8 Appendix

8.1 Proof of Theorem 1

We first prove three lemmas.
Lemma 5. The z-specific PNS $P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z\right)$ are bounded as follows:

$$
\begin{gather*}
\max \left\{\begin{array}{c}
0 \\
P\left(y_{x} \mid z\right)-P\left(y_{x^{\prime}} \mid z\right) \\
P(y \mid z)-P\left(y_{x^{\prime}} \mid z\right) \\
P\left(y_{x} \mid z\right)-P(y \mid z)
\end{array}\right\} \leq z-P N S \tag{5}\\
\min \left\{\begin{array}{c}
P\left(y_{x} \mid z\right) \\
P\left(y, x \mid z\left(y_{x^{\prime}}^{\prime} \mid z\right)\right. \\
P\left(y_{x} \mid z\right)-P\left(y^{\prime}, x^{\prime} \mid z\right) \\
+P\left(y, x^{\prime} \mid z\right)+P\left(y_{x^{\prime}} \mid z\right)+ \\
\left.y^{\prime}, x \mid z\right)
\end{array}\right\} \geq z-P N S \tag{6}
\end{gather*}
$$

Proof. Since for any three events A, B and C, we have

$$
\begin{equation*}
P(A, B \mid C) \geq \max [0, P(A \mid C)+P(B \mid C)-1] \tag{7}
\end{equation*}
$$

therefore, we have

$$
\begin{aligned}
\mathrm{z}-\mathrm{PNS} & \geq \max \left[0, P\left(y_{x} \mid z\right)+P\left(y_{x^{\prime}}^{\prime} \mid z\right)-1\right] \\
& =\max \left[0, P\left(y_{x} \mid z\right)-P\left(y_{x^{\prime}} \mid z\right)\right]
\end{aligned}
$$

Also,

$$
\begin{align*}
\mathrm{z}-\mathrm{PNS}= & P\left(y_{x}, y_{x^{\prime}}^{\prime}, x \mid z\right)+P\left(y_{x}, y_{x^{\prime}}^{\prime}, x^{\prime} \mid z\right) \\
= & P\left(y, y_{x^{\prime}}^{\prime}, x \mid z\right)+P\left(y_{x}, y^{\prime}, x^{\prime} \mid z\right) \tag{8}\\
= & P(x, y \mid z)-P\left(x, y, y_{x^{\prime}} \mid z\right)+P\left(y_{x}, y^{\prime}, x^{\prime} \mid z\right) \\
= & P(x, y \mid z)-P\left(y, y_{x^{\prime}} \mid z\right)+ \\
& P\left(x^{\prime}, y, y_{x^{\prime}} \mid z\right)+P\left(y_{x}, y^{\prime}, x^{\prime} \mid z\right) \\
= & P(x, y \mid z)-P\left(y, y_{x^{\prime}} \mid z\right)+ \\
& P\left(x^{\prime}, y \mid z\right)+P\left(y_{x}, y^{\prime}, x^{\prime} \mid z\right) \\
= & P(y \mid z)-P\left(y, y_{x^{\prime}} \mid z\right)+P\left(x^{\prime}, y^{\prime}, y_{x} \mid z\right) \tag{9}\\
= & P(y \mid z)-P\left(y, y_{x^{\prime}} \mid z\right)+ \\
& P\left(y^{\prime}, y_{x} \mid z\right)-P\left(x, y^{\prime}, y_{x} \mid z\right) \\
= & P(y \mid z)-P\left(y, y_{x^{\prime}} \mid z\right)+ \\
& P\left(y^{\prime}, y_{x} \mid z\right)-P\left(x, y^{\prime}, y \mid z\right) \\
= & P(y \mid z)-P\left(y, y_{x^{\prime}} \mid z\right)+P\left(y^{\prime}, y_{x} \mid z\right) \tag{10}
\end{align*}
$$

By (10),

$$
\begin{aligned}
\mathrm{z}-\mathrm{PNS} & \geq P(y \mid z)-P\left(y, y_{x^{\prime}} \mid z\right) \\
& \geq P(y \mid z)-P\left(y_{x^{\prime}} \mid z\right)
\end{aligned}
$$

Also by (10) and (7),

$$
\begin{aligned}
\mathrm{z}-\mathrm{PNS} & \geq P(y \mid z)-P(y \mid z)+P\left(y^{\prime}, y_{x} \mid z\right) \\
& \geq P\left(y^{\prime} \mid z\right)-P\left(y_{x}^{\prime} \mid z\right) \\
& =P\left(y_{x} \mid z\right)-P(y \mid z)
\end{aligned}
$$

Thus, the lower bounds are proved.
And since for any three events A, B and C, we have

$$
\begin{equation*}
P(A, B \mid C) \leq \min [P(A \mid C), P(B \mid C)] \tag{11}
\end{equation*}
$$

therefore, we have

$$
\mathrm{z}-\mathrm{PNS} \leq \min \left[P\left(y_{x} \mid z\right), P\left(y_{x^{\prime}}^{\prime} \mid z\right)\right]
$$

Also, by (8),

$$
\mathrm{z}-\mathrm{PNS} \leq P(x, y \mid z)+P\left(x^{\prime}, y^{\prime} \mid z\right)
$$

Similarly to (9), we have

$$
\begin{aligned}
\mathrm{z}-\mathrm{PNS}= & P\left(y^{\prime} \mid z\right)-P\left(y^{\prime}, y_{x}^{\prime} \mid z\right)+P\left(x, y, y_{x^{\prime}}^{\prime} \mid z\right) \\
= & P\left(y^{\prime}, y_{x} \mid z\right)+P\left(x, y, y_{x^{\prime}}^{\prime} \mid z\right) \\
= & P\left(y_{x} \mid z\right)-P\left(y, y_{x} \mid z\right)+P\left(x, y, y_{x^{\prime}}^{\prime} \mid z\right) \\
= & P\left(y_{x} \mid z\right)-P\left(y, y_{x} \mid z\right)+ \\
& P(x, y \mid z)-P\left(x, y, y_{x^{\prime}} \mid z\right) \\
= & P\left(y_{x} \mid z\right)-P\left(y, y_{x} \mid z\right)+P(x, y \mid z)- \\
& P\left(y_{x^{\prime}} \mid z\right)+P\left(x^{\prime}, y, y_{x^{\prime}} \mid z\right)+ \\
& P\left(x, y^{\prime}, y_{x^{\prime}} \mid z\right)+P\left(x^{\prime}, y^{\prime}, y_{x^{\prime}} \mid z\right) \\
= & P\left(y_{x} \mid z\right)-P\left(y, y_{x} \mid z\right)+ \\
& P(x, y \mid z)-P\left(y_{x^{\prime}} \mid z\right)+ \\
& P\left(x^{\prime}, y \mid z\right)+P\left(x, y^{\prime}, y_{x^{\prime}} \mid z\right) \\
= & P\left(y_{x} \mid z\right)-P\left(y_{x^{\prime}} \mid z\right)+P\left(x^{\prime}, y \mid z\right)+ \\
& P(x, y \mid z)-P\left(y, y_{x} \mid z\right)+P\left(x, y^{\prime}, y_{x^{\prime}} \mid z\right) \\
= & P\left(y_{x} \mid z\right)-P\left(y_{x^{\prime}} \mid z\right)+P\left(x^{\prime}, y \mid z\right)+ \\
& P(x, y \mid z)-P\left(x, y, y_{x} \mid z\right)-P\left(x^{\prime}, y, y_{x} \mid z\right)+ \\
& P\left(x, y^{\prime} \mid z\right)-P\left(x, y^{\prime}, y_{x^{\prime}}^{\prime} \mid z\right) \\
= & P\left(y_{x} \mid z\right)-P\left(y_{x^{\prime}} \mid z\right)+P\left(x^{\prime}, y \mid z\right)+ \\
& P\left(x, y^{\prime} \mid z\right)-P\left(x, y^{\prime}, y_{x^{\prime}}^{\prime} \mid z\right)-P\left(x^{\prime}, y, y_{x} \mid z\right) \\
\leq & P\left(y_{x} \mid z\right)-P\left(y_{x^{\prime}} \mid z\right)+P\left(x^{\prime}, y \mid z\right)+P\left(x, y^{\prime} \mid z\right)
\end{aligned}
$$

Thus, the upper bounds are proved.
Lemma 6.

$$
\begin{align*}
& P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z\right)-P\left(y_{x}^{\prime}, y_{x^{\prime}} \mid z\right) \\
= & P\left(y_{x} \mid z\right)-P\left(y_{x^{\prime}} \mid z\right) \tag{12}
\end{align*}
$$

Proof.

$$
\begin{aligned}
& P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z\right)-P\left(y_{x^{\prime}}, y_{x}^{\prime} \mid z\right) \\
= & P\left(y_{x}, y_{x^{\prime}}^{\prime}, x \mid z\right)+P\left(y_{x}, y_{x^{\prime}}^{\prime}, x^{\prime} \mid z\right)- \\
& P\left(y_{x^{\prime}}, y_{x}^{\prime}, x \mid z\right)-P\left(y_{x^{\prime}}, y_{x}^{\prime}, x^{\prime} \mid z\right) \\
= & P\left(y, y_{x^{\prime}}^{\prime}, x \mid z\right)+P\left(y_{x}, y^{\prime}, x^{\prime} \mid z\right)- \\
& P\left(y_{x^{\prime}}, y^{\prime}, x \mid z\right)-P\left(y, y_{x}^{\prime}, x^{\prime} \mid z\right) \\
= & P\left(y, y_{x^{\prime}}^{\prime}, x \mid z\right)-P\left(y_{x^{\prime}}, y^{\prime}, x \mid z\right)+ \\
& P\left(y_{x}, y^{\prime}, x^{\prime} \mid z\right)-P\left(y, y_{x}^{\prime}, x^{\prime} \mid z\right) \\
= & P(x, y \mid z)-P\left(y, y_{x^{\prime}}, x \mid z\right)-P\left(y_{x^{\prime}}, y^{\prime}, x \mid z\right)+ \\
& P\left(y_{x}, y^{\prime}, x^{\prime} \mid z\right)+P\left(y, y_{x}, x^{\prime} \mid z\right)-P\left(x^{\prime}, y \mid z\right) \\
= & P(x, y \mid z)-P\left(y_{x^{\prime}}, x \mid z\right)+P\left(y_{x}, x^{\prime} \mid z\right)-P\left(x^{\prime}, y \mid z\right) \\
= & P(x, y \mid z)-P\left(y_{x^{\prime}} \mid z\right)+P\left(y_{x^{\prime}}, x^{\prime} \mid z\right)+ \\
& P\left(y_{x} \mid z\right)-P\left(y_{x}, x \mid z\right)-P\left(x^{\prime}, y \mid z\right) \\
= & P(x, y \mid z)-P\left(y_{x^{\prime}} \mid z\right)+P\left(y, x^{\prime} \mid z\right)+ \\
& P\left(y_{x} \mid z\right)-P(y, x \mid z)-P\left(x^{\prime}, y \mid z\right) \\
= & P\left(y_{x} \mid z\right)-P\left(y_{x^{\prime}} \mid z\right)
\end{aligned}
$$

Lemma 7. The counterfactual expression $f(\alpha)=$ $\alpha P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z\right)-(1-\alpha) P\left(y_{x^{\prime}}, y_{x}^{\prime} \mid z\right)$ for any real number α are bounded as follows.
Case 1: $\alpha \in(-\infty, 0.5)$

$$
\begin{gather*}
\left\{\begin{array}{c}
\alpha P\left(y_{x} \mid z\right)-(1-\alpha) P\left(y_{x^{\prime}} \mid z\right) \\
(1-\alpha) P\left(y_{x} \mid z\right)+\alpha P\left(y_{x^{\prime}}^{\prime} \mid z\right)+\alpha-1 \\
(2 \alpha-1) P(y, x \mid z)+ \\
\left.+(2 \alpha-1) P\left(y^{\prime}, x^{\prime} \mid z\right)\right]+ \\
+(1-\alpha)\left[P\left(y_{x} \mid z\right)-P\left(y_{x^{\prime}} \mid z\right)\right] \\
\alpha\left[P\left(y_{x} \mid z\right)-P\left(y_{x^{\prime}} \mid z\right)\right]+ \\
+(2 \alpha-1) P\left(y, x^{\prime}|z|\right)+ \\
+(2 \alpha-1) P\left(y^{\prime}, x \mid z\right) \\
\leq f(\alpha)
\end{array}\right\} \\
\min \left\{\begin{array}{c}
(1-\alpha)\left[P\left(y_{x} \mid z\right)-P\left(y_{x^{\prime}} \mid z\right)\right] \\
\alpha\left[P\left(y_{x} \mid z\right)-P\left(y_{x^{\prime}} \mid z\right)\right] \\
(2 \alpha-1) P(y \mid z)+ \\
+(1-\alpha) P\left(y_{x} \mid z\right)-\alpha P\left(y_{x^{\prime}} \mid z\right) \\
\alpha P\left(y_{x} \mid z\right)- \\
-(1-\alpha) P\left(y_{x^{\prime}} \mid z\right)-(2 \alpha-1) P(y \mid z)
\end{array}\right\} \tag{13}
\end{gather*}
$$

Case 2: $\alpha \in[0.5, \infty)$

$$
\max \left\{\begin{array}{c}
(1-\alpha)\left[P\left(y_{x} \mid z\right)-P\left(y_{x^{\prime}} \mid z\right)\right] \\
\alpha\left[P\left(y_{x} \mid z\right)-P\left(y_{x^{\prime}} \mid z\right)\right] \tag{15}\\
(2 \alpha-1) P(y \mid z)+ \\
+(1-\alpha) P\left(y_{x} \mid z\right)-\alpha P\left(y_{x^{\prime}} \mid z\right) \\
\alpha P\left(y_{x} \mid z\right)- \\
-(1-\alpha) P\left(y_{x^{\prime}} \mid z\right)-(2 \alpha-1) P(y \mid z)
\end{array}\right\}
$$

$$
\begin{equation*}
\geq f(\alpha) \tag{16}
\end{equation*}
$$

Proof. By lemma 6,

$$
\begin{align*}
& f(\alpha) \\
= & \alpha P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z\right)-(1-\alpha) P\left(y_{x^{\prime}}, y_{x}^{\prime} \mid z\right) \\
= & \alpha P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z\right)- \\
& (1-\alpha)\left(P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z\right)-P\left(y_{x} \mid z\right)+P\left(y_{x^{\prime}} \mid z\right)\right) \\
= & (2 \alpha-1) P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z\right)+ \\
& (1-\alpha)\left(P\left(y_{x} \mid z\right)-P\left(y_{x^{\prime}} \mid z\right)\right) \tag{17}
\end{align*}
$$

By lemma 5, substituting (5) and (6) into (17), case 1 and 2 in lemma 7 hold.

Now, let's prove theorem 1.
Proof.

$$
\begin{align*}
& f(\beta, \gamma, \theta, \delta) \\
= & \beta P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z\right)+\gamma P\left(y_{x}, y_{x^{\prime}} \mid z\right)+ \\
& \theta P\left(y_{x}^{\prime}, y_{x^{\prime}}^{\prime} \mid z\right)+\delta P\left(y_{x}^{\prime}, y_{x^{\prime}} \mid z\right) \\
= & \beta P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z\right)+\gamma\left[P\left(y_{x} \mid z\right)-P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z\right)\right]+ \\
& \theta\left[P\left(y_{x^{\prime}}^{\prime}\right)-P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z\right)\right]+\delta P\left(y_{x}^{\prime}, y_{x^{\prime}} \mid z\right) \\
= & \gamma P\left(y_{x} \mid z\right)+\theta P\left(y_{x^{\prime}}^{\prime} \mid z\right)+ \\
& (\beta-\gamma-\theta) P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z\right)-(-\delta) P\left(y_{x}^{\prime}, y_{x^{\prime}} \mid z\right) \tag{18}
\end{align*}
$$

By lemma 7, let $\alpha=\frac{\beta-\gamma-\theta}{\beta-\gamma-\theta-\delta}$, substituting (13) to (16) into (18), theorem 1 hold.

8.2 Proof of Theorem 4

Lemma 8. If Y is monotonic relative to X, z-specific $P N S=P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z\right)$ is identifiable whenever the causal effects $P\left(y_{x} \mid z\right)$ and $P\left(y_{x^{\prime}} \mid z\right)$ are identifiable:

$$
\begin{aligned}
P N S & =P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z\right) \\
& =P\left(y_{x} \mid z\right)-P\left(y_{x^{\prime}} \mid z\right)
\end{aligned}
$$

Proof. Since $y_{x^{\prime}}$ and $y_{x^{\prime}}^{\prime}$ are complementary, so $y_{x^{\prime}} \vee y_{x^{\prime}}^{\prime}=$ true, therefore, we have

$$
\begin{equation*}
y_{x}=y_{x} \wedge\left(y_{x^{\prime}} \vee y_{x^{\prime}}^{\prime}\right)=\left(y_{x} \wedge y_{x^{\prime}}\right) \vee\left(y_{x} \wedge y_{x^{\prime}}^{\prime}\right) \tag{19}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
y_{x^{\prime}} & =y_{x^{\prime}} \wedge\left(y_{x} \vee y_{x}^{\prime}\right) \\
& =\left(y_{x^{\prime}} \wedge y_{x}\right) \vee\left(y_{x^{\prime}} \wedge y_{x}^{\prime}\right) \\
& =y_{x^{\prime}} \wedge y_{x} \tag{20}
\end{align*}
$$

Since monotonicity entails that $y_{x^{\prime}} \wedge y_{x}^{\prime}=$ false.
Substituting (20) into (19) yields

$$
y_{x}=y_{x^{\prime}} \vee\left(y_{x} \wedge y_{x^{\prime}}^{\prime}\right)
$$

Thus, for any z, we have,

$$
\begin{equation*}
y_{x} \wedge z=\left(y_{x^{\prime}} \wedge z\right) \vee\left(y_{x} \wedge y_{x^{\prime}}^{\prime} \wedge z\right) \tag{21}
\end{equation*}
$$

Taking the probability of (21) and using the disjointness of $y_{x^{\prime}}$ and $y_{x^{\prime}}^{\prime}$, we obtain

$$
P\left(y_{x}, z\right)=P\left(y_{x^{\prime}}, z\right)+P\left(y_{x}, y_{x^{\prime}}^{\prime}, z\right)
$$

Therefore,

$$
P\left(y_{x} \mid z\right)=P\left(y_{x^{\prime}} \mid z\right)+P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z\right)
$$

or

$$
\begin{equation*}
P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z\right)=P\left(y_{x} \mid z\right)-P\left(y_{x^{\prime}} \mid z\right) \tag{22}
\end{equation*}
$$

Now, let's prove Theorem 4.
Proof.

$$
\begin{aligned}
& f(\beta, \gamma, \theta, \delta) \\
= & \beta P\left(y_{x}, y_{x^{\prime}}^{\prime} \mid z\right)+\gamma P\left(y_{x}, y_{x^{\prime}} \mid z\right)+ \\
& \theta P\left(y_{x}^{\prime}, y_{x^{\prime}}^{\prime} \mid z\right)+\delta P\left(y_{x}^{\prime}, y_{x^{\prime}} \mid z\right) \\
= & \beta\left[P\left(y_{x} \mid z\right)-P\left(y_{x}, y_{x^{\prime}} \mid z\right)\right]+ \\
& \gamma\left[P\left(y_{x^{\prime}} \mid z\right)-P\left(y_{x}^{\prime}, y_{x^{\prime}} \mid z\right)\right]+ \\
& \theta\left[P\left(y_{x}^{\prime} \mid z\right)-P\left(y_{x}^{\prime}, y_{x^{\prime}} \mid z\right)\right]+\delta P\left(y_{x}^{\prime}, y_{x^{\prime}} \mid z\right) \\
= & \beta\left[P\left(y_{x} \mid z\right)-P\left(y_{x^{\prime}} \mid z\right)+P\left(y_{x}^{\prime}, y_{x^{\prime}} \mid z\right)\right]+ \\
& \gamma\left[P\left(y_{x^{\prime}} \mid z\right)-P\left(y_{x}^{\prime}, y_{x^{\prime}} \mid z\right)\right]+ \\
& \theta\left[P\left(y_{x}^{\prime} \mid z\right)-P\left(y_{x}^{\prime}, y_{x^{\prime}} \mid z\right)\right]+\delta P\left(y_{x}^{\prime}, y_{x^{\prime}} \mid z\right) \\
= & \beta P\left(y_{x} \mid z\right)+(\gamma-\beta) P\left(y_{x^{\prime}} \mid z\right)+\theta P\left(y_{x}^{\prime} \mid z\right)+ \\
& (\beta+\delta-\gamma-\theta) P\left(y_{x}^{\prime}, y_{x^{\prime}} \mid z\right)
\end{aligned}
$$

Thus, with $\beta+\delta=\gamma+\theta$, theorem 4 hold.
Also if monotonicity, we have,

$$
\begin{equation*}
P\left(y_{x^{\prime}}, y_{x}^{\prime} \mid z\right)=0 \tag{23}
\end{equation*}
$$

By lemma 8, substituting (23) and (22) into (18), theorem 4 holds.

