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As a former physicist, I was extremely interested in cybernetics.  Though it did not utilize 
the full power of Turing Machines, it was highly transparent, perhaps because it was 
founded on classical control theory and information theory.  We are losing this 
transparency now, with the deep-learning style of machine learning.  It is fundamentally a 
curve-fitting exercise that adjusts weights in intermediate layers of a long input-output 
chain.  

I find many users who say that it “works well and we don’t know why.”  Once 
you unleash it on large data, deep learning has its own dynamics, it does its own repair 
and its own optimization, and it gives you the right results most of the time.  But when it 
doesn’t, you don’t have a clue about what went wrong and what should be fixed.  In 
particular, you do not know if the fault is in the program, in the method, or because things 
have changed in the environment.  We should be aiming at a different kind of 
transparency. 

Some argue that transparency is not really needed.  We don’t understand the 
neural architecture of the human brain, yet it runs well, so we forgive our meager 
understanding and use human helpers to great advantage.  In the same way, they argue, 
why not unleash deep-learning systems and create intelligence without understanding 
how they work?  I buy this argument to some extent.  I personally don’t like opacity, so I 
won’t spend my time on deep learning, but I know that it has a place in the makeup of 
intelligence.  I know that non-transparent systems can do marvelous jobs, and our brain is 
proof of that marvel. 

But this argument has its limitation.  The reason we can forgive our meager 
understanding of how human brains work is because our brains work the same way, and 
that enables us to communicate with other humans, learn from them, instruct them, and 
motivate them in our own native language.  If our robots will all be as opaque as 
AlphaGo, we won’t be able to hold a meaningful conversation with them, and that would 
be unfortunate.  We will need to retrain them whenever we make a slight change in the 
task or in the operating environment. 

So, rather than experimenting with opaque learning machines, I am trying to 
understand their theoretical limitations and examine how these limitations can be 
overcome.  I do it in the context of causal-reasoning tasks, which govern much of how 
scientists think about the world and, at the same time, are rich in intuition and toy 
examples, so we can monitor the progress in our analysis.  In this context, we’ve 
discovered that some basic barriers exist, and that unless they are breached we won’t get 
a real human kind of intelligence no matter what we do.  I believe that charting these 
barriers may be no less important than banging our heads against them. 

Current machine-learning systems operate almost exclusively in a statistical, or 
model-blind, mode, which is analogous in many ways to fitting a function to a cloud of 
data points.  Such systems cannot reason about “what if ?” questions and, therefore, 
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cannot serve as the basis for Strong AI—that is, artificial intelligence that emulates 
human-level reasoning and competence.  To achieve human-level intelligence, learning 
machines need the guidance of a blueprint of reality, a model—similar to a road map that 
guides us in driving through an unfamiliar city. 
 To be more specific, current learning machines improve their performance by 
optimizing parameters for a stream of sensory inputs received from the environment.  It is 
a slow process, analogous to the natural-selection process that drives Darwinian evolution.  
It explains how species like eagles and snakes have developed superb vision systems over 
millions of years.  It cannot explain, however, the super-evolutionary process that 
enabled humans to build eyeglasses and telescopes over barely a thousand years.  What 
humans had that other species lacked was a mental representation of their environment—
representations that they could manipulate at will to imagine alternative hypothetical 
environments for planning and learning. 
 Historians of Homo sapiens such as Yuval Noah Harari and Steven Mithen are in 
general agreement that the decisive ingredient that gave our ancestors the ability to 
achieve global dominion about forty thousand years ago was their ability to create and 
store a mental representation of their environment, interrogate that representation, distort 
it by mental acts of imagination, and finally answer the “What if?” kind of questions.  
Examples are interventional questions (“What if I do such-and-such?”) and retrospective 
or counterfactual questions (“What if I had acted differently?”).  No learning machine in 
operation today can answer such questions.  Moreover, most learning machines do not 
possess a representation from which the answers to such questions can be derived. 
 With regard to causal reasoning, we find that you can do very little with any form 
of model-blind curve fitting, or any statistical inference, no matter how sophisticated the 
fitting process is.  We have also found a theoretical framework for organizing such 
limitations, which forms a hierarchy.   
 On the first level, you have statistical reasoning, which can tell you only how 
seeing one event would change your belief about another.  For example, what can a 
symptom tell you about a disease? 
 Then you have a second level, which entails the first but not vice versa.  It deals 
with actions.  “What will happen if we raise prices?”  “What if you make me laugh?”  
That second level of the hierarchy requires information about interventions which is not 
available in the first.  This information can be encoded in a graphical model, which 
merely tells us which variable responds to another. 
 The third level of the hierarchy is the counterfactual.  This is the language used by 
scientists.  “What if the object were twice as heavy?”  “What if I were to do things 
differently?” “Was it the aspirin that cured my headache, or the nap I took?”  
Counterfactuals are at the top level in the sense that they cannot be derived even if we 
could predict the effects of all actions.  They need an extra ingredient, in the form of 
equations, to tell us how variables respond to changes in other variables. 
 One of the crowning achievements of causal-inference research has been the 
algorithmization of both interventions and counterfactuals, the top two layers of the 
hierarchy.  In other words, once we encode our scientific knowledge in a model (which 
may be qualitative), algorithms exist that examine the model and determine if a given 
query, be it about an intervention or about a counterfactual, can be estimated from the 
available data—and, if so, how.  This capability has transformed dramatically the way 



scientists are doing science, especially in such data-intensive sciences as sociology and 
epidemiology, for which causal models have become a second language.  These 
disciplines view their linguistic transformation as the Causal Revolution.  As Harvard 
social scientist Gary King puts it, “More has been learned about causal inference in the 
last few decades than the sum total of everything that had been learned about it in all 
prior recorded history.” 
 As I contemplate the success of machine learning and try to extrapolate it to the 
future of AI, I ask myself, “Are we aware of the basic limitations that were discovered in 
the causal-inference arena?  Are we prepared to circumvent the theoretical impediments 
that prevent us from going from one level of the hierarchy to another level?” 
 I view machine learning as a tool to get us from data to probabilities.  But then we 
still have to make two extra steps to go from probabilities into real understandingnce—
two big steps.  One is to predict the effect of actions, and the second is counterfactual 
imagination.  We cannot claim to understand reality unless we make the last two steps. 
 In his insightful book Foresight and Understanding (1961), the philosopher 
Stephen Toulmin identified the transparency-versus-opacity contrast as the key to 
understanding the ancient rivalry between Greek and Babylonian sciences.  According to 
Toulmin, the Babylonian astronomers were masters of black-box predictions, far 
surpassing their Greek rivals in accuracy and consistency of celestial observations.  Yet 
Science favored the creative-speculative strategy of the Greek astronomers, which was 
wild with metaphorical imagery: circular tubes full of fire, small holes through which 
celestial fire was visible as stars, and hemispherical Earth riding on turtleback.  It was 
this wild modeling strategy, not Babylonian extrapolation, that jolted Eratosthenes (276-
194 BC) to perform one of the most creative experiments in the ancient world and 
calculate the circumference of the Earth.  Such an experiment would never have occurred 
to a Babylonian data-fitter.  
 Model-blind approaches impose intrinsic limitations on the cognitive tasks that 
Strong AI can perform.  My general conclusion is that human-level AI cannot emerge 
solely from model-blind learning machines; it requires the symbiotic collaboration of 
data and models. 
 Data science is a science only to the extent that it facilitates the interpretation of 
data—a two-body problem, connecting data to reality.  Data alone are hardly a science, 
no matter how “big” they get and how skillfully they are manipulated.  Opaque learning 
systems may get us to Babylon, but not to Athens. 
 




