|X = x′), which computes the likelihood that the query Y attains
value y in the world where X = x (the hypothetical antecedent), given that X = x′ was observed in reality.
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The clash between the observed evidence X = x′ and hypothetical antecedent X = x motivates the need
for the new subscript syntax, and demonstrates how the previous tiers of the hierarchy cannot express such
a query.

These expressions are often a source of syntactic and semantic confusion for beginners; an anecdotally
better strategy is to instead begin with a discrete, largely-deterministic, simple motivating example with
a plain-English counterfactual query, and then to work backwards to the formalisms.

M =



S ← fs(A) = A

X ← fx(S) = S

W ← fw(S) = S

R ← fr(X,W ) = X ∨W
A ∼ P (A)

S

A

X W

R

Figure 8. Structural Causal Model M and its associated graph G pertaining to Example 5.1.

Example 5.1. MediBot An automated medical assistant, MediBot, is used to prescribe treatments for
simple ailments, one of which has a policy designed around the following SCM containing Boolean variables
to represent the presence of an ailment A, its symptom S, prescription of two treatments X,W , and the
recovery status of the patient R. The system abides by the SCM in Figure 8.

Additionally, we are aware that the ailment’s prevalence in the population is P (A = 1) = 0.1. Sup-
pose we observe that MediBot prescribed treatment X (i.e., X = 1) to a particular patient u; determine
the likelihood that the patient would recover from their ailment had it not prescribed this treatment (i.e.,
hypothesizing X = 0).

To address this counterfactual query, intuitions best begin with the causal graph, whose observational state
is depicted in Figure 8. Secondly, it is instructive to show how the previous layers’ notations break down
with the query of interest, as we cannot make sense of the contrasting evidence and hypothesis using the
do-operator alone (i.e., the expression P (R|do(X = 0), X = 1) is syntactically invalid, having set X to two
separate values in the same world ). Instead, the query of interest focuses upon the recovery state in the
world where X = 0, though in reality (a separate world state) , X = 1 was observed. This can be expressed
via the counterfactual query P (RX=0|X = 1), which can be teased in the lesson either before or after the
computation mechanics that follow.

Before performing this computation, it is useful for students to visualize its steps. Intuitively, we expect
that some information about our observed evidence X = 1 may change our beliefs about the counterfactual
query RX=0; this information thus flows between the observed (L1, associational) and hypothetical (L2,
interventional) worlds through the only source of variance in the system: the exogenous variables (in
Example 5.1, A). Depicting this bridge can be accomplished through a technique known as the Twin
Network Model [63].

Definition 5.2. (Twin Network Model) For SCM M , arbitrary counterfactual query of the format
P (Yx|x′), and interventional submodel of the counterfactual antecedent Mx, the Twin Network Model M∗

is also an SCM defined as a combination of M and Mx with the following traits:
1. The structures of M and Mx are identical (including the same structural equations), except that all

inbound edges to X in Mx are severed.
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Figure 9. Twin network M∗ for the SCM in Example 5.1 and counterfactual query P (RX=0|X = 1).

2. All exogenous variables are shared between M and Mx in M∗, since these remain invariant under
modification.

3. All endogenous variables in the hypothetical Mx are labeled with the same subscript to distinguish them
from their un-intervened counterparts, as they may obtain different values.

The Twin Network of the SCM in Example 5.1 is depicted in Figure 9. This model is not only an intuitive
depiction of the means of computing the query at-hand, but also serves the practical purposes of being
a model through which standard evidence propagation techniques can be used to update beliefs from
evidence to antecedent, and through which the standard rules of d-separation can be used to determine
independence relations between variables in counterfactual queries. It is also useful to examine some axioms
of counterfactual notation at this point, noting the equivalence of certain L3 expressions with previous
tiers, like P (RX=x) = P (R|do(X = x)) (the “potential outcomes” subscripted format for writing the
L2 intervention) and P (RX=x|X = x) = P (R|X = x) (the consistency axiom in which antecedent and
observed evidence are the same, making it an observational quantity from L1).

Returning to our example, the actual computation of P (RX=0|X = 1) follows a 3-step process moti-
vated by the twin-network representation.

Step 1: Abduction. The abduction step updates beliefs about the shared exogenous variable distri-
butions based on observed evidence, meaning we effectively replace P (u)← P (u|e). In the current, largely
deterministic example, this amounts to propagating the evidence that X = 1 through the rest of M ∈M∗,
which can be trivially shown to indicate that all variables attain a value of 1 with certainty. However, for
the abduction step, we need only update beliefs about the exogenous variable, A:

X = 1, fx(S) = S ⇒ S = 1
S = 1, fs(A) = A⇒ A = 1

Step 2: Action. With P (u)← P (u|e) (viz., P (A = 1|X = 1) = 1), we can effectively discard / ignore
the observational model M and shift to the hypothetical twin Mx, forcing X = x per the counterfactual
antecedent, which in our example, means severing all inbound edges to X in Mx and forcing its value to
X = 0. Let M∗ be the modified model following steps 1 and 2.

M∗ =



S ← fs(A) = A

X ← 0
W ← fw(S) = S

R ← fr(X,W ) = X ∨W
A ∼ P (A|X = 1)
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Step 3: Prediction. Finally, we perform standard belief propagation within the modifiedM∗ to solve
for our query variable, Rx, and find that the patient would indeed still have recovered (i.e., P (RX=0 =
1) = 1) because MediBot would still have also administered the other effective treatment, Wx = 1.

P (A = 1|X = 1) = 1, S ← fs(A) = A⇒ Sx = 1
Sx = 1,W ← fw(S) = S ⇒Wx = 1
Wx = 1, R← fr(X,W ) = X ∨W ⇒ Rx = 1

This simple example not only demonstrates the mechanics and potential of structural counterfactuals,
but also serves as a launchpad for more intricate and challenging applications. Worthwhile follow-on exer-
cises include the addition of noisy exogenous variables to the system in Example 5.1 (e.g., non-deterministic
patient recovery), and analogies to linear SCMs in which the 3-step process is repeated through application
of conditional expectation. Moreover, the example leads into questions of necessity and sufficiency [64] of
the medical treatments, which can segue into other, more applied and data-driven, counterfactuals.

5.2 Counterfactuals for Metacognitive Agents

In some more adventurous explorations in AI oriented at crafting self-improving and reflective artificial
agents, counterfactuals in L3 may prove to be a useful tool for metacognitive agents [65, 66]. Related
to the transportability problem with DietBot in Example 4.2, agents may find the need to evolve their
policies learned earlier in their lifespan or in environments that change over time in order to optimize
their performance. This need complements a growing area of reinforcement learning that incorporates
causal concepts, especially with respect to meta-learning [13, 67, 68]. To demonstrate such a scenario,
we reconsider MediBot in a setting wherein its current policy’s decisions are confounded, damaging its
performance and requiring it to perform some measure of metacognition to improve that is analogous to
the human experience of regret.

U

X Y

(a) Observational model.

UI

X Y

(b) The same system, but with intent explicitly modeled.

Figure 10. SCM associated with Example 5.2 with treatment X, recovery Y , UC U , and intent I.

Example 5.2. Confounded MediBot12. MediBot is back assigning treatment for a separate condition in
which two treatments X ∈ {0, 1} have been shown to be equally effective remedies by an FDA randomized
clinical trial (i.e., P (Y = 1|do(X = 0)) = P (Y = 1|do(X = 1)) where Y = 1 indicates recovery). As
such, patients are given the option to choose between the two treatments for the final prescription given.
Seemingly innocuous, this patient-choice is actually problematic given the following wrinkles:
1. The patient’s treatment request is actually affected by an unobserved confounder (UC), linking the

treatment and recovery through an uncontrolled back-door path (Fig. 10a). This unobserved, exogenous
variable U is unrecorded in the data, and could potentially be anything, like the influence of direct-to-
consumer advertising of drug treatments that are primarily observed by different treatment-sensitive

12 The simplicity of Example 5.2 should not undermine the prevalence of confounded decision-making scenarios that
are found in many adversarial settings with traditional machine learning [69] and a myriad of human-decider-AI-
recommender scenarios [15]
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subpopulations (like a drug that is only advertised on sports-radio with a primarily exercise-friendly
audience).

2. Because of this confounding influence, MediBot’s observed recovery rates are actually less than the
FDA’s reported ones (Table 4). Worse is that the observed (L1) and experimental (L2) recovery rates
look equivalent within each respective tier, making it a challenge to determine whether a superior,
individualized treatment exists.

P (Y = 1|X) P (Y = 1|do(X))

X = 0 0.50 0.70
X = 1 0.50 0.70

Table 4. MediBot’s observed treatment recovery rates vs. those reported by the FDA’s randomized clinical trials.

The data in Table 4 demonstrates the tell-tale sign of unobserved confounding wherein the observed and
experimental treatment effects differ (P (Y |x) 6= P (Y |do(x)) ∃x ∈ X), implicating an uncontrolled latent
factor that explains the difference. Surprisingly, despite the unknown identity of the confounder, a better
treatment policy than MediBot’s current one does indeed exist in this context, and is derived from a
counterfactual quantity known as the Effect of Treatment on the Treated (ETT) [70]. The ETT traditionally
computes the difference between the effect of an alternate treatment X = x than the one actually given
to an individual X = x′, the counterfactual component of which can be expressed in this context as
P (YX=x = 1|X = x′), x 6= x′.

With only the partially specified model, and the observational and experimental recovery rates, it is
possible to compute the ETT for binary treatments (assuming, in this setting, that the patient requested
treatments are observed in equal proportion, P (X = 0) = P (X = 1) = 0.5), as in the following derivation
that is true for any treatment X = x and its alternative X = x′.

P (Yx) = P (Yx|x′)P (x′) + P (Yx|x)P (x)
= P (Yx|x′)P (x′) + P (Y |x)P (x)

P (Yx = 1|x′) = P (Yx = 1)− P (Y = 1|x)P (x)
P (x′)

= 0.7− 0.5 ∗ 0.5
0.5

= 0.9

This algebraic trick (using only the law of total probability) allows us to derive L3 quantities of interest
from a combination of L1 and L2 data (though only for binary treatment), and tells an important tale
about the system: MediBot is presently in a state of inevitable regret [71] in which the likelihood of recovery
for those given treatment under its policy (P (Y = 1|X = x′) = 0.5 ∀ x′ ∈ X) is 40% less than had those
same patients been treated differently (P (YX=x = 1|X = x′) = 0.9 ∀ x 6= x′ ∈ X). The “inevitable” part
of this regret is also instructive for distinguishing L1 (what happens in reality / nature) from L3 (what
could have happened differently) quantities because it seems that no matter what decision MediBot makes
in reality, there’s always a better one that it could have made instead!

Ostensibly, this computation yields only bleak retrospect, but also leads to a surprising remedy for
online agents. Two insights contribute to the solution, known as intent-specific decision-making [13]: (1)
the formation of the confounded agent’s observational / naturally decided action (i.e., its intent) can
be separated from the ultimately chosen one, and (2) this intended action choice serves as a back-door
admissible proxy for the state of the UC (see Figure 10(b) with agent intent I).
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Definition 5.3. (Intent) [13] In a confounded decision-making scenario with desired outcome Y = 1,
final agent choice X, unobserved confounder(s) Uc, and structural equation X ← fx(Uc), SCMs modeling
the agent’s intent I represent its pre-choice L1 response to Uc = uc such that I adopts the structural
equation of X with I ← fi(Uc) = fx(Uc), and the structural equation for X indicates that, observationally,
the final choice always follows the intended, X ← fx(I) = I.

When intent is explicitly modeled in a confounded decision-making scenario (Figure 10b), the ETT (pre-
viously, a retrospective L3 quantity) can be measured empirically before a decision is made by using
do-calculus conversions to a L2 quantity through a process known as Intent-Specific Decision-Making.

Definition 5.4. (Intent-Specific Decision-Making (ISDM)) [14, 15, 72] In the context of a con-
founded decision-making scenario with decision X, intent of that decision I, and desired outcome Y = 1,
the counterfactual L3 expression P (YX=x = 1|X = x′), x, x′ ∈ X may be measured empirically via the
intent-specific L2 expression P (Y = 1|do(X = x), I = x′), namely:

P (YX=x = 1|X = x′) = P (Y = 1|do(X = x), I = x′), x, x′ ∈ X, I (7)

In brief, ISDM label’s the agent’s observational (L1) decision as intent, which is treated as an observed
context satisfying the back-door criterion, enabling conversion of the counterfactual ETT (L3) to an em-
pirically estimable causal (L2) query. The confounded agent can thus choose the action that maximizes
the counterfactual ETT to develop a meta-policy that will always act equally, or more, effectively than its
original policy’s intended action. This technique is known as the regret decision criteria (RDC) [13] and
can be expressed (for action X, intent I, and desired outcome Y = 1) as:

x∗ = argmax
x

P (YX=x = 1|I = x′) = argmax
x

P (Y = 1|do(X = x), I = x′)

For Example 5.2, students could find (either analytically through Table 4 or experientially through a
contextual multi-armed bandit assignment) that P (YX=1 = 1|X = 0) = 0.9 > P (YX=0 = 1|X = 0) = 0.5,
meaning that in settings wherein MediBot intends to treat with X = 0, it is better off choosing X = 1.
The full intent-specific distribution of expected recovery rates is shown in Table 5.

P (YX=x = 1|I = x′) I = 0 I = 1

X = 0 0.5 0.9

X = 1 0.9 0.5

Table 5. Intent-specific recovery rates for the confounded MediBot Example 5.2.

The RDC is useful because (1) it allows a confounded agent to make strictly better decisions as a
function of a confounding-sensitive existing policy (in Ex. 5.2, by prescribing the treatment opposite its
first intended), even in complete naivety of the confounding factors, (2) it provides an empirical means of
sampling a counterfactual datapoint (surprising given the mechanics of counterfactuals) [15], and (3) it can
be intuitively rooted for students in the familiar experience of beginning to do something once regretted,
stopping, and then choosing differently. A useful analogy of this is the practice of breaking a habit: intent
signals a desire that is autonomous, reactionary to the environment or one’s state (e.g., desiring a strong
drink), which is then suspended by imagining the benefits of an alternative choice.

In autonomous systems, the analogy of “habit breaking” can be a useful one for policy improvement in
which a maladaptive policy may be improved once a counterfactual predicts a better choice than the one
that the current policy would choose. Example 5.2 thus addresses a number of learning outcomes, including
the clear distinctions of quantities at all three tiers of the causal hierarchy, how UCs can account for these
differences, and how to design agents that either exploit or are resilient to them.
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Instructor Reflections

Motivating the utility of counterfactual inference can begin with active learning through a Socratic di-
alogue, rooting the capacity for human counterfactual reasoning in experiences like regret. “Why do we
not return to restaurants that gave us food poisoning a single time ? How do we place this blame of food
poisoning on the restaurant? Would we have gotten food poisoning had we not eaten there?” Transitioning
from these intuitions to why artificial agents can benefit from the ability to answer similar questions can
make for an enjoyable classroom discussion. In classes or levels with more room for debate, discussions on
counterfactuals as the origins of human creativity may also yield fruitful explorations. More broadly, the
ability of counterfactuals to “escape from the data” can offer inspiration; students have enjoyed mention of
the Lion Man of Ur (an ice-age sculpture depicting a humanoid figure that is half-lion), which demonstrates
one of the earliest instances of the human ability to conceive of ideas without a bearing in reality [73].

More formally, situating counterfactuals in the PCH can provide a bridge to other courses or contexts
in which the term is used, such as in Rubin’s potential-outcomes framework [74] or in philosophical and
logical discourse [75]. By proceduralizing counterfactual computation in the structural 3-step approach,
students not only appreciate the reasoning mechanics underlying these others approaches, but receive hints
on future applications in the domain of AI.

6 Conclusion
In this work, we have endeavored to not only impress the importance of causal topics to the future of AI
and ML, but have also provided instructor-ready content to supplement existing AI curricula. Through
this earlier exposure to causal concepts, we invite a new generation of data scientists, machine learning
practitioners, and designers of autonomous agents to employ and extend these tools to address problems
beyond the empirical sciences. Though this work provides only a cursory exposure to the many possible
avenues of synthesis for causality and AI, students familiar with its contents will more deeply understand
their data, models, and the types of questions that each are capable of answering. Likewise, instructors may
find topics in causality to distinguish and enhance their AI courses, give students unique perspectives, and
inspire novel avenues of research. As curricular causal integration becomes more widespread, we likewise
invite educational researchers to investigate its impact on the student experience and scholarship. The
demands of artificial agents continue to extend beyond only associations, so practitioners familiar with
causal concepts will be equipped to address the needs of tomorrow apart from only the data of today.
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A Sample Syllabi
Herein, we share two syllabi sequences of topics in courses integrating causal concepts at the high school
and undergraduate levels (offered in semester-long courses consisting of 15 weeks of instruction), alongside
a table of ad-hoc opportunities to integrate these concepts into existing AI / ML curricula.

A.1 Syllabus: Causal Inference (Causality + AI/ML Examples)

The following list of topics were offered in a course on causal inference at the high-school level, and follows
the outline of topics in [24].

Week Topics
1 Pearlian Causal Hierarchy, causal motivation, Simpson’s Paradox, probability and statistics with and versus causal

inference.
2-4 Introduction to Probability and Statistics: variables, events, conditional probabilities, independence, distributions,

law of total probability, Bayes’ Rule, variance / covariance, regression, multiple regression.
5-7 Graphical Models and Applications: SCMs’ connection to data, d-separation, causal discovery, and model testing.
8-11 Interventions, the do-operator, juxtapositions of L1, L2 queries, adjustment criteria, front- and back-door criteria

and adjustment, covariate-specific causal effects, inverse probability weighting, mediation, causal inference in
linear systems, structural vs. regression coefficients, mediation analysis, identifiability.

12-15 Counterfactuals: structural definitions, juxtapositions of L2, L3 queries, nondeterministic counterfactuals, coun-
terfactuals for personal decision-making, attribution, probabilities of causation, bias.

Table 6. Outline of topics in sample high-school treatment of causal inference. Also appropriate for an undergraduate
course with extensions or added rigor in places.

A.2 Syllabus: Cognitive Systems Design (Causality + Reinforcement Learning)

The following list of topics were offered in a course mingling causal inference with reinforcement learning
entitled “Cognitive Systems Design.” Students taking this course had prerequisite knowledge in probability
and statistics as well as foundational topics in AI / ML. Half of the course is devoted to the foundations
of reinforcement learning, the other to causal inference, and with significant time at its end to detail
their overlap and adjacent possibilities. The course has been offered multiple times experimenting with
the order of topics; originally, a “causality first” approach was attempted, but students found it difficult
to appreciate causal tools from a conceptual level before having an application in mind (reinforcement
learning). Subsequent offerings found greater success in a “reinforcement first” approach, then revisiting
and expanding ideas from this foundation with a causal lens. This latter offering is listed in Table 7.

A.3 Ad-Hoc Causal Topic Additions (AI / ML with Causal Integration)

For a more gradual integration of causal topics into AI / ML curricula (in the event that sweeping inte-
gration like in Tables 6 or 7 is not feasible), we recommend the select entry-points in Table 8.
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Week Topics
1 Course outline, motivations for Reinforcement Learning + Causality, introduction to problems in reinforcement

learning, reward and value / delayed reward, attribution problem.
2 Multi-armed bandit problems, finite sample concerns and sampling error, action-value methods, action-selection

rules (ε−greedy, -first, -decreasing, UCB, Thompson Sampling), regret, bandit variants (e.g. contextual bandit
problems, adversarial bandits).

3-5 Markov Decision Processes, policies, expectimax trees, discounting, value functions and Q-values, Bellman equa-
tions, value iteration, policy evaluation and iteration, online vs. offline policy search, model-based vs. model-free
approaches, passive vs. active online RL, temporal difference learning, exact / tabular Q-learning, approximate
/ action-value feature-based Q-learning, reward shaping.

6 Modern Reinforcement Learning: Deep Q-Networks, replay buffers, target vs. policy networks, dual learning,
actor-critic methods, inverse reinforcement learning, and select topics from recent literature.

7-13 Causal Inference: accelerated sequence of topics from Table 6.
14-15 Causal Reinforcement Learning: empirical counterfactuals and meta-cognition, causal transportability, causality

in multi-agent systems, selective interventions, and select topics from recent literature.

Table 7. Outline of topics in sample undergraduate treatment of causal inference paired with reinforcement learning.

Traditional AI / ML Topic Causal Addenda
Introductory Probability and Statistics Tiers of the Pearlian Causal Hierarchy, graphical models, d-separation for un-

derstanding conditional independence.
Formal Logic Pearlian Causal Hiearchy, SCMs with Boolean logic functions, logical interpre-

tation of observations, interventions, and structural counterfactuals.
Bayesian Networks SCMs and Causal Bayesian Networks, interventions, and distinctions between

L1, L2 queries.
Regression SCMs and causal vs. regression coefficients, adjustment criteria, back-door and

front-door adjustment.
Supervised Machine Learning Causal recipes for feature selection, causal / graphical recipes for transporta-

bility, model interpretability and explainability.
Reinforcement Learning Pearlian Causal Hierarchy (RL can be situated at L2 with agents in the online

setting), interventions, counterfactual formalisms of regret (with reference to
reward functions), causal recipes for feature selection.

Table 8. Ad-Hoc causal addendum possible for gradual integration of topics into traditional curricula.

B Example Source
Source code13 for models in examples 3.2, 3.3, and 3.4:

import torch
import torch.nn as nn

class Model(nn.Module):
def __init__(self, variables):

super(Model, self).__init__()
self.layer1 = nn.Linear(variables, 1)

def forward(self, X):
X = self.layer1(X)
return X

13 Full source code is at: https://github.com/CausalEd/exercises.

https://github.com/CausalEd/exercises
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criterion = nn.MSELoss()

def train_model(inputs, y, epochs=1000):
model = Model(inputs.shape[1])
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
for _ in range(epochs):

optimizer.zero_grad()
yhat = model(inputs)
loss = criterion(yhat, y)
loss.backward()
optimizer.step()

return model
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