
Review Article

Andrew Forney* and Scott Mueller

Causal inference in AI education: A primer

https://doi.org/10.1515/jci-2021-0048
received September 20, 2021; accepted June 01, 2022

Abstract: The study of causal inference has seen recent momentum in machine learning and artificial
intelligence (AI), particularly in the domains of transfer learning, reinforcement learning, automated diag-
nostics, and explainability (among others). Yet, despite its increasing application to address many of the
boundaries in modern AI, causal topics remain absent in most AI curricula. This work seeks to bridge this
gap by providing classroom-ready introductions that integrate into traditional topics in AI, suggests intui-
tive graphical tools for the application to both new and traditional lessons in probabilistic and causal
reasoning, and presents avenues for instructors to impress the merit of climbing the “causal hierarchy”
to address problems at the levels of associational, interventional, and counterfactual inference. Finally, this
study shares anecdotal instructor experiences, successes, and challenges integrating these lessons at
multiple levels of education.
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1 Introduction

The study of causality seeks to model and reason about systems using a formal language of cause and effect,
and has undertaken a number of important endeavors across a diverse set of disciplines, including causal
diagrams to inform empirical research [1], structural equation models for econometric analysis [2], systems-
thinking in the philosophy of science [3–5], modeling elements of human cognition and learning [6–8], and
many others [9].

Yet, for its long history in other disciplines, causal inference has only recently begun to penetrate tradi-
tional topics in machine learning (ML) and the design of artificial agents. Perhaps overshadowed by the
impressive advances from deep learning, the artificial intelligence (AI) community is turning to causality to
address many of its boundaries, such as to avoid overfitting and to transfer learning [10,11], reasoning beyond
observed examples as through counterfactual inference [12], providing meta-cognitive avenues for reinforce-
ment learners in confounded decision-making scenarios [13,14], improving medical diagnostics beyond mere
association of symptoms [15,16], reducing bias in ML models through formalizations of fairness [17,18], among
others [19,20].

Despite these clarion calls for causality from many prominent researchers and practitioners [21–23], it
remains a missing topic in the majority of traditional artificial intelligence (AI) curricula. This lag can be
explained by a number of factors, including the recency of causal developments in the domain, the lack of a
bridge between the topics of causality that statisticians and empirical scientists care about and those that
computer scientists do, and the lack of template lesson plans for integration into such curricula; even
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causality textbooks oriented at undergraduate introduction lack direct examples relating to AI [24].
Although efforts do exist in the literature toward bridging causality in AI [25,26], this work serves as a
motivator, primer, and introductory handbook for educators to bring causality into the AI classroom, and
focuses especially on the tools of graphical causality to intuitively introduce its topics to novices. Specifi-
cally, it provides motivated, detailed, and numerical examples of causal topics as they apply to AI, dis-
cusses common pitfalls in the course of student learning experiences, and gives a number of other tools
ready to be deployed by instructors teaching topics in AI and ML at the high-school and college levels.

As such, the main contributions of the present work are as follows:
1. Provides brief, classroom-ready introductions to the three tiers of data and queries that compose the

causal hierarchy: associations, interventions, and counterfactuals.
2. Suggests intuitive graphical depictions of core lessons in probabilistic and causal reasoning that enable

multi-modal instruction.
3. Demonstrates and motivates examples wherein causal concepts can be easily integrated into typical

lessons in AI, alongside novel, interactive learning tools to help concrete select topics.
4. Shares anecdotal successes, challenges, and instructor experiences from causally motivated lessons

deployed at both undergraduate and high-school levels.

1.1 Forward

Before embarking on this journey in causality, it is important to contextualize this work with respect to its
intended audience, target domains of application, and source experiences from which anecdotal student
experiences are shared.

Intended audience. This work represents an invitation to instructors to concert topics in AI and
causality, and is thus appropriate for the following readers:
1. Instructors with a background in causality who are looking to incorporate more AI/ML examples and

assignments into their courses, either by extending existing lessons in AI/ML with causal topics or by
incorporating AI/ML examples into courses primarily on causal inference.

2. Instructors teaching AI/ML courses who are looking for entry points/motivations to introduce causality
but who may be unfamiliar with causal formalisms or procedures.

For readers of category 1, we include brief refreshers on the formal lessons of causality alongside
intuitive examples that are classroom-ready supplements delete both for the foundational concepts and
those marketed specifically for AI/ML applications. For readers of category 2, please note that this work is
not intended as an in-depth primer for all causal topics (the textbooks referenced in the introduction are
better suited for this), but instead, contains examples and problems that we hope compel the integration of
causality in many avenues of traditional AI/ML.

Source experiences and target domains. Given these specifications, we include several example syllabi
and suggested entry points for causal topics in traditional AI curricula within Appendix A. Of these, two are from
the authors’ deployments at (a) the high-school level in a course entirely on causality and (b) at the under-
graduate level in a course on causal reinforcement learning (mingling the two topics in depth). In the shared
experiences in teaching these courses that are mentioned throughout this work, note that the authors enjoyed
classes high in student engagement and enjoyment, but for which only anecdotal evidence is available, making
no objective claims that must be instead studied empirically. With a wider adoption of causal topics in AI
curricula, we invite future study to examine its potential benefits at a more robust population level.

2 Background

Etiology is core to scientific discovery and philosophical concerns since humans first started asking why
things are the way they are. Humans possess a natural ability to learn cause and effect that allows us to
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understand, deduce, and reason about the data we take in through our senses [27]. Modern tools for
inferring causes allow us to systematically interpret these causal connections at a more fundamental level
with increased confidence, less data, and fewer assumptions. With this deeper causal knowledge, causal
inference serves to make accurate predictions, estimate the effects of interventions, and decipher imagined
scenarios. Similar to the importance in statistical models, the benefits of causal inference depend on the
accuracy and completeness of the assumed causal model.

The distinction between these tasks, their underlying types of data, and the inferences possible given
assumptions about the system are delineated in the Pearlian causal hierarchy (PCH) [28]. The PCH is
organized into three tiers/layers of information, each building upon the expressiveness of the last:
�1 Associations: Observing evidence and assessing changes in belief about some variables, e.g., deter-

mining the probability of having some disease given presentation of certain symptoms.
�2 Interventions: Assessing the probability of some causal effects under manipulation, e.g., determining

the efficacy of a drug in treating some condition.
�3 Counterfactuals: Determining the probability of some outcomes under hypothetical manipulation that

is contrary to what happened in reality, e.g., determining whether a headache would have persisted had
one not taken aspirin.

The ability to traverse the different layers of the PCH often demands causal assumptions to be stated in
a mathematical language that clearly disambiguates between them. As will be demonstrated in the fol-
lowing sections, certain interventional (�2) and counterfactual (�3) queries of interest cannot be answered
using data and traditional observational statistics alone, but can be enabled by an explanation of the
system under scrutiny as through a structural causal model (SCM).

Definition 2.1. (Structural causal model) [9, pp. 203–207] An SCM is a 4-tuple, ( )= ⟨ ⟩M U V F P u, , , , where:
1. U is a set of background variables (also called exogenous), whose values are determined by factors

outside the model.
2. V is a set { }…V V V, , , n1 2 of endogenous variables, whose values are each determined by other variables

in ∪U V .
3. F is a set of functions { }…f f f, , , n1 2 such that each fi is a mapping from (the respective domains of)

∪U PAi i to Vi, where ⊆U Ui and ⊆ ⧹PA V Vi i and the entire set F forms a mapping from U to V . In other
words, each fi in ( )= = …v f pa u i n, , 1, ,i i i i assigns a value toVi that depends on (the values of) a select set
of variables.

4. ( )P u is a probability density defined on the domain of U .

The inputs to the functions in F within an SCM induce a causal diagram in the form of a directed graph.
We will only consider SCMs that induce a directed acyclic graph (DAG) in this introductory work as shown
in Figure 1. A DAG alone is therefore a partial causal model in itself. This nonparametric causal model can
come from expert knowledge and is often the only portion of the SCM to which we have access.

Definition 2.2. (Causal diagram) Given any SCM M , its associated causal diagram G is a DAG that encodes:

Figure 1: Causal “triplets” demonstrating the rules of conditional independence from the d-separation criterion. (a) Chain, (b)
fork, and (c) collider.
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1. The set of endogenous variables V , represented as solid nodes (vertices).
2. The set of exogenous variables U , represented as hollow nodes (sometimes omitted for brevity).
3. The functional relationships, F , between variables, represented by directed edges that connect two

variables →V Vc e for ∈V V V,c e ifVc appears as a parameter in ( )…f V ,V ce (i.e., ifVc has a causal influence
on Ve).

4. Spurious correlations between variables, represented by a bidirected, dashed edge connecting two
variables ← −→V Va b if their corresponding exogenous parents Ua and Ub are dependent, or if fVa and
fVb share an exogenous variable Ui as a parameter to their functions.

Intuitively, causal diagrams characterize cause–effect relationships between variables in a system of
functional relationships such that ( )← …feffect cause , cause ,1 2 . Equivalently, a DAG provides extra data
information to answer many causal queries that rely on the structure of these relationships, even with (parts
of) the data generating process hidden. Consequently, DAGs allow for the computation of causal effects, real
or counterfactual, despite the absence of experimental data.

2.1 Motivating causal inference

Causal inference is thus the umbrella label for tools used to compute queries (generally, those at�2 and�3)
from an existing causal model. There are many different types of causal queries at these higher tiers of
inference, and before formalizing any of them, students will appreciate some intuition surrounding why
they are interesting from a data-scientific perspective.

Example 2.1. Pharmacological observations to policies. Consider some observational data collected on
medical records relating whether patients took some over-the-counter drug X (e.g., aspirin), presented with
some condition Y (e.g., heart disease), and accounting for some pretreatment covariates Z (e.g., age) and
some posttreatment covariates M (e.g., blood pressure). There are many interesting causal queries that
could be posed to such a system, e.g.:
1. How much of the causal effect of aspirin on heart disease is explained by the aspirin itself vs. its indirect

effect on blood pressure?
2. In total, to what degree does taking aspirin help or hurt incidence of heart disease?
3. On average across age groups, is aspirin harmful or helpful? What about for patients of specific ages?

Note how answers to each of the questions in Example 2.1 have implications for medical policy, e.g., it
may be helpful within certain age ranges but harmful in others, it may only be helpful due to its influence
on blood pressure (in which case, other prescriptions may more directly help to prevent heart disease), and
so on. However, from observational data alone (i.e., outside of the laboratory randomized clinical trial),
associations between these variables can complicate the answers to causal questions. SCMs provide formal
characterizations and procedures for answering each of these causal questions by applying a structured
explanation of the system of causes and effects, which serves as a lens through which one can view the
data’s associations. Consider an example characterization of this system as diagrammed in Figure 2.

Figure 2: Possible causal graph explaining the relationship between variables in Example 2.1.
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With the extra explanatory power of an SCM layered atop the data it fits, we can intuitively define
several different types of causal questions based on its structure, some of the recipes for which will be
formalized later.

Definition 2.3. (Causal effects [intuition]) [24] Given any SCM M and its associated causal diagram G, the
measurement of causal effects can be informally defined as the controlled influence of some variable X on
some outcome Y through so-called causal pathways that are descendant of the intervention X in G. More
specific ways of dissecting these causal pathways (referencing Figure 2.1) are as follows:
– The direct effect of X on Y is its unmediated influence on the outcome, as through the path →X Y

indicating the direct effect of aspirin on heart disease.
– The indirect effect of X on Y is the sum of its mediated influences on the outcome, as through the path

→ →X M Y , indicating the effect of aspirin on heart disease as mediated through its influence on blood
pressure.¹

– The total effect of X on Y is the sum of its direct and indirect effects.
– The average causal effect (ACE) of X onY is its total effect averaged across subpopulations (e.g., the total

effect of aspirin on heart disease averaged across controlled age ranges) [31].

The aforementioned represents only a sample of the many causal effects of interest for practitioners
wishing to translate their data into actionable policy (e.g., see refs. [32–34]). However brief, this list of
example causal queries serves as a simple motivation for causal inference, and for intuiting the SCMs that
can be used to address them. That said, introductory lessons in causality are dominated by such examples
in medicine, econometrics, and others; a major deliverable of this work is to shift the same lessons
motivated by these in the empirical sciences to settings that AI scientists will find applicable.

2.2 Motivating causal discovery

Given the capabilities of SCMs to answer interesting causal queries like those in Example 2.1, students will
likely be curious to learn about the sources of these models. Thus, as an oft close companion to causal
inference, causal discovery techniques focus on the construction or learning of SCMs from data. Causal
discovery supports the assembly of DAGs, or parts of DAGs, largely by examining independence relations
among variables (potentially conditioned on other variables), to offer a mechanism to uncover their causal
relationships. In this sense, data alone are sometimes enough for causal inference, but when they are not, a
partial DAG (also known as a pattern or equivalence class) can inform practitioners of what else is required
to disambiguate. Children instinctively comprehend this and employ playful manipulation to better grasp
their environment when information from their senses is insufficient [7]; adults and scientists also perform
experiments to confirm their causal hypotheses. Causal discovery with DAGs may provide a systematic way
for machines to better understand causal situations beyond the traditional ML task of prediction [23].

All DAGs, regardless of complexity, can be constructed from paths of the three basic structures depicted
in Figure 1. The chain in Figure 1(a) consists of X causing Z , followed by Z causingY . The fork in Figure 1(b)
consists of Z having a causal influence on both X andY . In this case, even though X has no causal effect on
Y , knowing the value of X does help predict the value ofY , quintessential correlation without causation. In
both the chain and the fork, X is independent of Y if and only if conditioning on Z ( ∣⊥⊥X Y Z):

( ∣ ) ( ∣ )= = = = = =P Y y Z z X x P Y y Z z, and ( ∣ ) ( )= = ≠ =P Y y X x P Y y .²



1 The distinction between direct and indirect effects (among others) has fallen under the umbrella of mediation analysis, a
prevalent field of study in the data and empirical sciences [29,30].
2 See Section 2.3 for rare cases where independencies are hidden in the graph and assumptions made to avoid this.
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Colliders, as illustrated in Figure 1(c), behave the opposite to chains and forks in regards to indepen-
dence. Specifically, ⊥⊥X Y without conditioning on Z : ( ∣ ) ( )= = = =P Y y X x P Y y . However, X andY notably
become dependentwhen conditioning on Z or any of its descendants: ( ∣ ) ( ∣ )= = = ≠ = =P Y y Z z X x P Y y Z z, .
By holding the commoneffect Z to a particular value, any change to X wouldbe compensated by a change toY .

Anecdotally, students have appreciated causal stories to explain these rules of dependence in a causal
graph, which may also serve as mnemonics. For each of the following examples, a fruitful exercise can be to
have students provide a graphical explanation for the story, which then motivates the rules of indepen-
dence expected of any graphs with the same patterns.

Example 2.2. Mediation: smoking, tar, and lung cancer. In medical records, smoking cigarettes, X , has
been shown to be positively correlated with the incidence of lung cancer,Y . It is known that smoking causes
deposits of tar, Z , in the lungs, which leads to cancerY . However, knowing whether a patient has lung tar Z
makes its source (e.g., whether or not they smoked, X) independent from their propensity for lung cancer,
Y . Z is thus known as a mediator between X and Y , making the causal structure a chain, → →X Z Y .

Example 2.3. Confounding: heat, crime, and ice cream. Data reveals that sales of ice cream, X , are
positively correlated with crime rates, Y , yielding the amusing possibilities that criminals enjoy a post-
crime ice cream or that ice cream leads people to commit crime. However, the two become independent
after controlling for a confounder, temperature, Z , that is responsible for both (and could not be affected by
either). Z is known as a confounder that “explains away” the noncausal relationship between X and Y ,
making the causal structure a fork, ← →X Z Y .

Example 2.4. Colliders: coin flips and coffee. You and your roommates have a game that decides when
you will break for coffee: if two of you flip fair coins X and Y , and they both come up heads or both tails,
then you will ring a bell Z to summon your dorm to get coffee, C. Alone, the coin flip outcomes X andY are
independent of one another; however, if you hear a bell ring, and know that =X heads , you know also that

=Y heads . The same is true if, instead of hearing the bell, you witness your dorm leave to get coffee. This
relationship is thus a collider structure with → ←X Z Y , and demonstrates the effects of conditioning upon
the descendant of a collider, →Z C.

The graphical nature of these types of exercises can engender high engagement among students
compared to typical probability syntax alone. Causal intuition and probabilistic understanding in this
puzzle-like context are thus concerted and enhanced. Building upon these intuitions, we can establish
independence or isolate effects in more complex graphs by blocking paths from one node to another
through a structural criterion called d-separation (directional separation) [35]; d-separation is already
taught alongside traditional AI coverage of Bayesian Networks and succinctly stated as follows.

Definition 2.4. (d-separation) [24, pp. 46–47] A path p between X Y, is blocked by a set of nodes Z if and
only if
1. p contains a chain of nodes → →A B C or a fork ← →A B C such that the middle node B is in Z (i.e., B

is conditioned on), or
2. p contains a collider → ←A B C such that the collision node B is not in Z , and no descendant of B is

in Z .

If all paths between X and Y are blocked given Z , they are said to be “d-separated” and thus ∣⊥⊥X Y Z .

With causal models being core to causal inference, d-separation provides us with an important testing
mechanism. Because a DAG demonstrates which variables are independent of each other given a subset of
the remaining variables to condition on, probabilities can be estimated from data to confirm these condi-
tional independencies. The fitness of a causal model can therefore be validated (to a degree of confidence),
and debugging simplified from global fitness tests to d-separation’s ability to pinpoint error localities.
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Unfortunately, it is not possible to test every causal relationship between nodes in a DAG, meaning that
causal discovery does not always yield the complete DAG, nor are these validity measures a guarantee that a
recovered graph represents the true reality [21].

Still, certain structural hints provide hope of recovering causal localities. For instance, a v-structure is
defined as a pair of nonadjacent nodes, such as X andY in Figure 1(c), with a common effect (Z in the same
figure). These v-structures are often embedded throughout larger causal graphs. An example of a testable
implication is to check that Z is not included in the set of nodes that render ⊥⊥X Y .

A simple approach to causal discovery is to find every possible DAG compatible with a set of variables
and their independence relationships in a dataset. In general, better approaches require further assump-
tions, but this is an active area of research [36–38]. The set of compatible DAGs is called an equivalence
class, which, for some causal queries, can be sufficient for identifying causal effects even with partial
structures. If further experimentation is necessary, an equivalence class can help target those variables
on which experiments need to be performed to discover the true structure [39,40].

The inductive causation (IC) algorithm³ [9, p. 204] is a simple approach to causal discovery:

1. For each pair of variables a and b in V , search for a set Sab such that ( ∣ )⊥⊥a b Sab holds in P̂ (stable
distribution ofV ). Construct an undirected graphG such that vertices a and b are connected with an edge
if and only if no set Sab can be found.

2. For each pair of nonadjacent variables a and b with a common neighbor c, check if ∈c Sab. If it is not,
then add arrowheads → ←a c b.

3. In the partially directed graph that results, orient as many of the undirected edges as possible subject to
two conditions: (i) any alternative orientation would yield a new v-structure and (ii) any alternative
orientation would yield a directed cycle.

The first step constructs a complete skeleton. While not all arrowheads in the second and third steps can
always be discovered from data alone, systems can also prompt humans for clarity on parts of nonpara-
metric causal models to resolve ambiguity. Robotic algorithms can even perform necessary experiments to
disambiguate certain localities of the causal structure.

The whole process of constructing a causal model can be challenging for students not familiar with
modeling. The following example demonstrates a simple workflow in which students can engage.

Example 2.5. Workflow: causal model construction. A workflow might consist of using the aforemen-
tioned IC algorithm to generate a partial DAG. A probability distribution drawn from pharmacological data
from Example 2.1 is presented in Table 1.⁴

The IC algorithm will generate the graph in Figure 3, leaving three edges undirected: −X Z , −X Y , and
−X M . To determine the directions of those edges, three techniques can be employed:

– New or existing experiment. A randomized controlled trial (RCT) was previously performed, and the
proportion of individuals with condition Y in the treatment (X) group differed from the proportion in
the control group. This provides evidence for directed edge →X Y . If this RCT did not exist, a new RCT
could be conducted.

– Expert knowledge. Consulting a researcher provides evidence that covariate Z (age) affects decisions to
take this drug. Therefore, edge →Z X is now directed.

– Re-evaluation. The only edge remaining undirected is −X M . The direction ←X M would create a V-
structure (nonadjacent parents Z and M to X). V-structures are detected in the IC algorithm’s step 2.
Since IC did not detect this, the directed edge must be →X M .

Finally, the constructed DAG ends up equivalent to the DAG in Figure 2.



3 More advanced algorithms increase efficiency and accommodate latent structures [9, pp. 50–54].
4 Tetrad https://www.ccd.pitt.edu/tools was used to generate data and aid in the DAG reassembly process. The complete
dataset can be downloaded at https://learn.ci/data/causal_education.csv.
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Table 1: Probability distribution of pharmocological data of Example 2.1. Conditional probability tables from the model in
Figure 3 are given, but truncated only to necessary probabilities

Z X M Y P .( )

0 0 0 0 0.0392
0 0 0 1 0.0098
0 0 1 0 0.1372
0 0 1 1 0.0588
0 1 0 0 0.0399
0 1 0 1 0.0021
0 1 1 0 0.05355
0 1 1 1 0.00945
1 0 0 0 0.0286
1 0 0 1 0.0234
1 0 1 0 0.0832
1 0 1 1 0.1248
1 1 0 0 0.1014
1 1 0 1 0.0546
1 1 1 0 0.117
1 1 1 1 0.117

Z X M Y P Y Z X M, ,( ∣ )

0 0 0 1 0.2
0 0 1 1 0.3
0 1 0 1 0.05
0 1 1 1 0.15
1 0 0 1 0.45
1 0 1 1 0.6
1 1 0 1 0.35
1 1 1 1 0.5

X M P M X( ∣ )

0 1 0.8
1 1 0.6

Z X P X Z( ∣ )

0 1 0.3
1 1 0.6

Z P Z( )

1 0.65

Figure 3: Equivalence class of graphs constructed from probability distribution in Table 1.
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This work introduces a companion causal inference learning system⁵ to help students practice and
absorb concepts in causal discovery. As depicted in Figure 4, a teacher simply writes the structural func-
tions and data generating processes of the exogenous variables, and students are presented with the
resulting probability distribution and nodes of the equivalence class to connect. Causal discovery exercises
such as these provide engaging exploration into the etiology of data generation missing in many statisti-
cally focused curricula.

2.3 Assumptions

This background on chains, forks, colliders, and d-separation affords us basic building blocks for powerful
causal inference tools. As important caveats to be discussed with students, the power of a causal model
depends on having a correct representation of the system. There are some criteria for assessing whether a
model is a fair representation of the underlying data or data generating process. However, some assump-
tions are sometimes necessary to be asserted. The first that we have assumed is infinite data, leaving the
statistical analysis of quantifying uncertainty with finite samples to be dealt with separately. The second is
a property known as stability/faithfulness: we assume independencies remain invariant when ( )P U
changes. This means that the conditional independencies in the underlying probability distribution are
reflected in the DAG. As a basic violation of this, imagine a child who only eats vegetables (Y ) if their
parents convince them (X). The child’s parents are always trying to convince them, ( )= =P X 1 1. Therefore,
we might declare X independent of Y , since ( ∣ ) ( )= = = =P Y y X x P Y y . However, that equality only holds

Figure 4: Causal discovery exercise editor.



5 CI learning tools in development at: https://learn.ci.
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under parameterizations of ( )P U in which ( )= =P X 1 1. If the parents sometimes relent, then
( ∣ ) ( )= = ≠ =P Y y X x P Y y and X and Y would be dependent. Stated formally:

Definition 2.5. (Stability/faithfulness) [9, p. 48] Let ( )I P denote the set of all conditional independence
relationships embodied in P. A causal model = ⟨ ⟩M D, ΘD generates a stable distribution if and only if

( )⟨ ⟩P D, ΘD contains no extraneous independences – that is, if and only if ( ( )) ( ( ))⟨ ⟩ ⊆ ⟨ ′ ⟩I P D I P D, Θ , ΘD D for
any set of parameters ′ΘD.

The remainder of this work focuses on the potential of causal inference to both elucidate traditional
topics in AI and ML and to inspire new avenues for students to explore. Using the preliminaries outlined in
this section, students will be equipped to understand the challenges and opportunities at each tier of
the PCH.

2.4 Instructor reflections

Intuiting the motivations for causal inference is a challenge to instill in students who have dealt little with
real data and the many complex questions that data may or may not be equipped to answer alone. Leading
any introductory causal lesson with the intuitions presented in Example 2.1 and Definition 2.3 can spark the
important questions that motivated the PCH; questions as simple as “Does obesity shorten life, or is it the
soda?” [33] are enough to elicit lively classroom discussion just to introduce the distinctions of types of
causal effects and how these are difficult to disentangle from mere associations without the aid of a model.

From these observations, anecdotally, students to treat exercises involving the design and interpreta-
tion of compounded conditional independence graphs as puzzles rather than monotonous calculations that
may lack translation to purpose. This has elicited classroom enjoyment, which feeds into participatory
graph modifications in the spirit of causal discovery. The discussions and debates that ensue develops
intuition through active engagement, which can be especially important at the high-school level for
engendering intuition before formalism.

For assignments, instructors may find it useful to generate mock datasets (like that in Example 2.5) to
help students to understand crucial lessons in causal discovery, d-separation, and challenges like observa-
tional equivalence and unobserved confounding. Various software packages exist for this endeavor, though
Tetrad and Causal Fusion have been popular choices that students can pick up without large amounts of
tutorial.⁶ It is likewise important to instill that causal discovery is a difficult exercise that is far from amagic-
wand to be waved over a dataset to produce a trustworthy model; as an ongoing field of inquiry, even in
ideal situations, extracting the causal graph can be difficult and many times rests on extra-data sources of
information to implement properly. Given these challenges, there are a myriad of reasons and scenarios in
which to pursue their solution, many of which we highlight in the coming sections.

3 Associations

SCMs are capable of answering a wide swath of queries, the most fundamental being the associational.
Queries at this first tier, or layer�1, consist of predictions based onwhat has been observed. For instance, after
observing many labeled CT scans with and without tumors, an ML algorithm can predict the presence of a
tumor in a previously unseen scan. Traditional supervised learning algorithms have excelled in their ability to
answer �1 queries, typically trained on data consisting of large feature vectors along with their associated
label. If X is an n-dimensional feature vector with …X X X, , , n1 2 as the individual features, andY is the output



6 Tetrad can be found at https://www.ccd.pitt.edu/tools/ and Causal Fusion at causalfusion.net.
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variable, a model such as a trained neural network will calculate ( ∣ )= = … =P Y X x X x X x, , , n n1 1 2 2 . However,
this predictive capacity can be stretched thin when faced with important queries that are not associational;
indeed, many pains of modern ML techniques can be blamed on their inability to move beyond this tier, as
demonstrated over the following examples.

3.1 Simpson’s paradox

Example 3.1. AdBot Consider an online advertising agent attempting to maximizing clickthroughs on
studying assistance applications catered differently to college and graduate vs. high-school and primary
students, with { }∈X 0, 1 representing two ads for different products, { }∈Y 0, 1 whether it was clicked upon,
and { }∈Z 0, 1 whether the viewer is younger than 18 ( =Z 0, typically pre-college age) or older ( =Z 1,
typically undergraduate or professional studies). A marketing team collects the following data on purchases
following ads shown to focus groups to be used by AdBot:

Table 2 shows that ( ∣ ) ( ∣ )= = = > = = =P Y X P Y X1 1 0.81 1 0 0.75, which may lead AdBot to conclude
that Ad 1 is always more effective. However, the same data also show within age-specific
strata that ( ∣ ) ( ∣ )= = = = < = = = =P Y X Z P Y X Z1 1, 0 0.85 1 0, 0 0.9 and ( ∣ )= = =P Y X Z1 1, 1 =

( ∣ )< = = = =P Y X Z0.65 1 0, 1 0.7, indicating that Ad 0 is better. AdBot thus faces a dilemma: if the age
of a viewer is not known, which ad is the best choice? This conflict is known as Simpson’s paradox, which
long haunted practitioners using only �1 tools without causal considerations. Its solution, and those to
many other problems, can be found in the next tier.

3.2 Linear regression

Linear regression is a common topic in introductory statistics and ML courses. This is due, in part, to linear
regression’s interpretability, limited overfitting, and simplicity. As shown later, a linear model’s coefficients
explain the impact each variable has on the outcome. This provides intuition behind how causal structure
affects learned parameters. Linear regression also provides a base from which to launch more complex ML
models and algorithms, and topics like parameters, degrees of freedom, and nonlinearity can be added
incrementally. The simplicity of linear regression makes for an ideal starting point for introducing causality
to ML. Although this simplicity will seldom yield highly predictive algorithms with real-world data, linear
regression can clearly illustrate the value of causal constructs through coding exercises. Student discussion
can be fostered through debate about linearity assumptions among exercises and examples.

Other work has provided examples for inferring causal effects from associational multivariate linear
regression [41], but which we adapt herein as useful exercises for ML students to start examining problems
from different tiers of the causal hierarchy. A first exercise corresponds to the chain DAG shown in
Figure 1(a).

Example 3.2. Athletic performance Consider an athletic sport where the goal is to predict an athlete’s
performance. An ML model uses features X and Z , corresponding to training intensity and skill

Table 2: Clickthroughs in the AdBot setting striated by the ad shown to participants in a focus group, and the age partition of
the viewer

Ad X 0= Ad X 1=

Pre-college age, Z 0= 108/120 (90%) 340/400 (85%)
In- and post-college age, Z 1= 266/380 (70%) 65/100 (65%)
Total 374/500 (75%) 405/500 (81%)
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level, respectively. The outcome, Y , is the level of athletic performance. The following PyTorch code⁷
generates example data:

x = torch.randn(n, 1) # training intensity for n individuals

z = 2 * x + torch.randn(n, 1) # skill level for n individuals

features = torch.cat([x, z], 1) # feature vector with training intensity and skill level

y = 3 * z + torch.randn(n, 1) # athletic performance for n individuals

The next step is to train an ML model that lacks nonlinear activation functions. The weights of the
model can then be analyzed:

model = train_model(features, y) # train 1-layer model on features X,Z, and outcome Y

weights, bias = model.parameters() # retrieve weights and bias for the neural network

print(weights.tolist()) # print the weights for X and Z to the console

# [[-0.00918455421924591, 2.9990761280059814]]

print(bias.item()) # print the bias to the console

# -0.004577863961458206

The weight on X has a negligible⁸ impact on the result. This also makes intuitive sense as the model was
trained on both X and Z , whileY only “listens to” Z (i.e., sinceY is a function of Z , ( )f z u,y y ). Looking only
at the weights, it would seem that training intensity is irrelevant to athletic performance. If an analyst
wanted to predict the performance of someone with increased training intensity, using this model they
would observe no difference in performance. On the other hand, if the model had been trained only on X:

model = train_model(x, y) # train model only on X instead of both X and Z

weights, bias = model.parameters()

print(weights.tolist())

# [[6.0043745040893555]]

print(bias.item())

# 0.0020016487687826157

Here, X clearly plays a major role in predicting performance. This time, making a prediction using this
model with increased training intensity will yield increased athletic performance.

Which feature vector do we use for our ML model? This decision is not clear because predicting athletic
performance when changing only training intensity is an intervention. Thus, this is a causal question
requiring tools from �2 covered in the following section.

Example 3.3. CompetitivenessHow an athlete fares in a competition against others depends, among other
things, on their athletic ability and preparation. Unfortunately, The Tortoise and the Hare taught us that
high performers often suffer from overconfidence, which reduces their preparation time and effort. To
predict an athlete’s level of competitiveness, Y , an ML model uses features X and Z , corresponding to
preparation and athletic performance. The following PyTorch code generates example data accordingly.



7 Full source code is at: https://github.com/CausalEd/exercises.
8 A traditional linear model can provide a confidence interval that will very likely contain 0.
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z = torch.randn(n, 1) # athletic performance for n individuals

x = -2 * z + torch.randn(n, 1) # preparation level for n individuals

features = torch.cat([x, z], 1) # feature vector with preparation and performance

y = x + 3 * z + torch.randn(n, 1) # competitiveness level for n individuals

The DAG of Figure 5(a) corresponds to this scenario. Similar to Example 3.2, an MLmodel can be trained
on features X and Z or just on X . First, a feature vector consisting of both X and Z produces the following
weights and bias:

model = train_model(features, y)

weights, bias = model.parameters()

print(weights.tolist())

# [[1.0000419616699219, 3.0182747840881348]]

print(bias.item())

# -0.0009028307977132499

The weight on X indicates a positive impact on the outcome. Predicting the level of competitiveness of
someone with increased preparation time would yield an increased level of competitiveness. This makes
sense as the example data were generated, where Y was calculated with a positive multiple of X (1 to be
precise). Next, a singleton feature vector of X produces the following weights and bias:

model = train_model(x, y)

weights, bias = model.parameters()

print(weights.tolist())

# [[-0.21623165905475616]]

print(bias.item())

# -0.023961037397384644

This time, the weight on X is negative, indicating a negative impact on the outcome. It would seem that
increasing preparation in this model decreases competitiveness.

These two models have very different weights on X . Which model is correct? The answer depends on the
quantity of interest. A causal question, such as, “What is the effect of preparation on competitiveness?”
requires an analysis in �2.

Example 3.4. Money How much money does an athlete earn? This depends, among other things, on their
previous athletic performance and their ability to negotiate. Can an ML model predict an athlete’s

Figure 5: Potential models explaining Simpson’s paradox. (a) Observed confounder Z between X and Y . (b) M-graph with
unobserved confounders U1 and U2 between X Z, and Z Y, , respectively.
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negotiating skill based on their performance? The following PyTorch code generates example data for
athletic performance, X , negotiating skill, Y , and salary, Z :

x = torch.randn(n, 1) # athletic performance for n individuals

y = torch.randn(n, 1) # negotiating skill for n individuals

z = 2 * x + y + torch.randn(n, 1) # salary for n individuals

features = torch.cat([x, z], 1) # feature vector with athletic performance and salary

Since Z listens to both X andY , the associated collider DAG is in Figure 1(c). An MLmodel trained with a
feature vector consisting of both X and Z produces the following weights and bias:

model = train_model(features, y)

weights, bias = model.parameters()

print(weights.tolist())

# [[-1.0020248889923096, 0.5002512335777283]]

print(bias.item())

# 0.011319190263748169

The weight on X indicates an inverse relationship between athletic performance and negotiating skill.
Are better athletes worse negotiators? Using a singleton feature vector of X paints a different picture:

model = train_model(x, y)

weights, bias = model.parameters()

print(weights.tolist())

# [[0.0004336435522418469]]

print(bias.item())

# 0.021031389012932777

This time, the weight on X is negligible. We know, from the code that generated the example data, that
negotiating skill and athletic performance are uncorrelated. So, this appears to be a better model for
understanding the causal effect of negotiating skill on athletic performance (a null causal effect). In addi-
tion to the two previous examples, this is another example where �2 tools are necessary to know which
variables to include in the feature vector.

Examining the weights is helpful to foster an intuition for why feature selection is critical in under-
standing causal relationships and queries. As students investigate more expressive, nonlinear, models (for
which libraries like PyTorch provide a number of tools), weights become less interpretable despite what
may be an increase in accuracy. Still, these causal intuitions to feature selection, their relationship to SCMs,
and how they may bias queries remain.

3.3 Instructor reflections

Within the courses in which these causal concepts have been tested, students have exhibited surprise when
first exposed to Simpson’s paradox. This revelation is their first hint that the story behind the data is crucial
for thorough and valid interpretations of the results. This is a prime opportunity for active learning. By
using DAGs as a discussion source [42], students review and debate both the diagrams and the need to be
careful about which features to train their ML models on and how to utilize their results.

154  Andrew Forney and Scott Mueller



For many students, learning the mathematics of probability and statistics may feel mechanical, thus
missing the forest (the ability to use these as tools to inform decisions, automated or otherwise) for the trees
(the rote computation) [43,44]. Examples like those introduced in 3.1–3.4 break the mold of this script and
ask students to make a defendable choice with the data and assumptions at-hand because such acts are
causal questions often unanswerable by the data alone.

The causal “solutions” to these problems have intuitive, graphical criteria that students tend to find
more appealing than reasoning over the symbolic or numerical parameters of each system alone. What
follows is an overview of these approaches that can both enhance student understanding of traditional
tools in�1, and understanding their limits: both when and how to seek solutions to questions at higher tiers
of the causal hierarchy.

4 Interventions

The second tier in the causal hierarchy is the interventional layer, �2. Queries of this nature ask what
happens when we intervene and change an input as opposed to seeing the input of the associational layer.
Analyzing Table 2 in the AdBot example, the question of what outcome we can predict based on which ad
was shown is answered by seeing that Ad 1 received more clicks. However, the causal question of which ad
causes more clicks is a different question, predicated on determining the effect of changing the ad that was
seen despite its natural causes.

To isolate these causal effects, the RCT was invented [45], free of the so-called “confounding bias” that
can make spurious correlation masquerade as the causal effect. Unfortunately, experiments are not always
feasible, affordable, nor ethical: if we consider an example experiment to discern the effects of smoking on
lung cancer, and confess that while there are valuable techniques for dealing with imperfect compliance
[9,46], a study that forced certain groups to smoke and others to abstain would not be ethically sound.

4.1 Resolving Simpson’s paradox

As such, practitioners are often left with causal questions but only observational data, like in Example 3.1.
Herein, we witness an instance of Simpson’s paradox, when a better outcome is predicted for one treatment
versus another, but the reverse is true when calculating treatment effects for each subgroup.

Resolving Simpson’s paradox demands that we understand the underlying data-generating causal
system, which in general may cause confusion through only the associational lens. Examining Figure 5,
these two observationally equivalent causal models of the data in Example 3.1 tell two different interven-
tional stories. In (a), Z is a confounder whose influence in the observational data must be controlled to
isolate the causal effect of →X Y . In (b), Z is only spuriously correlated with { }X Y, , and so controlling for Z
in this setting will actually enable confounding bias (by the rules of d-separation, since → ←U Z U1 2 forms
a collider). Practically, this means that if (a) is our explanation of the observed data, then AdBot should
consult the age-specific clickthrough rates and display Ad 0; if (b) is our explanation, then we consult the
aggregate data and display Ad 1. In this specific scenario, model (a) is the more defendable since there
cannot be latent confounders that affect someone’s age as in model (b).

Generalizing the intuitions earlier, the foundational tool from the interventional tier is known as do-
calculus [47], which allows analysts to take both observational data and a causal model, and answer
interventional queries.

Definition 4.1. (Intervention) An intervention represents an external force that fixes a variable to a
constant value (akin to random assignment if an experiment) and is denoted ( )=do X x , meaning that X
is fixed to the value x. This amounts to replacing the structural equation for the intervened variable with its
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fixed constant such that =f xX (eliciting the “mutilated submodel” Mx). This operation is also represented
graphically by severing all inbound edges to X in G, resulting in an “interventional subgraph” Gx.

To compare quantities at associational (�1) and interventional (�2) tiers, the probability of event Y
happening given that variable X was observed to be x is denoted by ( ∣ )=P Y X x . The probability of eventY
happening given that variable X was intervened upon and made to be x is denoted by ( ∣ ( ))=P Y X xdo . For
instance, in Figure 5(a), the effect of intervention ( )=do X x would be to sever the edge →Z X .

Formally, to compute the ACE (Def. 2.3) of an ad on clickthroughs in Example 3.1, and assuming our
setting conforms to the model in Figure 5(a), we must compute X ’s influence on Y in homogeneous
conditions of Z , weighted by the likelihood of each condition =Z z. This adjustment is accomplished
through the graphical recipe specified by the Backdoor criterion:

Definition 4.2. (Backdoor criterion) [24, p. 61] Given an ordered pair of variables ( )X Y, in a DAGG, a set
of variables Z satisfies the backdoor criterion relative to ( )X Y, if:
1. No node in Z is a descendant of X
2. Z blocks every path between X and Y that contains an arrow into X

The backdoor adjustment formula for computing causal effects (�2) from observational data (�1) is thus:

( ∣ ( )) ( ∣ ) ( )∑= = ⋅ =

∈

P Y do X P Y X Z z P Z z, .
z Z

By employing the backdoor criterion, we control for the spurious correlative pathway ← →X Z Y to
isolate the desired causal pathway →X Y in estimation of ( ∣ ( ))P Y do X . Numerically applied to the AdBot
Example 3.1 (with backdoor admissible covariate { }=Z 0, 1 ), and assuming the model in Figure 5(a):

( ∣ ( )) ( ∣ ) ( ) ( ∣ ) ( )

( ∣ ( )) ( ∣ ) ( ) ( ∣ ) ( )

= = = = = = = + = = = =

= ∗ + ∗

≈

= = = = = = = + = = = =

= ∗ + ∗

≈

P Y do X P Y X Z P Z P Y X Z P Z

P Y do X P Y X Z P Z P Y X Z P Z

1 0 1 0, 0 0 1 0, 1 1
0.70 0.48 0.90 0.52
0.80

1 1 1 1, 0 0 1 1, 1 1
0.65 0.48 0.85 0.52
0.75.

From this adjustment, we confirm that displaying Ad =X 0 has the highest ACE on clickthrough rates.
In summary, we arrive at this conclusion through the following steps, which are beneficial to highlight for
students applying this recipe in general:
1. Example 3.1 demanded that we compute an ACE of ad choice X on clickthrough ratesY in cases that the

viewer’s age Z is unknown; this is an �2 query of the format ( ∣ ( ))=P Y do X1 whose computation can
suffer from Simpson’s Paradox given that the inclusion or exclusion of Z as a control delivers different
answers of the optimal ad choice.

2. To resolve this “paradox” and compute the ACE requires assumptions about the causal structure to
determine which, if any, spurious pathways demanded control. We encoded these assumptions in the
SCM with graphical structure from Figure 5(a).

3. Given this structure, we applied the backdoor adjustment criteria to find ( ∣ ( ))= = ∀ =P Y do X x X x1
controlling for backdoor admissible variable Z and concluded that the highest likelihood action =X 0
was the best for maximizing clickthroughs.

4.2 Causal recipes for feature selection

The power of do-calculus means ML algorithms can utilize causal effects without having to perform experi-
ments or be trained on experimental data.⁹ This has implications for ML feature selection: bias may be



9 The backdoor criterion is a special case of the do-calculus ruleset, which is proven complete: If its rules are insufficient for
identifying a causal effect from observational data, then it is not possible to identify that causal effect.
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introduced if the causal structure is not consulted. For example, a collider might be conditioned on without
conditioning on noncolliders along the path from action X to outcome Y . Consider the M-graph of
Figure 5(b): variables U1 and U2 cannot be included in the feature vector of an ML model because they
are unobserved, and if Z is included in the feature vector, this model will produce correlative (�1), but not
causal (� +2 ), predictions.

Notably, if the requested query is indeed correlative, the criteria for feature selection are different than
if it were causal, and the addition of features that provide information about the outcome can aid in
accuracy without causal considerations. However, queries at tiers above the first must be careful with
controlled covariates lest they inadvertently bias the outcome. Reflecting on the pharmacology Example
2.1, we can conceive of queries at different tiers:
�1 What is the incidence of heart disease among those who take aspirin?
�2 What is the ACE of aspirin on incidence of heart disease?

In the �2 query, and assuming the causal graph in Figure 2, we would intuitively wish to include Z
(age) as a feature to block the backdoor path ← →X Z Y , and avoid including M (blood pressure) as a
feature lest we intercept part of aspirin’s effect on heart disease mediated through blood pressure. These
intuitions are formalized in the backdoor criterion.

Concretely, revisiting the three linear regression examples of Section 3.2, Example 3.2 poses a decision
to use a feature vector consisting of ⟨ ⟩X Z, or just ⟨ ⟩X . Since the data generating process makes Z a function
of X , andY a function of Z , the DAG of Figure 1(a) corresponds to this model. The DAGmakes it clear that by
including Z in the feature vector, we are conditioning a mediator, thus blocking X ’s influence on Y and
preventing the correct calculation of the causal effect of X onY . This can be seen from the fact that ∣⊥⊥Y X Z ;
therefore, ( ∣ ( ) ) ( ∣ )=E Y do X Z E Y Z, .

Since there are no backdoor paths from X toY , the causal effect can be predicted by not including Z in
the feature vector. Students are then left to debate the linearity assumption. Does every additional level of
training intensity, within a reasonable range, yield the same increase in athletic performance? This appli-
cation of �2 tools to get the causal effect of interest by including only X in the feature vector does not
depend on linearity. So, the linearity discussions can aid intuition and lead to the generalization of drop-
ping the linearity assumption.

Example 3.3 showcases the same feature vector decision,⟨ ⟩X Z, or⟨ ⟩X . This time the corresponding DAG
is Figure 5(a), which was used to explain Simpson’s paradox. The backdoor path ← →X Z Y must be
blocked to have a model that predicts the causal effect of X , preparation, on Y , competitiveness. Blocking
this backdoor between X and Y is accomplished by including Z in the feature vector.

Example 3.4 is a collider scenario depicted in the DAG of Figure 1(c). Here, attention must be paid to
including the collider Z in the feature vector. By including Z , predictions will be far more accurate (in fact,
excluding Z will make predictions simply the mean of Y ). However, doing so opens a spurious pathway
between X and Y , making the causal effect of X on Y naïvely appear to be nonzero, but the DAG makes it
clear that the causal effect should be null. Therefore, we must exclude Z from the feature vector if the ML
model is to determine the causal effect of X , athletic performance, on Y , negotiating skill.

Students can extend the insights gained from the above (which are useful in eliciting insights distin-
guishing�1 and�2 in simple settings) in more complex models like the following that demands a synthesis
of these modular lessons.¹⁰

Example 4.1. Feature selection playground. Consider the SCM in Figure 6 with treatment X , outcome Y ,
and covariates { }R T W V, , , . Determine which of the covariates should be included in addition to X in the
feature vector Z to provide: (1) the most precise observational estimate ofY , ( ∣ )P Y X Z, , and (2) an unbiased
estimates of the causal effect of X on Y , ( ∣ ( ) )P Y do X Z, .



10 Additional modular examples of “good and bad controls” using regression and SCMs can be found in ref. [48].
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In Figure 6, conventional wisdom allows for the inclusion of all covariates { }=Z R T W V, , , to maximize
precise prediction of Y for the �1 quantity ( ∣ )P Y X R W T V, , , , , but the causal quantity requires more
selectivity. To control for all noncausal pathways requires that { }=Z R alone, because (1) controlling for
T opens the backdoor path from ↔ ↔X T Y , (2) controlling forW blocks the chain from → →X W Y , and
(3) controlling for V opens a spurious pathway at collider → ←X V Y . Thus, { }=Z R serves as a backdoor
admissible set to allow for estimation of ( ∣ ( ))P Y do X via adjustment as in Example 3.1.

4.3 Transportability and data fusion

Although much of traditional ML education focuses on the ability or suitability of models to fit a particular
dataset, there are several adjacent discussions that are commonly omitted, including the qualitative differ-
ences between observational (�1) and experimental (�2) data, how these datasets can often be “fused” to
support certain inference tasks, and how to take data collected at some tier in one environment/population
and transport it to another. This transportability problem [49,50] has long been studied in the empirical
sciences under the heading of external validity [51,52] and has received attention from the AI and ML
communities under a variety of related tasks like transfer learning [53,54] and model generalization
[55–57]. Many modern techniques have focused on the ability to take a model trained in one environment
and then to adapt it to a new setting that may differ in key respects. This capability is particularly palatable
to fields that train agents in simulation settings to be later deployed in the real world, often because it is too
risky, expensive, or otherwise impractical to perform the bulk of training in reality [58–60]. In general,
when the training domain differs from the deployment domain (even slightly), predictions are biased,
sometimes with significant model degradation. This often occurs when data from the deployment environ-
ment is limited, otherwise the ML model could have been trained on deployment data. To illustrate the
utility of causal tools for this task, we provide a simple example in the domain of recommender systems that
motivates distinctions in environments with heterogeneous data.

Example 4.2. DietBot. You are designing an app that recommends diets { }∈X 0, 1 (starting with only 2 for
simplicity) that have been shown to interact with two strata of age { } { }∈ < ≥ =Z 65, 65 0, 1 in how they
predict heart health { } { }∈ =Y unhealthy, healthy 0, 1 . The challenge: Your model has been trained on
experimental data from randomized diet assignment in a source environment, π (yielding the�2 distribution

( ∣ ( ))P Y Z do X, ) that differs in its population’s age distribution compared to a target environment, ∗π in which
you wish to deploy your app. From this target environment, you have only observations from surveys
(yielding the �1 distribution ( )∗P X Y Z, , ) and (due to your budget) cannot conduct an experiment in this
domain to determine the best diets to recommend to its population. Your task: Without having to collect
more data, determine the best policy your agent should adopt in ∗π for maximizing the likelihood of users’
health, i.e., find: ( ∣ ( ))= = =

∗ ∗x P Y do X xargmax 1x .

The training and deployment causal diagrams of Example 4.2 are depicted in Figure 7. Notably, because
we conducted an experiment (i.e., performed an intervention) in environment π (Figure 7(b), represented

Figure 6: Feature selection playground on a causal diagram with treatment X , outcome Y , and other covariates.
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by the interventional subgraphGx), the intervention ( )do X severs any of the would-be inbound edges to X in
the observational setting that we see in the target environment ∗π (Figure 7(b), representing the uninter-
vened graph G). Graphically, the challenge in the target environment becomes clear: we wish to estimate

( ∣ ( ))= =

∗P Y do X x1 , but this causal effect is not identifiable because it is impossible to control for all
backdoor paths between X and Y due to the presence of unobserved confounders indicated by the bidir-
ected arcs. Yet, by assumption, the only difference between the two environments is the difference in age
distributions such that ( ) ( )≠

∗P Z P Z , so insights from the experiment conducted in π (in which the direct
effect of →X Y has been isolated) may yet transport into ∗π . To encode these assumptions of where
structural differences occur between environments and thus to determine if and how to transport, we
can make use of another graphical tool known as a selection diagram.

Definition 4.3. (Selection diagram) [61] Let ⟨ ⟩

∗M M, be two SCMs relative to environments ⟨ ⟩

∗π π, sharing
a causal diagram G. By introducing selection nodes, boxed variables representing causes of variables that
differ between source and target environment, ⟨ ⟩

∗M M, is said to induce a selection diagram D if D is
constructed as follows:
1. Every edge in G is also an edge in D.
2. D contains an extra edge →S Vi i (i.e., between a selection node and some other variable)whenever there

might exist a discrepancy ≠

∗f fi i or ( ) ( )≠

∗P U P Ui i between M and ∗M .

Importantly, selection diagrams encode both the differences in causal mechanisms between environ-
ments (via the presence of a selection node) and the similarities, with the assumption that any absence of a
selection node represents the same local causal mechanisms between environments at that variable. In
Example 4.2, the selection diagram requires only a single addition to G (Figure 7(a)): a selection node S
representing the difference in age distributions at Z . Notationally, this also allows us to represent distribu-
tions in terms of the S variable, such that =

∗S s indicates that the population under consideration is the
target ∗π . Similarly, we can re-write distributions that are sensitive to selection like ( ) ( ∣ )= =

∗ ∗P Z P Z S s and
our target query from Example 4.2, ( ∣ ( )) ( ∣ ( ) )= = = =

∗ ∗P Y do X P Y do X S s1 1 , . Doing so provides us a starting
point for adjustment, similar to the backdoor adjustment from Example 3.1, wherein (using the rules of do-
calculus) if we are able to find a sequence of rules to transform the target causal effect into an expression
where the do-operator is independent from the selection variables, transportability is possible [62]. In the
present DietBot Example, the goal is thus to phrase ( ∣ ( ) )= =

∗P Y do X S s1 , in terms of our available data,
( ∣ ( ))P Z Y do X, and ( )∗P X Y Z, , . Such a derivation is as follows:

( ∣ ( ) ) ( ∣ ( ) )∑= = = = = = = =

∗ ∗P Y do X x S s P Y Z z do X x S s1 , 1, , ,
z

(1)

( ∣ ( ) ) ( ∣ ( ) )∑= = = = = = = =

∗ ∗P Y do X x Z z S s P Z z do X x S s1 , , , ,
z

(2)

( ∣ ( ) ) ( ∣ ( ) )∑= = = = = = =

∗P Y do X x Z z P Z z do X x S s1 , , ,
z

(3)

( ∣ ( ) ) ( ∣ )∑= = = = = =

∗P Y do X x Z z P Z z S s1 , ,
z

(4)

( ∣ ( ) ) ( )∑= = = = =

∗P Y do X x Z z P Z z1 , .
z

(5)

Figure 7: Causal and selection diagrams for data collected in different environments but with same causal graphG. (a) Target/
deployment environment π∗, causal graph G, eliciting P X Y Z, ,( )∗ . (b) Source/training environment π , sub model Gx , eliciting
P Z Y do X,( ∣ ( )). (c) Selection diagram D constructed from shared graph G.
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Equation (1) follows from the law of total probability, (2) from the product rule, (3) from d-separation
(because ∣ ( )⊥⊥ =Y S Z do X x, ), (4) from do-calculus (because, examining Gx, ( )⊥⊥ =Z do X x ),¹¹ and (5) is
simply a notational equivalence for the distribution of Z belonging to ∗π .

While many theoretical lessons may end at the derivation of the transport formula concluding in
equation (5), including the numerical walkthrough using the parameters of Table 3 serves as an effective
dramatization for why transportability has important implications for heterogeneous data and policy for-
mation. Consider the scenario wherein the agent designer did not perform a transport adjustment between
source and target domains, using only the model that would have been fit during training. In this risky
setting, the agent would maximize the source environment’s ( ∣ ( ))= =P Y do X x1 :

( ∣ ( )) ( ∣ ( ) ) ( )

( ∣ ( )) ( ∣ ( ) ) ( ) ( ∣ ( ) ) ( )

( ∣ ( )) ( ∣ ( ) ) ( ) ( ∣ ( ) ) ( )

∑= = = = = = =

= = = = = = = + = = = =

= ∗ + ∗

=

= = = = = = = + = = = =

= ∗ + ∗

=

P Y do X x P Y do X x Z z P Z z

P Y do X P Y do X Z P Z P Y do X Z P Z

P Y do X P Y do X Z P Z P Y do X Z P Z

1 1 ,

1 0 1 0 , 0 0 1 0 , 1 1
0.3 0.2 0.7 0.8
0.62

1 1 1 1 , 0 0 1 1 , 1 1
0.4 0.2 0.6 0.8
0.56.

z

As mentioned earlier, ( ∣ ( )) ( ∣ ( ))= = > = =P Y do X P Y do X1 0 1 1 , meaning that the optimal choice in the
training environment is =X 0. However, by properly applying the transport formula, we find that the
opposite is true in the deployment environment:

( ∣ ( )) ( ∣ ( ) ) ( )

( ∣ ( ))

( ∣ ( ))

∑= = = = = = =

= = = ∗ + ∗ =

= = = ∗ + ∗ =

∗ ∗

∗

∗

P Y do X x P Y do X x Z z P Z z

P Y do X
P Y do X

1 1 ,

1 0 0.3 0.9 0.7 0.1 0.34
1 1 0.4 0.9 0.6 0.1 0.42.

z

The DietBot example provides a host of important lessons at �2 of the causal hierarchy, juxtaposing
different causal inferences that would be obtained in different environments, demonstrating the utility of
graphical models and do-calculus, and the dangers of unobserved confounding. Although these theoretical
premises are typically taught in the study of causality in the empirical sciences, its practical utility in AI and
ML can be driven home by casting transportability in terms of “training and deployment” environments,
and by showing the surprise of opposite inferences that would be drawn with and without adjustment. As
learning data scientists, students also obtain insights into the risks and opportunities of heterogeneous
data, and how their fusion can overcome an otherwise difficult task of training and deployment environ-
ment differences. Plainly, in practice, adjustment formulae would not necessarily be computed by hand like

Table 3: Select distributions from environments π π, ∗ in Example 4.2

P Y Z do X1 ,( = ∣ ( )) Z 0= Z 1=

X 0= 0.3 0.7
X 1= 0.4 0.6

P Z( ) P Z( )∗

Z 0= 0.2 0.9
Z 1= 0.8 0.1



11 This rule is more formally stated in the specific rules of do-calculus as Rule 3: deletion of actions, whose full coverage may be
a diversion from topics in traditional AI courses, though would feature prominently on a course with a focus in causal inference.
See ref. [1].

160  Andrew Forney and Scott Mueller



in the above, but the experience of the demonstration is valuable for students; a fuller treatment of
automated tools used in transportability can be found in refs. [10,50,62].

4.4 Instructor reflections

Within previous offerings of these lessons, the student’s surprise experienced in associational exercises and
questions of Section 3 continues with the interventional exercises for feature selection, transportability, and
data fusion. More than just discussions arising from the revelations �2 brings, high-school students have
shown a keen interest in immediately using�2 tools to explain everyday experiences and then learning how
to encode those using a formal vocabulary.

Instructors of introductory courses in AI have expressed frustrations discussing probabilistic models
like Bayesian networks as ad hoc or supporting topics that lack an impactful conclusion. However, exam-
ining these graphical models through the causal lens yields a fruitful experience for students to move
beyond the probability calculus and the mantra that “correlation does not equal causation.” Though this
mantra is indeed true in general, there is a lesson to be learned in its dual: causation does bestow some
structure to observed correlations, and this structure can be harnessed in support of many tasks that lead
beyond the data alone.

By using the intuitions of d-separation as the structure of independence relationships in Bayesian
networks, this strict graphical explanation of the data serves as an effective stepping stone into causal
Bayesian networks and SCMs; by completing this transition, instructors can more fully develop students’
understanding of how probability leads to policy. This insight is clearly illustrated by the use of graphical
models in which observations and interventions can disagree (as in Example 3.1, ( ∣ ) ( ∣ ( ))≠P Y X P Y do X ),
how the environments and circumstances of data collection powerfully matter (as in Example 4.2,

( ∣ ( )) ( ∣ ( ))= = ≠ = =

∗P Y do X x P Y do X xargmax 1 argmax 1x x ), and in causal discovery exercises for which
an equivalence class of observationally equivalent models may explain some dataset, only some of which
may follow a defendable causal explanation.

Along this path, students may struggle to understand the notion of latent variables and unobserved
confounding unless the following are explained in unison: (1) the graphical depiction provides a causal
explanation for where latent, outside influences may be present, and (2) how these influences outside of the
model yield differences in causal �2 and noncausal �1 inferences that the data can provide.

5 Counterfactuals

The counterfactual layer of the hierarchy, �3, both subsumes and expands upon the previous two, newly
allowing for an expression of queries akin to asking: “What if an event had happened differently than it did
in reality?” Humans compute such queries often and with ease (as can be elicited from a classroom),
especially through the experience of regret, which envisions a better outcome to an unchosen action.
Regret is of great utility for dynamic agents, as it informs policy changes for future actions made in similar
circumstances (e.g., the utterance of “Had I only exited the freeway earlier, I would not have gotten stuck in
traffic” may bias future trips along the route to take side streets instead).

Counterfactual expressions are valuable to reasoning agents for a number of reasons, including that: (1)
they allow for insights beyond the observed data, as it is not possible to rewind time and observe the
outcome of a different event than what happened; (2) they can be used to establish precedent of necessary
and sufficient causes, important for agents needing to understand how actions affect their environment
(e.g., “Would the patient have recovered had they not taken the drug?”); and (3) they can be used to
quantify an agent’s regret, which can be used for specific kinds of policy iteration in even confounded
decision-making scenarios.
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5.1 Structural counterfactuals

Despite the expressive and creative potential of counterfactuals, the common student’s initial exposure to
them risks being overly formal and notationally heavy, often beginning with the following definition:

Definition 5.1. (Counterfactual) [9, p. 204] In a SCM M , let X and Y be two subsets of endogenous
variables such that { } ∈X Y V, . The counterfactual sentence “Y would be y (in situation/instantiation of
exogenous variables =U u), had X been x” is interpreted as the equality with ( ) =Y u yx , where ( )Y ux encodes
the solution for Y in the mutilated structural system Mx, where for every ∈V Xi , the equation fi is replaced
with the constant x. Alternatively, we can write:

( ) ( )= =Y u Y u Y .M x xx

Ostensibly, a counterfactual appears similar to the definition of an intervention. However, although the
do-operator expresses a population-level intervention across all possible situations ∈ ∀u U u, a counter-
factual computes an intervention for a particular unit/individual/situation =U u. This new syntax allows us
to write queries of the format ( ∣ )= = ′

=
P Y y X xX x , which computes the likelihood that the query Y attains

value y in the world where =X x (the hypothetical antecedent), given that = ′X x was observed in reality.
The clash between the observed evidence = ′X x and hypothetical antecedent =X x motivates the need
for the new subscript syntax and demonstrates how the previous tiers of the hierarchy cannot express
such a query.

These expressions are often a source of syntactic and semantic confusion for beginners; an anecdotally
better strategy is to instead begin with a discrete, largely deterministic, simple motivating example with a
plain-English counterfactual query, and then to work backward to the formalisms.

Example 5.1. MediBot An automated medical assistant, MediBot, is used to prescribe treatments for simple
ailments, one of which has a policy designed around the following SCM containing Boolean variables to
represent the presence of an ailment A, its symptom S, prescription of two treatments X W, , and the
recovery status of the patient R. The system abides by the SCM in Figure 8.

In addition, we are aware that the ailment’s prevalence in the population is ( )= =P A 1 0.1. Suppose we
observe that MediBot prescribed treatment X (i.e., =X 1) to a particular patient u. Determine the likelihood
that the patient would recover from their ailment had it not prescribed this treatment (i.e., hypothe-
sizing =X 0).

To address this counterfactual query, intuitions best begin with the causal graph, whose observational
state is depicted in Figure 8. Second, it is instructive to show how the previous layers’ notations break down
with the query of interest, as we cannot make sense of the contrasting evidence and hypothesis using the
do-operator alone (i.e., the expression ( ∣ ( ) )= =P R do X X0 , 1 is syntactically invalid, having set X to two
separate values in the same world). Instead, the query of interest focuses upon the recovery state in the

Figure 8: SCM M and its associated graph G pertaining to Example 5.1.

162  Andrew Forney and Scott Mueller



world, where =X 0, though in reality (a separate world state), =X 1 was observed. This can be expressed
via the counterfactual query ( ∣ )=

=
P R X 1X 0 , which can be teased in the lesson either before or after the

computational mechanics that follow.
Before performing this computational, it is useful for students to visualize its steps. Intuitively, we

expect that some information about our observed evidence =X 1 may change our beliefs about the counter-
factual query

=
RX 0; this information thus flows between the observed (�1, associational) and hypothetical

(�2, interventional) worlds through the only source of variance in the system: the exogenous variables (in
Example 5.1, A). Depicting this bridge can be accomplished through a technique known as the twin network
model [63].

Definition 5.2. (Twin network model) For SCM M , arbitrary counterfactual query of the format ( ∣ )′P Y xx ,
and interventional submodel of the counterfactual antecedent Mx, the twin network model ∗M is also an
SCM defined as a combination of M and Mx with the following traits:
1. The structures of M and Mx are identical (including the same structural equations), except that all

inbound edges to X in Mx are severed.
2. All exogenous variables are shared between M and Mx in ∗M , since these remain invariant under

modification.
3. All endogenous variables in the hypothetical Mx are labeled with the same subscript to distinguish them

from their unintervened counterparts, as they may obtain different values.

The twin network of the SCM in Example 5.1 is depicted in Figure 9. This model is not only an intuitive
depiction of the means of computing the query at-hand but also serves the practical purposes of being a
model through which standard evidence propagation techniques can be used to update beliefs from evi-
dence to antecedent, and through which the standard rules of d-separation can be used to determine
independence relations between variables in counterfactual queries. It is also useful to examine some
axioms of counterfactual notation at this point, noting the equivalence of certain �3 expressions with
previous tiers, like ( ) ( ∣ ( ))= =

=
P R P R do X xX x (the “potential outcomes” subscripted format for writing the

�2 intervention) and ( ∣ ) ( ∣ )= = =
=

P R X x P R X xX x (the consistency axiom in which antecedent and observed
evidence are the same, making it an observational quantity from �1).

Returning to our example, the actual computation of ( ∣ )=
=

P R X 1X 0 follows a three-step process moti-
vated by the twin-network representation.

Step 1: Abduction. The abduction step updates beliefs about the shared exogenous variable distribu-
tions based on observed evidence, meaning we effectively replace ( ) ( ∣ )←P u P u e . In the current, largely
deterministic example, this amounts to propagating the evidence that =X 1 through the rest of ∈

∗M M ,
which can be trivially shown to indicate that all variables attain a value of 1 with certainty. However, for the
abduction step, we need only update beliefs about the exogenous variable, A:

Figure 9: Twin network M∗ for the SCM in Example 5.1 and counterfactual query P R X 1X 0( ∣ )=
=

.
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( )

( )

= = ⇒ =

= = ⇒ =

X f S S S
S f A A A

1, 1
1, 1.

x

s

Step 2: Action. With ( ) ( ∣ )←P u P u e (viz., ( ∣ )= = =P A X1 1 1), we can effectively discard/ignore the
observational model M and shift to the hypothetical twin Mx, forcing =X x per the counterfactual ante-
cedent, which in our example, means severing all inbound edges to X in Mx and forcing its value to =X 0.
Let ∗M be the modified model following steps 1 and 2.

⎧

⎨

⎪
⎪

⎩

⎪
⎪

( )

( )

( )

( ∣ )

=

← =

←

← =

← = ∨

=

∗M

S f A A
X
W f S S
R f X W X W
A P A X

0

,
~ 1 .

s

w

r

Step 3: Prediction. Finally, we perform standard belief propagation within the modified ∗M to solve for
our query variable, Rx, and find that the patient would indeed still have recovered (i.e., ( )= =

=
P R 1 1X 0 )

because MediBot would still have also administered the other effective treatment, =W 1x .

( ∣ ) ( )

( )

( )

= = = ← = ⇒ =

= ← = ⇒ =

= ← = ∨ ⇒ =

P A X S f A A S
S W f S S W

W R f X W X W R

1 1 1, 1
1, 1
1, , 1.

s x

x w x

x r x

This simple example not only demonstrates the mechanics and potential of structural counterfactuals,
but also serves as a launchpad for more intricate and challenging applications. Worthwhile follow-on
exercises include the addition of noisy exogenous variables to the system in Example 5.1 (e.g., nondeter-
ministic patient recovery), and analogies to linear SCMs in which the three-step process is repeated through
application of conditional expectation. Moreover, the example leads into questions of necessity and suffi-
ciency [64] of the medical treatments, which can segue into other, more applied and data-driven,
counterfactuals.

5.2 Counterfactuals for metacognitive agents

In some more adventurous explorations in AI oriented at crafting self-improving and reflective artificial
agents, counterfactuals in �3 may prove to be a useful tool for metacognitive agents [65,66]. Related to the
transportability problem with DietBot in Example 4.2, agents may find the need to evolve their policies
learned earlier in their lifespan or in environments that change over time to optimize their performance.
This need complements a growing area of reinforcement learning that incorporates causal concepts, espe-
cially with respect to meta-learning [13,67,68]. To demonstrate such a scenario, we reconsider MediBot in a
setting wherein its current policy’s decisions are confounded, damaging its performance and requiring it to
perform some measure of metacognition to improve that is analogous to the human experience of regret.

Example 5.2. Confounded MediBot.¹² MediBot is back assigning treatment for a separate condition in
which two treatments { }∈X 0, 1 have been shown to be equally effective remedies by the Food and Drug
Administration (FDA) randomized clinical trial (i.e., ( ∣ ( )) ( ∣ ( ))= = = = =P Y do X P Y do X1 0 1 1 , where =Y 1
indicates recovery). As such, patients are given the option to choose between the two treatments for the
final prescription given. Seemingly innocuous, this patient choice is actually problematic given the fol-
lowing wrinkles:



12 The simplicity of Example 5.2 should not undermine the prevalence of confounded decision-making scenarios that are found
in many adversarial settings with traditional ML [69] and a myriad of human-decider-AI-recommender scenarios [15].

164  Andrew Forney and Scott Mueller



1. The patient’s treatment request is actually affected by an unobserved confounder (UC), linking the
treatment and recovery through an uncontrolled backdoor path (Figure 10a). This unobserved, exo-
genous variable U is unrecorded in the data and could potentially be anything, like the influence of
direct-to-consumer advertising of drug treatments that are primarily observed by different treatment-
sensitive subpopulations (like a drug that is only advertised on sports-radio with a primarily exercise-
friendly audience).

2. Because of this confounding influence, MediBot’s observed recovery rates are actually less than the
FDA’s reported ones (Table 4). Worse is that the observed (�1) and experimental (�2) recovery rates look
equivalent within each respective tier, making it a challenge to determine whether a superior, indivi-
dualized treatment exists.

The data in Table 4 demonstrates the tell-tale sign of unobserved confounding wherein the observed
and experimental treatment effects differ ( ( ∣ ) ( ∣ ( ))≠ ∃ ∈P Y x P Y do x x X), implicating an uncontrolled latent
factor that explains the difference. Surprisingly, despite the unknown identity of the confounder, a better
treatment policy than MediBot’s current one does indeed exist in this context, and is derived from
a counterfactual quantity known as the effect of treatment on the treated (ETT) [70]. The ETT traditionally
computes the difference between the effect of an alternate treatment =X x than the one actually given
to an individual = ′X x , the counterfactual component of which can be expressed in this context
as ( ∣ )= = ′ ≠ ′

=
P Y X x x x1 ,X x .
With only the partially specified model, and the observational and experimental recovery rates, it is

possible to compute the ETT for binary treatments (assuming, in this setting, that the patient requested
treatments are observed in equal proportion, ( ) ( )= = = =P X P X0 1 0.5), as in the following derivation that
is true for any treatment =X x and its alternative = ′X x .

( ) ( ∣ ) ( ) ( ∣ ) ( ) ( ∣ ) ( ) ( ∣ ) ( )

( ∣ )
( ) ( ∣ ) ( )

( )

= ′ ′ + = ′ ′ +

= ′ =

= − =

′

=

− ∗

=

P Y P Y x P x P Y x P x P Y x P x P Y x P x

P Y x P Y P Y x P x
P x

1 1 1 0.7 0.5 0.5
0.5

0.9.

x x x x

x
x

This algebraic trick (using only the law of total probability) allows us to derive �3 quantities of interest
from a combination of �1 and �2 data (though only for binary treatment) and tells an important tale about
the system: MediBot is presently in a state of inevitable regret [71] in which the likelihood of recovery for
those given treatment under its policy ( ( ∣ )= = ′ = ∀ ′ ∈P Y X x x X1 0.5 ) is 40% less than had those same
patients been treated differently ( ( ∣ )= = ′ = ∀ ≠ ′ ∈

=
P Y X x x x X1 0.9X x ). The “inevitable” part of this regret

is also instructive for distinguishing �1 (what happens in reality/nature) from �3 (what could have

Figure 10: SCM associated with Example 5.2 with treatment X , recovery Y , UCU, and intent I. (a) Observational model. (b) The
same system, but with intent explicitly modeled.

Table 4: MediBot’s observed treatment recovery rates vs those reported by the FDA’s randomized clinical trials

P Y X1( = ∣ ) P Y do X1( = ∣ ( ))

X 0= 0.50 0.70
X 1= 0.50 0.70
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happened differently) quantities because it seems that no matter what decision MediBot makes in reality,
there is always a better one that it could have made instead!

Ostensibly, this computation yields only bleak retrospect, but also leads to a surprising remedy for
online agents. Two insights contribute to the solution, known as intent-specific decision-making [13]: (1) the
formation of the confounded agent’s observational/naturally decided action (i.e., its intent) can be sepa-
rated from the ultimately chosen one, and (2) this intended action choice serves as a back door admissible
proxy for the state of the UC (see Figure 10(b) with agent intent I ).

Definition 5.3. (Intent) [13] In a confounded decision-making scenario with desired outcome =Y 1, final
agent choice X , unobserved confounder(s) Uc, and structural equation ( )←X f Ux c , SCMs modeling the
agent’s intent I represent its pre-choice �1 response to =U uc c such that I adopts the structural equation
of X with ( ) ( )← =I f U f Ui c x c , and the structural equation for X indicates that, observationally, the final
choice always follows the intended, ( )← =X f I Ix .

When intent is explicitly modeled in a confounded decision-making scenario (Figure 10(b)), the ETT
(previously, a retrospective�3 quantity) can be measured empirically before a decision is made by using do-
calculus conversions to a �2 quantity through a process known as intent-specific decision-making.

Definition 5.4. (Intent-specific decision-making (ISDM)) [14,15,72] In the context of a confounded deci-
sion-making scenario with decision X , intent of that decision I , and desired outcome =Y 1, the counter-
factual �3 expression ( ∣ )= = ′ ′ ∈

=
P Y X x x x X1 , ,X x may be measured empirically via the intent-specific �2

expression ( ∣ ( ) )= = = ′P Y do X x I x1 , , namely:

( ∣ ) ( ∣ ( ) )= = ′ = = = = ′ ′ ∈
=

P Y X x P Y do X x I x x x X I1 1 , , , , .X x (6)

In brief, ISDM label’s the agent’s observational (�1) decision as intent, which is treated as an observed
context satisfying the backdoor criterion, enabling conversion of the counterfactual ETT (�3) to an empiri-
cally estimable causal (�2) query. The confounded agent can thus choose the action that maximizes the
counterfactual ETT to develop a meta-policy that will always act equally, or more, effectively than its
original policy’s intended action. This technique is known as the regret decision criteria (RDC) [13] and
can be expressed (for action X , intent I , and desired outcome =Y 1) as follows:

( ∣ ) ( ∣ ( ) )= = = ′ = = = = ′

∗

=
x P Y I x P Y do X x I xargmax 1 argmax 1 , .

x
X x

x

For Example 5.2 students could find (either analytically through Table 4 or experientially through a con-
textual multi-armed bandit assignment) that ( ∣ ) ( ∣ )= = = > = = =

= =
P Y X P Y X1 0 0.9 1 0 0.5X X1 0 , meaning

that in settings wherein MediBot intends to treat with =X 0, it is better off choosing =X 1. The full
intent-specific distribution of expected recovery rates is shown in Table 5.

The RDC is useful because (1) it allows a confounded agent to make strictly better decisions as a
function of a confounding-sensitive existing policy (in Example 5.2, by prescribing the treatment opposite
its first intended), even in complete naivety of the confounding factors, (2) it provides an empiricalmeans of
sampling a counterfactual datapoint (surprising given the mechanics of counterfactuals) [15], and (3) it can
be intuitively rooted for students in the familiar experience of beginning to do something once regretted,
stopping, and then choosing differently. A useful analogy of this is the practice of breaking a habit: intent

Table 5: Intent-specific recovery rates for the confounded MediBot Example 5.2

P Y I x1 ′X x( = ∣ = )= I 0= I 1=

X 0= 0.5 0.9
X 1= 0.9 0.5
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signals a desire that is autonomous, reactionary to the environment or one’s state (e.g., desiring a strong
drink), which is then suspended by imagining the benefits of an alternative choice.

In autonomous systems, the analogy of “habit breaking” can be a useful one for policy improvement in
which a maladaptive policy may be improved once a counterfactual predicts a better choice than the one
that the current policy would choose. Example 5.2 thus addresses a number of learning outcomes, including
the clear distinctions of quantities at all three tiers of the causal hierarchy, how UCs can account for these
differences, and how to design agents that either exploit or are resilient to them.

5.3 Instructor reflections

Motivating the utility of counterfactual inference can begin with active learning through a Socratic
dialogue, rooting the capacity for human counterfactual reasoning in experiences like regret. “Why do
we not return to restaurants that gave us food poisoning a single time? How do we place this blame of
food poisoning on the restaurant? Would we have gotten food poisoning had we not eaten there?”
Transitioning from these intuitions to why artificial agents can benefit from the ability to answer similar
questions can make for an enjoyable classroom discussion. In classes or levels with more room for debate,
discussions on counterfactuals as the origins of human creativity may also yield fruitful explorations. More
broadly, the ability of counterfactuals to “escape from the data” can offer inspiration; students have enjoyed
the mention of the Lion Man of Ur (an ice-age sculpture depicting a humanoid figure that is half-lion), which
demonstrates one of the earliest instances of the human ability to conceive of ideas without a bearing
in reality [73].

More formally, situating counterfactuals in the PCH can provide a bridge to other courses or contexts in
which the term is used, such as in Rubin’s potential outcomes framework [74] or in philosophical and logical
discourse [75]. By proceduralizing counterfactual computation in the structural three-step approach, students
not only appreciate the reasoning mechanics underlying these other approache but also receive hints on
future applications in the domain of AI.

6 Conclusion

In this work, we have endeavored to not only impress the importance of causal topics to the future of AI
and ML but have also provided instructor-ready content to supplement the existing AI curricula.
Through this earlier exposure to causal concepts, we invite a new generation of data scientists, ML
practitioners, and designers of autonomous agents to employ and extend these tools to address problems
beyond the empirical sciences. Although this work provides only a cursory exposure to the many
possible avenues of synthesis for causality and AI, students familiar with its contents will more deeply
understand their data, models, and the types of questions that each are capable of answering. Likewise,
instructors may find topics in causality to distinguish and enhance their AI courses, give students unique
perspectives, and inspire novel avenues of research. As curricular causal integration becomes more
widespread, we likewise invite educational researchers to investigate its impact on the student experi-
ence and scholarship. The demands of artificial agents continue to extend beyond only associations, so
practitioners familiar with causal concepts will be equipped to address the needs of tomorrow apart from
only the data of today.
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Appendix
A Sample syllabi

Herein, we share two syllabi sequences of topics in courses integrating causal concepts at the high-school
and undergraduate levels (offered in semester-long courses consisting of 15 weeks of instruction), alongside
a table of ad hoc opportunities to integrate these concepts into existing AI/ML curricula.

A.1 Syllabus: causal inference (causality + AI/ML examples)

The following list of topics were offered in a course on causal inference at the high-school level, and follows
the outline of topics in ref. [24] (Table A1).

A.2 Syllabus: cognitive systems design (causality + reinforcement learning)

The following list of topics were offered in a course mingling causal inference with reinforcement learning
entitled “Cognitive Systems Design.” Students taking this course had prerequisite knowledge in probability
and statistics as well as foundational topics in AI/ML. Half of the course is devoted to the foundations of
reinforcement learning, the other to causal inference, and with significant time at its end to detail their
overlap and adjacent possibilities. The course has been offered multiple times experimenting with the order
of topics; originally, a “causality first” approach was attempted, but students found it difficult to appreciate
causal tools from a conceptual level before having an application in mind (reinforcement learning).
Subsequent offerings found greater success in a “reinforcement first” approach, then revisiting and
expanding ideas from this foundation with a causal lens. This latter offering is listed in Table A2.

A.3 Ad hoc causal topic additions (AI/ML with causal integration)

For a more gradual integration of causal topics into AI/ML curricula (in the event that sweeping integration
like in Table A1 or A2 is not feasible), we recommend the select entry points in Table A3.

Table A1: Outline of topics in sample high-school treatment of causal inference. Also appropriate for an undergraduate course
with extensions or added rigor in places

Week Topics

1 Pearlian Causal Hierarchy, causal motivation, Simpson’s Paradox, probability and statistics with and versus causal
inference.

2–4 Introduction to Probability and Statistics: variables, events, conditional probabilities, independence,
distributions, law of total probability, Bayes’ Rule, variance/covariance, regression, multiple regression.

5–7 Graphical Models and Applications: SCMs’ connection to data, d-separation, causal discovery, and model testing.
8-11 Interventions, the do-operator, juxtapositions of 1� , 2� queries, adjustment criteria, front- and backdoor criteria

and adjustment, covariate-specific causal effects, inverse probability weighting, mediation, causal inference in
linear systems, structural vs. regression coefficients, mediation analysis, identifiability.

12–15 Counterfactuals: structural definitions, juxtapositions of 2� , 3� queries, nondeterministic counterfactuals,
counterfactuals for personal decision-making, attribution, probabilities of causation, bias.
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B Example source

Source code¹³ for models in Examples 3.2–3.4:

import torch

import torch.nn as nn

class Model(nn.Module):

def __init__(self, variables):

super(Model, self).__init__()
self.layer1 = nn.Linear(variables, 1)

def forward(self, X):

X = self.layer1(X)

return X

Table A2: Outline of topics in sample undergraduate treatment of causal inference paired with reinforcement learning

Week Topics

1 Course outline, motivations for Reinforcement Learning + Causality, introduction to problems in reinforcement
learning, reward and value/delayed reward, attribution problem

2 Multi-armed bandit problems, finite sample concerns and sampling error, action-value methods, action-selection
rules (ε−greedy, -first, -decreasing, UCB, Thompson Sampling), regret, bandit variants (e.g. contextual bandit
problems, adversarial bandits)

3–5 Markov Decision Processes, policies, expectimax trees, discounting, value functions and Q-values, Bellman
equations, value iteration, policy evaluation and iteration, online vs. offline policy search, model-based vs. model-
free approaches, passive vs. active online RL, temporal difference learning, exact/tabular Q-learning,
approximate/action-value feature-based Q-learning, reward shaping

6 Modern Reinforcement Learning: Deep Q-Networks, replay buffers, target vs. policy networks, dual learning, actor-
critic methods, inverse reinforcement learning, and select topics from recent literature

7–13 Causal Inference: accelerated sequence of topics from Table A1
14–15 Causal Reinforcement Learning: empirical counterfactuals and meta-cognition, causal transportability, causality in

multi-agent systems, selective interventions, and select topics from recent literature

Table A3: Ad hoc causal addendum possible for gradual integration of topics into traditional curricula

Traditional AI/ML topic Causal addenda

Introductory probability and
statistics

Tiers of the Pearlian causal hierarchy, graphical models, d-separation for
understanding conditional independence

Formal logic Pearlian causal hiearchy, SCMs with boolean logic functions, logical interpretation
of observations, interventions, and structural counterfactuals

Bayesian networks SCMs and causal Bayesian networks, interventions, and distinctions between 1� , 2�

queries
Regression SCMs and causal vs. regression coefficients, adjustment criteria, backdoor and

front-door adjustment
Supervised machine learning Causal recipes for feature selection, causal/graphical recipes for transportability,

model interpretability and explainability
Reinforcement learning Pearlian causal hierarchy (RL can be situated at 2� with agents in the online setting),

interventions, counterfactual formalisms of regret (with reference to reward
functions), causal recipes for feature selection



13 Full source code is at: https://github.com/CausalEd/exercises
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criterion = nn.MSELoss()

def train_model(inputs, y, epochs=1000):

model = Model(inputs.shape[1])

optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

for _ in range(epochs):

optimizer.zero_grad()
yhat = model(inputs)

loss = criterion(yhat, y)

loss.backward()

optimizer.step()

return model
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