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EXTENDED ABSTRACT 

Probability theory is shunned by most researchers in Artificial Intelligence. New calculi, 
claimed to better represent human reasoning under uncertainty, are being invented and reinvented at an 
ever-increasing rate. A major reason for the emergence of this curious episode has been the objective 
of making reasoning systems transparent, i.e., capable of producing psychologically meaningful expla- 
nations for the intermediate steps used in deriving the conclusions. 

Traditional probability theory, admittedly, has erected cultural barriers against meeting this re- 
quirement. For example, scholarly textbooks on probability theory create the impression that to con- 
struct an adequate representation of probabilistic knowledge we must start, literally, by defining a joint 
distribution function P (Xl, x2, • . .  xn) on all propositions and their combinations, and that this func- 
tion should serve as the sole basis for all inferred judgments. As a result, even simple tasks such as 
computing the impact of evidence e on a hypothesis h via P (h I e) = P (h, e ) / P (e) appear to require a 
horrendous number of meaningless arithmetic operations, unsupported by familiar mental processes. 

Another example is the striking disparity between numerical definitions of independence, e.g., 
P (h, e) = P (h)P (e), and the ease and conviction with which people distinguish dependencies from in- 
dependencies, being so unwilling to provide precise numerical estimates of probabilities. 

Contrary m this tradition, we argue that a more natural representation of probabilistic knowledge 
is provided by dependency graphs. The nodes in these graphs represent propositions (or variables), and 
the arcs represent local dependencies among conceptually-related propositions. Graphs permit us to 
specify dependencies explicitly and qualitatively; and preserve these dependencies despite numerical in- 
precision. We further argue that the basic steps invoked while people query and update their 
knowledge, correspond to mental tracings of preestablished links in such graphs, and it is the degree to 
which an explanation mirrors these tracings that determines whether it is considered "psychologically 
meaningful." 

The first part of the talk will examine what properties of probabilistic models can be captured by 
graphical representations and will compare the properties of two such representations: Markov Net- 
works and Bayes Networks. A Markov network is an undirected graph where the links represent sym- 
metrical probabilistic dependencies, while a Bayes network is a directed acyclic graph (DAG), where 
the arrows represent causal influences or object-property relationships. The analysis rests heavily on the 
theory of GRAPHOIDS, uncovers the logical basis of information dependencies and ties it to vertex- 
separation conditions in graphs. Given an initial set of such dependencies, the axioms established per- 
mit us to infer new dependencies by non-numeric, logical manipulations. Graphs provide an economi- 
cal language for representing these dependencies and an efficient inference calculus for distinguishing 
the relevant from the irrelevant. 

The second part will introduce a calculus for performing inferences in Bayes Networks. The 
impact of each new evidence is viewed as a perturbation that propagates through the network via local 
communication among neighboring concepts. We show that in singly-connected networks such auto- 
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nomous propagation mechanism can support both predictive and diagnostic inferences, that it is 
guaranteed to converge in time proportional to the network's diameter and that every proposition is 
eventually accorded a measure of belief consistent with the axioms of probability theory. This mechan- 
ism resolves some long-standing philosophical problems associated with Jeffrey's rule of updating and 
Polya's "logic of Plausible Inference" and also provides a reasonable model of neural nets performing 
low level cognition. In multiply-connected networks, clustering and conditioning techniques are avail- 
able which conduct uncertainty propagation in abstract tree-structured topologies. 

In addition to belief updating, the network model also facilitates distributed revision of compo- 
site beliefs, i.e., the categorical instantiation of a subset of hypotheses which constitute the most satis- 
factory explanation of the evidence at hand. We show that, in singly-connected networks, the most sa- 
tisfactory explanation can be found in linear time by a message-passing algorithm similar to the 
one used in belief updating. In multiply- connected networks, the problem may be exponentially 
hard but, if the network is sparse, topological considerations can be used to render the interpretation 
task tractable. In general, finding the most probable combination of hypotheses is no more complex 
than computing the degree of belief for any individual hypothesis. 

In conclusion, we will show that the current trend of abandoning probability theory as the stan- 
dard formalism for managing uncertainty is grossly premature -- taking graph propagation as the basis 
for probabilistic reasoning nullifies most objections against the use of probabilities in reasoning sys- 
tems. In particular, the graph representation allows us to: 

Construct consistent knowledge bases naturally, modularly and incrementally 

Distinguish ignorance from uncertainty, and "probable" from "possible" or "plausible" 

Distinguish conflicting evidence from uncertain or insufficient evidence 

Admit judgmental evidence at any level of abstraction 

Trace back the sources of beliefs and produce sound explanations 

Optimize the acquisition of data 

Answer queries and introduce new constraints 

Commit beliefs to the most plausible multi-hypotheses explanation 

Learn structures and parameters from empirical data 
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