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Abstract

All accounts of rationality presuppose knowledge of how actions af-
fect the state of the world and how the world would change had al-
ternative actions been taken. The paper presents a framework called
Structural Causal Model (SCM) which operationalizes this knowledge
and explicates how it can be derived from both theories and data. In
particular, we show how counterfactuals are computed and how they can
be embedded in a calculus that solves critical problems in the empirical
sciences.

1 Introduction - Actions, Physical, and Meta-

physical

If the options available to an agent are specified in terms of their immediate
consequences, as in “make him laugh,” “paint the wall red,” “raise taxes” or,
in general, do(X = x), then a rational agent is instructed to maximize the
expected utility

EU(x) =
∑
y

Px(y)U(y) (1)

over all options x. Here, U(y) stands for the utility of outcome Y = y and
Px(y) – the focus of this paper - stands for the (subjective) probability that
outcome Y = y would prevail, had action do(X = x) been performed so as to
establish condition X = x.
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It has long been recognized that Bayesian conditionalization, i.e., Px(y) =
P (y|x), is inappropriate for serving in Eq. (1), for it leads to paradoxical re-
sults of several kinds (see Pearl 2000a, pp. 108–9; Skyrms 1980). For example,
patients would avoid going to the doctor to reduce the probability that one is
seriously ill; barometers would be manipulated to reduce the chance of storms;
doctors would recommend a drug to male and female patients, but not to pa-
tients with undisclosed gender, and so on. Yet the question of what function
should substitute for Px(y), despite decades of thoughtful debates (Cartwright,
1983; Harper et al., 1981; Jeffrey, 1965) seems to still baffle philosophers in
the 21st century (Arlo-Costa, 2007; Weirich, 2008; Woodward, 2003). Mod-
ern discussion over evidential vs. causal decision theory (Chapter 8.2 of this
handbook) echo these debates.

Most studies of rationality have dealt with the utility function U(y), its
behavior under various shades of uncertainty, and the adequacy of the expec-
tation operator in Eq. (1). Relatively little has been said about the probability
Px(y) that governs outcomes Y = y when an action do(X = x) is contem-
plated. Yet regardless of what criterion one adopts for rational behavior, it
must incorporate knowledge of how our actions affect the world. We must
therefore define the function Px(y) and explicate the process by which it is
assessed or inferred, be it from empirical data or from world knowledge. We
must also ask what mental representation and thought processes would permit
a rational agent to combine world knowledge with empirical observations and
compute Px(y).

Guided by ideas from structural econometrics (Haavelmo, 1943; Spirtes
et al., 1993; Strotz & Wold, 1960), I have explored a conditioning operator
called do(x) (Pearl, 1995) that captures the intent of Px(y) by simulating an
intervention in a causal model of interdependent variables (Pearl, 2009b).

The idea is simple. To model an action do(X = x) one performs a “mini-
surgery” on the causal model, that is, a minimal change necessary for estab-
lishing the antecedent X = x, while leaving the rest of the model intact. This
calls for removing the mechanism (i.e., equation) that nominally assigns values
to variable X, and replacing it with a new equation, X = x, that enforces the
intent of the specified action. This mini-surgery (not unlike Lewis’s “little mir-
acle”), makes precise the idea of using a “minimal deviation from actuality”
to define counterfactuals.

One important feature of this formulation is that the post-intervention
probability, P (y|do(x)), can be derived from pre-interventional probabilities
provided one possesses a diagrammatic representation of the processes that
govern variables in the domain (Pearl, 2000a; Spirtes et al., 2001). Specifically
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the post-intervention probability reads:1

P (x, y, z|do(X = x∗)) =

{
P (x, y, z)/P (x|z) if x = x∗

0 if x 6= x∗
(2)

Here z stands for any realization of the set Z of “past” variables, y is any
realization of the set Y of “future” variables, and “past” and “future” refer to
the occurrence of the action event X = x∗.2

This feature, to be further discussed in Section 2, is perhaps the key for
the popularity of graphical methods in causal inference applications. It states
that the effects of policies and interventions can be predicted without knowl-
edge of the functional relationships (or mechanisms) among X, Y, and Z. The
pre-interventional probability and a few qualitative features of the model (e.g.,
variable ordering) are sufficient for determining the pot-intervention probabil-
ities as in Eq. (2).

The philosophical literature spawned a totally different perspective on the
probability function Px(y) in Eq. (1). In a famous letter to David Lewis,
Robert Stalnaker (1972) suggested to replace conditional probabilities with
probabilities of conditionals, i.e., Px(y) = P (x > y), where (x > y) stands for
counterfactual conditional “Y would be y if X were x.” (See chapter 6.1 of this
handbook.) Using a “closest worlds” semantics, Lewis (1973) defined P (x > y)
using a probability-revision operation called “imaging,” in which probability
mass “shifts” from worlds to worlds, governed by a measure of “similarity.”
Whereas Bayes conditioning P (y|x) transfers the entire probability mass from
worlds excluded by X = x to all remaining worlds, in proportion to the lat-
ters’ prior probabilities P (·), imaging works differently; each excluded world w
transfers its mass individually to a select set of worlds Sx(w) that are consid-
ered “closest” to w among those satisfying X = x. Joyce (1999) used the “\”
symbol, as in P (y\x), to denote the probability resulting from such imaging
process, and derived a formula for P (y\x) in terms of the selection function
Sx(w).

1The relation between Px and P takes a variety of equivalent forms, including the back-
door formula, truncated factorization, adjustment for direct causes, or the inverse probability
weighing shown in Eq. (2) (Pearl, 2000a, pp. 72–3). The latter form is the easiest to describe
without appealing to graphical notation. But see Eq. (10), Section 3.1 for a more general
formula, and Definition 3 for a formal definition of the set Z.

2I will use “future” and “past” figuratively; “affected” and “unaffected” (by X) are more
accurate technically (i.e., descendants and non-descendants of X, in graphical terminology).
The derivation of Eq. (2) requires that processes be organized recursively (avoiding feedback
loops); more intricate formulas apply to non-recursive models. See Pearl (2009b, pp. 72–3)
or Spirtes et al. (2001) for a simple derivation of this and equivalent formulas.
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In Pearl (2000a, p. 73) I have shown that the transformation defined by the
do(x) operator, Eq. (2), can be interpreted as an imaging-type mass-transfer,
if the following two provisions are met.

Provision 1 - the choice of “similarity” measure is not arbitrary; worlds
with equal histories should be considered equally similar to any given world.

Provision 2 - the re-distribution of weight within each selection set Sx(w) is
not arbitrary either, equally-similar worlds should receive mass in proportion
to their prior probabilities.

This tie-breaking rule is similar in spirit to the Bayesian policy, and permits
us to generalize Eq. (2) to disjunctive actions, as in “exercise at least 30
minutes daily,” or “paint the wall either green or purple” (Pearl, 2017).

The theory that emerges from the do-operator (Eq. (2)) offers several
conceptual and operational advantages over Lewis’s closest-world semantics.
First, it does not rest on a metaphysical notion of “similarity,” which may
be different from person to person and, thus, could not explain the unifor-
mity with which people interpret causal utterances. Instead, causal relations
are defined in terms of our scientific understanding of how variables interact
with one another (to be explicated in Section 2). Second, it offers a plausible
resolution of the “mental representation” puzzle: How do humans represent
“possible worlds” in their minds and compute the closest one, when the num-
ber of possibilities is far beyond the capacity of the human brain? Any credible
theory of rationality must account for the astonishing ease with which humans
comprehend, derive and communicate counterfactual information. Finally, it
results in practical algorithms for solving some of the most critical and dif-
ficult causal problems that have challenged data analysts and experimental
researchers in the past century (see Pearl & Mackenzie (2018) for extensive
historical account). I call this theory Structural Causal Model (SCM).

In the rest of the paper we will focus on the properties of SCM, and ex-
plicate how it can be used to define counterfactuals (Section 2), to control
confounding and predict the effect of interventions and policies (Section 3), to
define and estimate direct and indirect effects (Section 4) and, finally, to en-
sure generalizability of empirical results across diverse environments (Section
5).

2 Counterfactuals and SCM

At the center of the structural theory of causation lies a “structural model,”
M , consisting of two sets of variables, U and V , and a set F of functions that
determine or simulate how values are assigned to each variable Vi ∈ V . Thus
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for example, the equation
vi = fi(v, u)

describes a physical process by which variable Vi is assigned the value vi =
fi(v, u) in response to the current values, v and u, of all variables in V and
U . Formally, the triplet < U, V, F > defines a SCM, and the diagram that
captures the relationships among the variables is called the causal graph G
(of M). The variables in U are considered “exogenous,” namely, background
conditions for which no explanatory mechanism is encoded in model M . Every
instantiation U = u of the exogenous variables uniquely determines the values
of all variables in V and, hence, if we assign a probability P (u) to U , it defines
a probability function P (v) on V . The vector U = u can also be interpreted as
an experimental “unit” which can stand for an individual subject, agricultural
lot or time of day, since it describes all factors needed to make V a deterministic
function of U .

The basic counterfactual entity in structural models is the sentence: “Y
would be y had X been x in unit (or situation) U = u,” denoted Yx(u) = y.
Letting Mx stand for a modified version of M , with the equation(s) of set X
replaced by X = x, the formal definition of the counterfactual Yx(u) reads

Yx(u) = YMx(u). (3)

In words, the counterfactual Yx(u) in model M is defined as the solution for
Y in the “modified” submodel Mx. Galles & Pearl (1998) and Halpern (1998)
have given a complete axiomatization of structural counterfactuals, embracing
both recursive and non-recursive models (see also Pearl (2009b, Chapter 7)).3

Since the distribution P (u) induces a well defined probability on the coun-
terfactual event Yx = y, it also defines a joint distribution on all Boolean combi-
nations of such events, for instance “Yx = y AND Zx′ = z,” which may appear
contradictory, if x 6= x′. For example, to answer retrospective questions, such
as whether Y would be y1 if X were x1, given that in fact Y is y0 and X is x0,
we need to compute the conditional probability P (Yx1 = y1|Y = y0, X = x0)
which is well defined once we know the forms of the structural equations and
the distribution of the exogenous variables in the model.

In general, the probability of the counterfactual sentence P (Yx = y|e),
where e is any propositional evidence, can be computed by the three-step
process ((Pearl, 2009b, p. 207)):

Step 1 (abduction): Update the probability P (u) to obtain P (u|e).
3The structural definition of counterfactual given in Eq. (3) was first introduced in Balke

& Pearl (1995).
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Step 2 (action): Replace the equations determining the variables in set X
by X = x.

Step 3 (prediction): Use the modified model to compute the probability of
Y = y.

In temporal metaphors, Step 1 explains the past (U) in light of the current
evidence e; Step 2 bends the course of history (minimally) to comply with the
hypothetical antecedent X = x; finally, Step 3 predicts the future (Y ) based
on our new understanding of the past and our newly established condition,
X = x.

2.1 Example: computing counterfactuals in linear SCM

We illustrate the working of this three-step algorithm using a linear structural
equation model, depicted by the graph of Fig. 1.

To motivate the analysis, let X stands for the level of assistance (or “treat-
ment”) given to a student, Z stands for the amount of time the student spends
studying, and Y , the outcome, stands for the student’s performance on an
exam. The algebraic version of this model takes the form of the following
equations:

x = ε1

z = βx+ ε2

y = αx+ γz + ε3

The coefficient alpha, beta and gamma are called “structural coefficients,”
to be distinguished from regression coefficients, and represent direct causal ef-
fects of the corresponding variables. Under appropriate assumptions, say that
the error terms ε1, ε2 and ε3 are mutual independent, the structural coefficients
can be estimated from data. Our task however is not to estimate causal effects
but to answer counterfactual questions taking the model as given.

Let us consider a student named Joe, for whom we measure X = 0.5, Z =
1, Y = 1.5, and about whom we ask a counterfactual question:

Q1: What would Joe’s score be had he doubled his study time?

Using our subscript notation, this question amounts to evaluating YZ=2(u),
with u standing for the distinctive characteristics of Joe, namely, u = (ε1, ε2, ε3),
as inferred from the observed data {X = 0.5, Z = 1, Y = 1.5}.

Following the algorithm above, the answer to this question is obtained in
three steps.
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Figure 1: Structural models used for answering a counterfactual question about
an individual u = (ε1, ε2, ε3). (a) the generic model, (b) the u-specific model.
(c) the modified model necessary to accommodate the antecedent Z = 2 of
the counterfactual question Q1.

1. Use the data to compute the exogenous factors ε1, ε2, ε3. (These are the
invariant characteristics of unit u, and do not change by interventions or
counterfactual hypothesizing.) In our model, we get (Figure 1(b)):

ε1 = 0.5

ε2 = 1− 0.5× 0.5 = 0.75,

ε3 = 1.5− 0.5× 0.7− 1× 0.4 = 0.75

2. Modify the model, to form MZ=2, in which Z is set to 2 and all arrows
to Z are removed (Fig. 1(c)).

3. Compute the value of Y in the mutilated model formed in step 2, giving:

YZ=2 = 0.5× 0.7 + 2.0× 0.4 + 0.75 = 1.90.

We can thus conclude that Joe’s score would have been 1.90, instead of 1.5,
had he doubled his study time. This example illustrates the need to modify the
original model (Fig. 1(a)), in which the combination (X = 1, ε2 = 0.75, Z =
2.0) constitutes a contradiction.

2.2 The two principles of causal inference

Before describing specific applications of the structural theory, it will be useful
to summarize its implications in the form of two “principles,” from which all
other results follow.

Principle 1: “The law of structural counterfactuals.”
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Principle 2: “The law of structural independence.”

The first principle is described in Eq. (3) and instructs us how to compute
counterfactuals and probabilities of counterfactuals from a structural model.
This, together with principle 2 will allow us (Section 3) to determine what
assumptions one must make about reality in order to infer probabilities of
counterfactuals from either experimental or passive observations.

Principle 2, defines how structural features of the model entail dependencies
in the data. Remarkably, regardless of the functional form of the equations
in the model and regardless of the distribution of the exogenous variables
U , if the latters’ are mutually independent and the model is recursive, the
distribution P (v) of the endogenous variables must obey certain conditional
independence relations, stated roughly as follows: whenever sets X and Y
are “separated” by a set Z in the graph, X is independent of Y given Z in
the probability (Verma & Pearl, 1988). This “separation” condition, called
d-separation (Geiger et al., 1990; Pearl, 2000a, pp. 16–18) constitutes the link
between the causal assumptions encoded in the causal graph (in the form of
missing arrows) and the observed data. It is defined formally as follows:

Definition 1 (d-separation)
A set S of nodes is said to block a path p if either

1. p contains at least one arrow-emitting node that is in S, or

2. p contains at least one collision node that is outside S and has no de-
scendant in S.

If S blocks all paths from set X to set Y , it is said to “d-separate X and Y,”
and then, variables X and Y are independent given S, written X⊥⊥Y |S.4

D-separation implies conditional independencies for every distribution P (v)
that is compatible with the causal assumptions embedded in the diagram. To
illustrate, the diagram in Fig. 2(a) implies Z1⊥⊥Y |(X,Z3,W2), because the
conditioning set S = {X,Z3,W2} blocks all paths between Z1 and Y . The set
S = {X,Z3,W3} however leaves the path (Z1, Z3, Z2,W2, Y ) unblocked (by
virtue of the collider at Z3) and, so, the independence Z1⊥⊥Y |(X,Z3,W3) is
not implied by the diagram.

4By a “path” we mean a consecutive edges in the graph regardless of direction. See
(Pearl, 2009b, p. 335) for a gentle introduction to d-separation and its proof. In linear
models, the independencies implied by d-separation are valid for non-recursive models as
well.
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Figure 2: Illustrating the intervention do(X = x) . (a) The original model M .
(b) The intervention submodel Mx, and the counterfactual Yx.

3 Intervention, identification, and causal cal-

culus

To maximize the expectation defined by Eq. (1), a central problem for any
rational agent is that of inferring the probability Px(y) from empirical data. In
the context of social or medical policy making, this amounts to estimating the
interventional probability P (y|do(x)) which is defined using the counterfactual
Yx as5

P (y|do(x))
∆
= P (Yx = y) (4)

Given a model M , the effect of an intervention X = do(x) can be predicted
from the submodel Mx as shown in Fig. 2. Figure 2(b) illustrates the submodel
Mx created by the atomic intervention do(x); it sets the value of X to x and
thus removes the influence of W1 and Z3 on X. We similarly define the result
of conditional interventions by

P (y|do(x), z)
∆
= P (y, z|do(x))/P (z|do(x) = P (Yx = y|Zx = z) (5)

P (y|do(x), z) captures the z-specific effect of X on Y , that is, the effect of
setting X to x among those units only for which Z = z.

A second important question concerns identification in partially specified
models: Given a set A of qualitative causal assumptions, as embodied in
the structure of the causal graph, can the controlled (post-intervention) dis-
tribution, P (y|do(x)), be estimated from the available data which are gov-
erned by the pre-intervention distribution P (z, x, y)? In linear parametric
settings, the question of identification reduces to asking whether some model
parameter, β, has a unique solution in terms of the parameters of P (say the

5An alternative definition of do(x), invoking population averages only, is given in (Pearl,
2009b, p. 24).
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population covariance matrix). In the nonparametric formulation, the notion
of “has a unique solution” does not directly apply since quantities such as
Q = P (y|do(x)) have no parametric signature and are defined procedurally by
a symbolic operation on the causal model M , as in Fig. 2(b). The following
definition captures the requirement that Q be estimable from the data:

Definition 2 (Identifiability) (Pearl, 2000a, p. 77)
A causal query Q is identifiable from data compatible with a causal graph G,
if for any two (fully specified) models M1 and M2 that satisfy the assumptions
in G, we have

P1(v) = P2(v)⇒ Q(M1) = Q(M2) (6)

In words, equality in the probabilities P1(v) and P2(v) induced by models
M1 and M2, respectively, entails equality in the answers that these two mod-
els give to query Q. When this happens, Q depends on P only and should
therefore be expressible in terms of the parameters of P .

When a query Q is given in the form of a do-expression, for example
Q = P (y|do(x), z), its identifiability can be decided systematically using an
algebraic procedure known as the do-calculus (Pearl, 1995). It consists of three
inference rules that permit us to equate interventional and observational dis-
tributions whenever certain d-separation conditions hold in the causal diagram
G.

3.1 The rules of do-calculus

Let X, Y , Z, and W be arbitrary disjoint sets of nodes in a causal DAG G.
We denote by GX the graph obtained by deleting from G all arrows pointing
to nodes in X. Likewise, we denote by GX the graph obtained by deleting
from G all arrows emerging from nodes in X. To represent the deletion of
both incoming and outgoing arrows, we use the notation GXZ .

The following three rules are valid for every interventional distribution
compatible with G.
Rule 1 (Insertion/deletion of observations):

P (y|do(x), z, w) = P (y|do(x), w) if (Y⊥⊥Z|X,W )GX
(7)

Rule 2 (Action/observation exchange):

P (y|do(x), do(z), w) = P (y|do(x), z, w) if (Y⊥⊥Z|X,W )GXZ
(8)

Rule 3 (Insertion/deletion of actions):

P (y|do(x), do(z), w) = P (y|do(x), w) if (Y⊥⊥Z|X,W )G
XZ(W )

, (9)
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where Z(W ) is the set of Z-nodes that are not ancestors of any W -node in
GX .

To establish identifiability of a causal query Q, one needs to repeatedly
apply the rules of do-calculus to Q, until an expression is obtained which no
longer contains a do-operator6; this renders it estimable from nonexperimen-
tal data. The do-calculus was proven to be complete for queries in the form
Q = P (y|do(x), z) (Huang & Valtorta, 2006; Shpitser & Pearl, 2006), which
means that if Q cannot be reduced to probabilities of observables by repeated
application of these three rules, such a reduction does not exist, i.e., the query
is not estimable from observational studies without strengthening the assump-
tions.

3.2 Covariate selection: The back-door criterion

One of the most powerful result emerging from the do-calculus is a method of
identifying a set of variables that, if measured, would permit us to predict the
effect of action from passive observation. This set of variables coincides with
the set Z of Eq. (2) which we called “past” in Section 1, and which will now
receive a formal characterization in Definition 3.

Consider an observational study where we wish to find the effect of treat-
ment (X) on outcome (Y ), and assume that the factors deemed relevant to
the problem are structured as in Fig. 2(a); some are affecting the outcome,
some are affecting the treatment, and some are affecting both treatment and
response. Some of these factors may be unmeasurable, such as genetic trait
or lifestyle, while others are measurable, such as gender, age, and salary level.
Our problem is to select a subset of these factors for measurement and adjust-
ment such that if we compare treated vs. untreated subjects having the same
values of the selected factors, we get the correct treatment effect in that sub-
population of subjects. Such a set of factors is called a “sufficient set,” “ ” or
a set “appropriate for adjustment” (see (Greenland et al., 1999; Pearl, 2000b,
2009a)). The following criterion, named “back-door” Pearl (1993), provides a
graphical method of selecting such a set of factors for adjustment.

Definition 3 (admissible sets—the back-door criterion)
A set S is admissible (or “sufficient”) for estimating the causal effect of X on
Y if two conditions hold:

1. No element of S is a descendant of X.

6Such derivations are illustrated in graphical details in (Pearl, 2009b, p. 87).
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2. The elements of S “block” all “back-door” paths from X to Y—namely,
all paths that end with an arrow pointing to X.

Based on this criterion we see, for example that, in Fig. 2, the sets {Z1, Z2, Z3},
{Z1, Z3}, {W1, Z3}, and {W2, Z3} are each sufficient for adjustment, because
each blocks all back-door paths between X and Y . The set {Z3}, however, is
not sufficient for adjustment because it does not block the path X ← W1 ←
Z1 → Z3 ← Z2 → W2 → Y .

The intuition behind the back-door criterion is as follows. The back-door
paths in the diagram carry spurious associations from X to Y , while the paths
directed along the arrows from X to Y carry causative associations. Blocking
the former paths (by conditioning on S) ensures that the measured association
between X and Y is purely causal, namely, it correctly represents the target
quantity: the causal effect of X on Y . Conditions for relaxing restriction 1 are
given in (Pearl, 2009b, p. 338; Pearl & Paz, 2014; Shpitser et al., 2010).7

The implication of finding a sufficient set, S, is that stratifying on S is
guaranteed to remove all confounding bias relative to the causal effect of X
on Y . In other words, it renders the causal effect of X on Y identifiable, via
the adjustment formula8

P (Y = y|do(X = x)) =
∑
s

P (Y = y|X = x, S = s)P (S = s) (10)

Since all factors on the right-hand side of the equation are estimable (e.g.,
by regression) from pre-interventional data, the causal effect can likewise be
estimated from such data without bias. Note that Eq. (2) is a special case of
Eq. (10), where S chosen to include all variables preceding X in the causal
order. Moreover, the back-door criterion implies the independence X⊥⊥Yx|S,
also known as “conditional ignorability” (Rosenbaum & Rubin, 1983) and, pro-
vides therefore the scientific basis for most inferences in the potential outcome
framework.

The back-door criterion allows us to write Eq. (10) by inspection, after
selecting a sufficient set, S, from the diagram. The selection criterion can be
applied systematically to diagrams of any size and shape, thus freeing analysts
from judging whether “X is conditionally ignorable given S,” a formidable
mental task required in the potential-response framework. The criterion also

7In particular, the criterion devised by Pearl & Paz (2014) simply adds to Condition 2 of
Definition 3 the requirement that X and its non-descendants (in Z) separate its descendants
(in Z) from Y .

8Summations should be replaced by integration when applied to continuous variables, as
in Imai et al. (2010).
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enables the analyst to search for an optimal set of covariates—namely, a set,
S, that minimizes measurement cost or sampling variability Tian et al. (1998).

Theorem 1 (Identification of Interventional Expressions) Given a causal graph
G containing both measured and unmeasured variables, the consistent estima-
bility of any expression of the form

Q = P (y1, y2, . . . , ym|do(x1, x2, . . . , xn), z1, z2, . . . , zk)

can be decided in polynomial time. If Q is estimable, then its estimand can be
derived in polynomial time. Furthermore, the algorithm is complete.

The results stated in Theorem 1 were developed in several stages over the
past 20 years (Pearl, 1993, 1995; Shpitser & Pearl, 2006; Tian & Pearl, 2002).
Bareinboim & Pearl (2012a) extended the identifiability of Q to combinations
of observational and experimental studies.

It is important to note at this point that the do-operator can be used not
merely for fixing a variable at a predetermining value, x, but also for analyzing
“soft interventions.” For example, the effect of additive interventions, such
as “add 5 mg/l of insulin to a given patient” can be estimated using the
do-calculus (Pearl et al., 2016, p. 109). Likewise, the effects of stochastic
interventions (e.g., “change the frequency with which this patient receives a
drug”) can be estimated by a method based on the do-operator (Pearl, 2009b,
p. 113). The versatility of the do-operator is further discussed in (Pearl, 2009b,
Section 11.4).

4 Mediation analysis

Mediation analysis aims to uncover causal pathways along which changes are
transmitted from causes to effects. Interest in mediation analysis stems from
both scientific and practical considerations. Scientifically, mediation tells us
“how nature works,” and practically, it enables us to predict behavior under a
rich variety of conditions and policy interventions. For example, in coping with
the age-old problem of gender discrimination (Bickel et al., 1975; Goldberger,
1984) a policy maker may be interested in assessing the extent to which gender
disparity in hiring can be reduced by making hiring decisions gender-blind,
compared with eliminating gender inequality in education or job qualifications.
The former concerns the “direct effect” of gender on hiring while the latter
concerns the “indirect effect” or the effect mediated via job qualification.

The role that mediation analysis plays in rational decision making revolves
around the richer set of options that emerges from understanding “how the
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world works.” For example, the option of using mosquito nets was not consid-
ered by decision makers when mal-air was believed to cause Malaria. It was
fairly rational in those days to use breathing masks in swampy areas. It is
hardly rational today, given the overwhelming evidence about the mediating
effect of the Anopheles mosquito. The logic of properly accounting for empiri-
cal data in one’s belief system is an aspect of rational behavior that is gaining
increased attention among researchers (Pearl, 2013).
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Figure 3: (a) The basic nonparametric mediation model, with no confounding.
(b) A confounded mediation model in which dependence exists between U

M
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T
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Y
).

The structural model for a typical mediation problem takes the form:

t = f
T
(u

T
) m = f

M
(t, u

M
) y = f

Y
(t,m, u

Y
) (11)

where T (treatment), M (mediator), and Y (outcome) are discrete or continu-
ous random variables, f

T
, f

M
, and f

Y
are arbitrary functions, and U

T
, U

M
, U

Y

represent, respectively, omitted factors that influence T,M, and Y . In Fig. 3(a)
the omitted factors are assumed to be arbitrarily distributed but mutually in-
dependent, written U

T
⊥⊥U

M
⊥⊥U

Y
. In Fig. 3(b) the dashed arcs connecting U

T

and U
M

(as well as U
M

and U
T
) encode the understanding that the factors in

question may be dependent.

4.1 Natural direct and indirect effects

Using the structural model of Eq. (11), four types of effects can be defined for
the transition from T = 0 to T = 19:
(a) Total effect –

9Generalizations to arbitrary reference point, say from T = t to T = t′, are straightfor-
ward. These definitions apply at the population levels; the unit-level effects are given by
the expressions under the expectation. All expectations are taken over the factors U

M
and

U
Y

. Note that in this section we use parenthetical notation for counterfactuals, replacing
the subscript notation used in Sections 2 and 3.
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TE = E{f
Y

[1, f
M

(1, u
M

), u
Y

]− f
Y

[0, f
M

(0, u
M

), u
Y

]}
= E[Y1 − Y0]

= E[Y |do(T = 1)]− E[Y |do(T = 0)] (12)

TE measures the expected increase in Y as the treatment changes from T = 0
to T = 1, while the mediator is allowed to track the change in T as dictated
by the function f

M
.

(b) Controlled direct effect –

CDE(m) = E{f
Y

[1,M = m,u
Y

]− f
Y

[0,M = m,u
Y

]}
= E[Y1,m − Y0,m]

= E[Y |do(T = 1,M = m)]− E[Y |do(T = 0,M = m)] (13)

CDE measures the expected increase in Y as the treatment changes from
T = 0 to T = 1, while the mediator is set to a specified level M = m uniformly
over the entire population.
(c) Natural direct effect10 –

NDE = E{f
Y

[1, f
M

(0, u
M

), u
T
]− f

Y
[0, f

M
(0, u

M
), u

T
]}

= E[Y1,M0 − Y0,M0 ] (14)

NDE measures the expected increase in Y as the treatment changes from
T = 0 to T = 1, while the mediator is set to whatever value it would have
attained (for each individual) prior to the change, i.e., under T = 0.
(d) Natural indirect effect –

NIE = E{f
Y

[0, f
M

(1, u
M

), u
Y

]− f
Y

[0, f
M

(0, u
M

), u
Y

]}
= E[Y0,M1 − Y0,M0 ] (15)

NIE measures the expected increase in Y when the treatment is held
constant, at T = 0, and M changes to whatever value it would have attained
(for each individual) under T = 1. It captures, therefore, the portion of the
effect which can be explained by mediation alone, while disabling the capacity
of Y responds to X.

We note that, in general, the total effect can be decomposed as

TE = NDE −NIEr (16)

where NIEr stands for the natural indirect effect under the reverse transi-
tion, from T = 1 to T = 0. This implies that NIE is identifiable whenever

10Natural direct and indirect effects were conceptualized in Robins & Greenland (1992)
and were formalized using Eqs. (14) and (15) in Pearl (2001).
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NDE and TE are identifiable. In linear systems, where reversal of transitions
amounts to negating the signs of their effects, we have the standard additive
formula, TE = NDE +NIE.

We further note that TE and CDE(m) are do-expressions and can, there-
fore, be estimated from experimental data. Not so NDE and NIE; both are
counterfactual expressions that cannot be reduced to do-expression. The rea-
son is simple; there is no way to disable the direct effect by intervening on any
variable in the model. The counterfactual language permits us to circumvent
this difficulty by (figuratively) changing T to affect M while feeding Y the
prior value of T .

Since Theorem 1 assures us that the identifiability of any do-expression can
be determined by an effective algorithm, TE and CDE(m) can be identified
by those algorithms. NDE and NIE however require special analysis, given
in the next section.

4.2 Sufficient conditions for identifying natural effects

The following is a set of assumptions or conditions, marked A-1 to A-4, that
are sufficient for identifying both direct and indirect natural effects. Each
condition is communicated using the causal diagram.

4.2.1 Graphical conditions for identification

There exists a set W of measured covariates such that:

A-1 No member of W is a descendant of T .

A-2 W blocks all back-door paths from M to Y (not traversing X →M and
X → Y ).

A-3 The W -specific effect of T on M is identifiable (using Summary Result
1 and possibly using experiments or auxiliary variables).

A-4 The W -specific joint effect of {T,M} on Y is identifiable (using Theorem
1 and possibly using experiments or auxiliary variables).

Theorem 2 (Identification of natural effects)
When conditions A-1 and A-2 hold, the natural direct effect is experimentally
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identifiable and is given by

NDE =
∑
m

∑
w

[E(Y |do(T = 1,M = m)),W = w)

− E(Y |do(T = 0,M = m),W = w)]

P (M = m|do(T = 0),W = w)P (W = w) (17)

The identifiability of the do-expressions in Eq. (17) is guaranteed by conditions
A-3 and A-4 and can be determined by Theorem 1.

In the non-confounding case (Fig. 3(a)), NDE reduces to : the mediation
formula:

NDE =
∑
m

[E(Y | T = 1,M = m)− E(Y | T = 0,M = m)]

P (M = m | T = 0). (18)

which came to be known as the mediation formula (Pearl, 2012).
Shpitser (2013) further provides complete algorithms for identifying natural

direct and indirect effects and extends these results to path-specific effects with
multiple treatments and multiple outcomes.

5 External Validity and Transportability

To support the choice of optimal actions on the basis of non-experimental data,
the role of the do-calculus is to remove the do-operator from the query expres-
sion. We now discuss a totally different application, to decide if experimental
findings from environment π can be transported to a new, potentially different
environment, π∗, in which only passive observations can be performed. This
problem, labeled “transportability” in Pearl & Bareinboim (2011) is at the
heart of every scientific investigation since, invariably, experiments performed
in one environment (or population) are intended to be used elsewhere, where
conditions may differ.

To formalize problems of this sort, a graphical representation called “selec-
tion diagrams” was devised (Fig. 4) which encodes knowledge about differences
and commonalities between populations. A selection diagram is a causal dia-
gram annotated with new variables, called S-nodes, which point to the mech-
anisms where discrepancies between the two populations are suspected to take
place. The task of deciding if transportability is feasible now reduces to a syn-

17



S

(c)(b)(a)

Z

Z

X Y X Y

S

S

Z
X Y

Figure 4: Selection diagrams depicting differences in populations. In (a), the
two populations differ in age distributions. In (b), the populations differs in
how reading skills (Z) depends on age (an unmeasured variable, represented
by the hollow circle) and the age distributions are the same. In (c), the
populations differ in how Z depends on X. Dashed arcs (e.g., X L9999K Y )
represent the presence of latent variables affecting both X and Y.

tactic problem of separating (using the do-calculus) the do-operator from the
S-variables in the query expression P (y|do(x), z, s). In effect, this separation
renders the disparities irrelevant to what we learn in the experimental setup.

Theorem 3 Pearl & Bareinboim (2011)
Let D be the selection diagram characterizing two populations, π and π∗, and
S a set of selection variables in D. The relation R = P ∗(y|do(x), z) is trans-
portable from π and π∗ if and only if the expression P (y|do(x), z, s) is reducible,
using the rules of do-calculus, to an expression in which S appears only as a
conditioning variable in do-free terms.

While Theorem 3 does not specify the sequence of rules leading to the
needed reduction (if such exists), a complete and effective graphical procedure
was devised by Bareinboim & Pearl (2012b), which also synthesizes a transport
formula whenever possible. Each transport formula determines what informa-
tion need to be extracted from the experimental and observational studies and
how they ought to be combined to yield an unbiased estimate of the relation
R = P (y|do(x), s) in the target population π∗. For example, the transport
formulas induced by the three models in Fig. 4 are given by:

(a) P (y|do(x), s) =
∑

z P (y|do(x), z)P (z|s)

(b) P (y|do(x), s) = P (y|do(x))

(c) P (y|do(x), s) =
∑

z P (y|do(x), z)P (z|x, s)
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Each of these formulas satisfies Theorem 3, and each describes a different
procedure of pooling information from π and π∗.

For example, (c) states that to estimate the causal effect of X on Y in
the target population π∗, P (y|do(x), z, s), we must estimate the z-specific ef-
fect P (y|do(x), z) in the source population π and average it over z, weighted
by P (z|x, s), i.e., the conditional probability P (z|x) estimated at the target
population π∗. The derivation of this formula follows by writing

P (y|do(x), s) =
∑
z

P (y|do(x), z, s)P (z|do(x), s)

and noting that Rule 1 of do-calculus authorizes the removal of s from the first
term (since Y⊥⊥S|Z holds in GX) and Rule 2 authorizes the replacement of
do(x) with x in the second term (since the independence Z⊥⊥X holds in GX).

A generalization of transportability theory to multi-environment has led to
a method called “data fusion” (Bareinboim & Pearl, 2016) aimed at combining
results from many experimental and observational studies, each conducted on a
different population and under a different set of conditions, so as to synthesize
an aggregate measure of effect size in yet another environment, different than
the rest. This fusion problem has received enormous attention in the health
and social sciences, where it is typically handled inadequately by a statistical
method called “meta analysis” which “averages out” differences instead of
rectifying them.

Using multiple “selection diagrams” to encode commonalities among stud-
ies, Bareinboim & Pearl (2013) “synthesized” an estimator that is guaranteed
to provide unbiased estimate of the desired quantity based on information that
each study share with the target environment. Remarkably, a consistent esti-
mator may be constructed from multiple sources even in cases where it is not
constructible from any one source in isolation.

Theorem 4 Bareinboim & Pearl (2013)

• Nonparametric transportability of experimental findings from multiple
environments can be determined in polynomial time, provided suspected
differences are encoded in selection diagrams.

• When transportability is feasible, a transport formula can be derived in
polynomial time which specifies what information needs to be extracted
from each environment to synthesize a consistent estimate for the target
environment.
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• The algorithm is complete, i.e., when it fails, transportability is infeasi-
ble.

Another problem that falls under the Data Fusion umbrella is that of “Se-
lection Bias” (Bareinboim et al., 2014), which requires a generalization from
a subpopulation selected for a study to the population at large, the target of
the intended policy.

Selection bias is induced by preferential selection of units for observation,
usually governed by unknown factors, thus rendering the data no longer rep-
resentative of the environment (or population) of interest. Selection bias rep-
resents a major obstacle to valid causal and statistical inferences. It cannot
be removed by randomized experiments and can rarely be detected in either
experimental or observational studies.11 For instance, in a typical study of
the effect of training program on earnings, subjects achieving higher incomes
tend to report their earnings more frequently than those who earn less. The
data-gathering process in this case will reflect this distortion in the sample
proportions and, since the sample is no longer a faithful representation of the
population, biased estimates will be produced regardless of how many samples
were collected. Our ability to eliminate such bias by analytical means thus
provides a major opportunity to the empirical sciences.

Conclusions

Rational decisions demand rational assessments of the likely consequences of
one’s actions. This chapter offers a formal and normative account of how such
assessments should be shaped by empirical observations and by prior scientific
knowledge of one’s environment. The account is based on modern research
in causal inference, which extends beyond probability and statistics and is
becoming, in my opinion, an integral part of the theory of rationality.

One of the crowning achievements of modern work on causality has been
to formalize counterfactual reasoning within a structural-based representation,
the very representation researchers use to encode scientific knowledge. We
showed that every structural equation model determines the truth value of
every counterfactual sentence. Therefore, we can determine analytically if
the probability of a counterfactual sentence is estimable from experimental or
observational studies, or combination thereof.

11Remarkably, selection bias can be detected by combining experimental and observational
studies, if certain coherence inequalities are violated (Pearl, 2009b, p. 294).
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This enables us to infer behavior of specific individuals, identified by a
distinct set of characteristics, as well as average behavior of populations, iden-
tified by pre-intervention features or post-intervention response. Additionally,
this formalization leads to a calculus of actions that resolves some of the most
daunting problems in the empirical sciences. These include, among others, the
control of confounding, the evaluation of interventional policies, the assessment
of direct and indirect effect and the generalization of empirical results across
heterogeneous environments. The same calculus can be invoked to generate
rational explanations for action recommended, or actions taken in the past.
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