
Exploiting equality constraints in causal inference
Supplementary Material

1 Proofs

We first define the following lemma, which we will be using in the later proofs.

Lemma 3. Each constraint li in Lemma 1 can be rewritten in the form of

ρziy·Wi
Ψ = qi1θ1 + · · ·+ qinθn, (1)

such that Ψ is a function on correlations among variables in M , and each qil for all i = 1, . . . , n′ and l = 1, . . . , n
satisfies the following conditions.

1. If θl is a directed edge, then qil =
∑n

j=0 bijaij l, where aij l and bij are defined the same way as
[Brito and Pearl, 2012] Equation (10).

2. If θl is a bidirected edge, then qil = bi0 .

The proof of Lemma 3 is given in Section 1.4.

1.1 Proof of Lemma 1

Proof. Given Lemma 3, and [Brito and Pearl, 2012] Section 7.4, we have all those coefficients are functions on
the correlations of variables in M .

Note that the functions are not necessarily polynomials, since from the proof of Lemma 3, φi is a polynomial
on correlations, while ρziy·Wi

is φi divided by some functions on the correlations, which results in an arbitrary
function.

1.2 Proof of Lemma 2

We prove Lemma 2 together with Theorem 1.

1.3 Proof of Theorem 1

Proof. To prove there exists a full-rank set of N = n′ + nk + ne linear constraints on E, we first construct a set
of constraints, L, such that |L| = N . Then we prove each of the N constraints is linear, and finally we show that
the set is full-rank.

Constructing the N constraints: We first construct the first n′ constraints. Given a partial-instrumental
set Z for E on E′, w.l.o.g, denote Z = {z1, . . . , zn′}, E = {e1, . . . , en}, E′ = {e1, . . . , en′}. Also denote the triples
in the definition of a basic-partial-instrumental set as (z1,W1, p1), . . . , (zn′ ,Wn′ , pn′). Since each pi is a path
from zi to Ta(ei), we can say each zi matches to an edge ei ∈ E′. From Lemma 1, we can create li, which is
matched to zi and ei. See Lemma 3.

The left-hand side expression from Equation (1) and qi1, . . . , qin can all be calculated from the data. Hence, the
first n′ linear equations we construct for L are Equation (1) for i = 1, · · · , n′.

Next, we construct the next group of ne constraints in L. For each j = 1, . . . , ne, we write the j-th constraint in
Ee as

0 = dje
e
j1 + eej2, (2)

where dj is a constant, and eej1 and eej2 are the two edges involved in this equality constraint. W.l.o.g, we assume
for each j, in the j-th constraint, the first edge, eej1, is selected for the selection defined in the theorem.
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Finally, we construct the remaining nk of the constraints in L. For each h = 1, . . . , nk, the h-th edge in Ek is
ekh, and we have a constraint

λh = ekh, (3)

where λh is the known value of ekh.

Constructing a matrix of the constraints Now that we have a set of N = n′+ne +nk constraints, in order
to prove that they are linearly independent, we want to construct a matrix, and prove the matrix is full-row-rank.
We first construct an ordering of the edges involved in those constraints.

The first n′ edges are the edges in E′, in the order of e1, . . . , en′ . Since there exists a way to non-repetitively
select one edge from each equality constraint that certain conditions are satisfied, let the selected edges, Es, be
the next ne edges, with the ordering the same as the ordering of the equality constraints in L. Denote those edges
as {ee11, . . . , eene1}, and the edges that are paired with those edges as {ee12, . . . , eene2}. Next, the last nk edges are
those in Ek, with the ordering the same as the constraints in L. Finally, any edges in (E ∪Ek) \ (E′ ∪Es ∪Ek)
can be of any order in the end. We can construct this order because as specified in the theorem, E′, Es, and Ek

do not share any element.

Given the ordering of the edges, we can construct a matrix, where each term in the matrix is the coefficient in
front of an edge in a constraint. Each row is one constraint in L, in order, and each column is one edge, in the
order we just specified. So we have an N × |E| matrix. To prove this matrix is full-row-rank, it suffices to prove
the N ×N sub-matrix containing the first N columns of the original matrix is full-rank. Below we give what the
submatrix looks like (the first row in parentheses is used to indicate the edges for the matrix, and is not part of
the matrix.)

(e1 e2 . . . en′ ee11 . . . eene1 ek1 . . . eknk
)

q11 q12 . . . q1n′ U . . . U U . . . U
...

. . .
...

...
. . .

...
qn′1 qn′2 . . . qn′n′ U . . . U U . . . U

0 . . . . . . 0 d1 . . . . . . 1 . . . 0
...

. . .
...

0 . . . 1 . . . 0 . . . dne
. . . . . . 0

0 . . . . . . . . . . . . . . . 0 1 . . . 0
...

. . .
...

0 . . . . . . . . . . . . . . . . . . . . . 0 1


U denotes “unknown”, which might be zero (if the edge corresponding to that column is not in E, or is in E but
not in the constraint corresponding to that row,) or non-zero (if the edge corresponding to that column is in E
and is in the constraint corresponding to that row.)

Proof that the matrix is full-rank To prove this matrix is full-rank, we simply have to prove that the
determinant does not vanish. The determinant of an N ×N matrix can be calculated using the Leibniz formula,
which is summing up the product of N entries corresponding to all possible permutations of the set {1, 2, . . . , N}.
Hence, we only have to prove that the product we get by selecting the first permutation, i.e., {1, 2, . . . , N}, cannot
be canceled by any other products. In other words, we only have to prove that the product of the diagonal of
the matrix has a term that cannot be canceled out by any other term from the expression of the determinant.

We define a term, T ∗ to be

T ∗ =

n′∏
j=1

T (pj)

ne∏
i=1

di, (4)

where T (pj) is the product of the edge coefficients along the path pj . T ∗ must exist in the product of the

diagonal, since
∏n′

j=1 T (pj) exists in the product of the first n′ entries from the diagonal (Lemma 3), and
∏ne

i=1 di
is the product of the rest of the diagonal entries.



Suppose that T ∗ appears at least twice in the expression of the determinant. We first prove that T ∗ must come
from selecting the diagonal terms of the matrix.

Note that each selection must select one entry from each row and each column, from the Leibniz formula. We
must select the diagonal for the last nk entries, since if a non-diagonal entry was selected, that entry must be 0,
and the whole product would be 0.

Next, we must also select the diagonal for the middle ne entries, d1, . . . , dne . We prove this argument by proving
that if we do not select the diagonal, then we cannot reproduce the product of the ne diagonal entries no matter
what edges we select, which means any term in our selection cannot cancel out T ∗. Suppose this is not true, i.e.,
even if we do not select the diagonal entries for the middle ne rows, we can still get the product somewhere else.

Recall that for each j = 1, . . . , ne, dje
e
j1 + eej2 = 0. Since this equality constraint should comply with the actual

values of the edges eej1, e
e
j2 in the model M , we have for each j,

dj = −
eej2
eej1

. (5)

Denote the product of the diagonal entries for the middle ne rows as Tm, then

Tm = (−1)ne

ne∏
j=1

eej2
eej1

. (6)

Terms cancel out if we have the same edge with one occurrence on the numerator and one occurrence on the
denominator. So we might end up having a simplified expression,

Tm = (−1)ne

∏
i

eeni

eedi

. (7)

Note that Tm cannot be (−1)ne , where all edges cancel out. We next examine where those edges might appear
in the matrix. First note that the terms in the first n′ rows do not contain any edge in Inc(y) (Lemma 3).

bij are polynomials on the correlations among zi,Wi1 , . . . ,Wik and aij l = ρWij
xl

. All edges in Inc(y) have a

head y, which means no edge in Inc(y) can appear in the correlations among the non-descendants of y (this can
be seen from Wrights’ rules.) So qil, which is made up of correlations among Wij , xi, zi (all non-descendants of
y,) does not contain any edge in Inc(y).

Hence, the edges in Tm cannot be canceled out by anything in the first n′ rows, which means T ∗ will contain Tm
as it is.

Suppose we select only a subset of n′e the diagonal entries for the middle ne rows. For each row where the
diagonal is not selected, 1 must be selected (otherwise we will have to select 0, and the product will be 0.) So
we end up having the product of the selected entries from the middle ne rows, T ′m as

T ′m = (−1)n
′
e

∏
i

een′
i

eed′
i

. (8)

Tm and T ′m cannot be equal to each other. Otherwise, we produce a constraint on those edges by equating Tm
and T ′m. However, given that the equality constraints are linearly independent, the values of those edges should
vary independently and should not comply to any constraint. In other words, they are equal only when the
constraint is satisfied, which has Lebesgue measure 0, so we assume that is not the case. Thus, to cancel out T ∗,
we must select the diagonal of the middle ne rows.

We have proved that for the last ne + nk rows, we must select the entries on the diagonal. For the first n′ rows,
we can only select from the first n′ columns, since we can only select one entry from each column, and the last
ne + nk columns already have entries been selected. Therefore, we only need to analyze the top left n′ × n′
submatrix. The problem reduces to proving the term

t∗ =

n′∏
j=1

T (pj) (9)



exists only once in the determinant of this submatrix. We first prove that t∗ appears only once in the product
of the diagonal entries. We use the same proof strategy as in [Brito and Pearl, 2012] Proof of Lemma 8. To get
t∗, we need to select one term from each diagonal entry such that the product of those terms gives t∗. From
[Brito and Pearl, 2012] Proof of Lemma 8, for qjj where column j is a directed edge, if we select the second or
the third term of qjj in [Brito and Pearl, 2012] Equation (11), then it must bring in a term that is not in t∗, or
causes the product to contain a term in t∗ twice. Hence, for those qjj entries, we can only select from the first
term in Equation in [Brito and Pearl, 2012] Equation (11). After eliminating those terms from consideration,
the remaining terms in the product of the n′ diagonal terms are given by

t∗
∏

i for directed

(1 + b̂i0)
∏

k for bidirected

(1 + b̂k0) (10)

=t∗
n′∏
j

(1 + b̂j0), (11)

From [Brito and Pearl, 2012], b̂j0 are polynomials on correlations among Wi, and they do not have any constant
terms. As a result, t∗ appears only once in Equation (11), and thus appears only once in the product of the
diagonal entries.

What remains to prove is that t∗ does not appear in the product of another selection of entries, which is different
from selecting all the diagonals. For the columns that correspond to bidirected edges, we have to select the
diagonal terms, since those are the only terms in those column that are non-zero. We generate a submatrix by
removing those columns corresponding to bidirected edges and those rows with the same row numbers as those
column numbers. This submatrix is a square matrix, and all columns correspond to directed edges. This reduces
to the proof of Theorem 1 from [Brito and Pearl, 2012], where they proved that no matter which selection we
have, the term

∏
j for directed T (pj) can never be canceled.

To sum up, we showed that one can never find another term in the determinant that can cancel out a term, T ∗,
which is also in the determinant. Hence, the N×N sub-matrix is full-rank, and the N×E matrix is full-row-rank.

Finally, when N = |E|, we have a full-rank set of N linear equations on N edges, so we can solve for all of the
edges.

1.4 Proof of Lemma 3

Proof. From Lemma 1 in [Brito and Pearl, 2012], denoting Wi = {Wi1 , . . . ,Wik} (we assume Wi contains k
single variables), we have

ρziy·Wi =
φi(zi, y,Wi1 , . . . ,Wik)

ψi(zi,Wi1 , . . . ,Wik)ψi(y,Wi1 , . . . ,Wik)
, (12)

where φ is linear on the correlations ρziy, ρWi1y
, . . . , ρWik

y, and the square of each of the ψ functions is a
polynomial on correlations among the variables it takes. We can write

φi = bi0ρziy + bi1ρWi1y
+ · · ·+ bi1ρWik

y. (13)

We only need to prove that φi is linear on the edges e1, . . . , en and does not contain any constant term. Since
ρziy·Wi

vanishes in GE∩D∪{εi}− from the definition of a partial-instrumental set, φ(zi, y,Wi1 , . . . ,Wik) must also
vanish in GE∩D∪{εi}−. For all bidirected edges in Inc(y), we can treat them as two directed sub-edges connected
at the tails. Hence, [Brito and Pearl, 2012]’s Lemmas 6 and 7 apply. Let e′j be the same as ej if ej is directed, and
the sub-edge pointing to y if ej is bidirected, and we immediately have that φi is linear on the edges e′1, . . . , e

′
n

and does not contain any constant term. If ej is bidirected, φi being linear on e′j is equivalent to that φi is linear
on ej . From Lemma 7, we have that all edges not in E ∩D ∪ {εi} have coefficient 0. Hence, either εziy is the
only bidirected edge in the constraint li, or there exists no bidirected edge in li.

ρziy·Wi can be written in the form of ρziy·Wi = ci1e1 + · · · + cinen. We then apply the results from Section 7.4
in [Brito and Pearl, 2012] and we have for each j where ej is a directed edge, cij is a function of the correlations
of variables in M .



If there does not exist a bidirected edge among θ1, . . . , θn, then the lemma is evident from the result from
[Brito and Pearl, 2012]. If there exists a bidirected edge, w.l.o.g, assume θn is the bidirected edge. Now we
examine every qij .

First we can decompose θ into two directed edges, one pointing to y and one does not include y. Let the
decomposition be θn = αβ, where α is the edge pointing to y. We can thus write ρziy·Wi

in the form of

ρziy·Wi = qi1θ1 + · · ·+ qi(n−1)θn−1 + qinβα. (14)

Now we have a linear equation on directed edges θ1, . . . , θn−1, α. Hence, the results from [Brito and Pearl, 2012]
applies, and we know for j where θj is a directed edge, qij is the same as the way defined in [Brito and Pearl, 2012].

The coefficient of α can also be regarded as
∑n

j=0 bijaijn. Recall the definition in [Brito and Pearl, 2012], each
aijn is the sum of paths from zi or Wi to y passing through θn, but not including θn. From Definition 4, each
Wij is non-descendant of zi, so any unblocked path from Wij to zi must have an arrowhead at zi, which makes
zi a collider (also named as “sink” or “convergent”) between Wij and y, and blocks the path between zi and y.
Since no paths from other zi or Wi can pass through the bidirected edge, the only non-zero aijn is ai0n, which is
the sum of paths from zi to y through θn but not including θn, which is equal to 1. The corresponding multiplier
is bi0 . Since the index of the bidirected edge among θ1, . . . , θn does not matter, we assumed the bidirected
edge is of index n for the convenience of discussion. Now we can replace n with l and we have the coefficient
qil = bi0 · 1 = bi0 .

2 Discussion on the Example in Section 7.1

In Figure 3 left, if the equality constraint is instead λux = λuw, then the equality constraint in the latent
projection DAG is εxy = εwy. {w, x} form a partial-instrmental set for {εwy, εxy, λxy} on {εwy, λxy}. Together

with the equality constraint, we can solve for all edges.

If the equality constraint is instead λux = λuy, then the equality constraint in the latent projection DAG is
εxw = εwy. εxw is identified (εxw = ρxw). Then with the equality constraint, εwy is identified. εxy = εwy.

{w, x} form a partial-instrmental set for {εwy, εxy, λxy} on {εxy, λxy}. Together with the value of εwy, we can
solve for all edges.
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