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Abstract
Causal inference requires assumptions about the
data generating process, many of which are un-
verifiable from the data. Given that some causal
assumptions might be uncertain or disputed, for-
mal methods are needed to quantify how sensitive
research conclusions are to violations of those
assumptions. Although an extensive literature
exists on the topic, most results are limited to spe-
cific model structures, while a general-purpose
algorithmic framework for sensitivity analysis is
still lacking. In this paper, we develop a formal,
systematic approach to sensitivity analysis for ar-
bitrary linear Structural Causal Models (SCMs).
We start by formalizing sensitivity analysis as
a constrained identification problem. We then
develop an efficient, graph-based identification
algorithm that exploits non-zero constraints on
both directed and bidirected edges. This allows
researchers to systematically derive sensitivity
curves for a target causal quantity with an arbi-
trary set of path coefficients and error covariances
as sensitivity parameters. These results can be
used to display the degree to which violations of
causal assumptions affect the target quantity of in-
terest, and to judge, on scientific grounds, whether
problematic degrees of violations are plausible.

1. Introduction
Randomized controlled trials (RCT) are considered the gold
standard for identifying cause-effect relationships in data-
intensive sciences (Giffin et al., 2010). In practice, however,
direct randomization is often infeasible or unethical, requir-
ing researchers to combine non-experimental observations
with assumptions about the data generating process in or-
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der to obtain causal claims. These assumptions are usually
encoded as the absence of certain causal relationships, or
as the absence of association between certain unobserved
factors. Conclusions based on causal models are, therefore,
provisional: they depend on the validity of causal assump-
tions, regardless of the sample size (Pearl, 2000; Spirtes
et al., 2000; Bareinboim & Pearl, 2016).

In many real settings, it is not uncommon that these assump-
tions are subject to uncertainty or dispute. Scientists may
posit alternative causal models that are equally compatible
with the observed data; or, more mundanely, researchers can
make identification assumptions for convenience, simply
to proceed with estimation.1 Regardless of the motivation,
the provisional character of causal inference behooves us to
formally assess the extent to which causal conclusions are
sensitive to violations of those assumptions.

The importance of such exercises is best illustrated with a
real example, which directly impacted public policy. During
the late 1950s and early 1960s, there was a fierce debate
regarding the causal effect of cigarette smoking on lung
cancer. One of its most notable skeptics was the influen-
tial statistician Ronald Fisher, who claimed that, without
an experiment, one cannot rule out unobserved common
causes (e.g. the individual’s genotype) as being responsible
for the observed association (Fisher, 1957; 1958). Techni-
cally speaking, Fisher’s statement was accurate; data alone
could not refute his hypothesis. Yet, although no RCT mea-
suring the effect of cigarette smoking on lung cancer was
performed, currently there exists a broad consensus around
the issue. How could such a consensus emerge?

An important step towards the current state of affairs was
a sensitivity analysis performed by Cornfield et al. (1959).
Their investigation consisted of the following hypotheti-
cal question: if Fisher’s hypothesis were true, how strong
would the alleged confounder need to be to explain all the
observed association between cigarette smoking and lung
cancer? The analysis concluded that, since smokers had nine
times the risk of nonsmokers for developing lung cancer,
the latent confounder would need to be at least nine times
more common in smokers than in nonsmokers—something

1As noted by Joffe et al. (2010), “such assumptions are usually
made casually, largely because they justify the use of available
statistical methods and not because they are truly believed”.
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deemed implausible by experts at the time.

Cornfield’s exercise reveals the fundamental steps of a sen-
sitivity analysis. The analyst introduces a violation of a
causal assumption of the current model, such as positing the
presence of unobserved confounders that induce a non-zero
association between two error terms. Crucially, however, we
are willing to tolerate this violation up to a certain plausibil-
ity limit dictated by expert judgment (e.g., prior biological
understanding, pilot studies). The task is, thus, to system-
atically quantify how different hypothetical “degrees” of
violation (to be defined) affect the conclusions, and to judge
whether expert knowledge can rule out problematic values.

The problem of sensitivity analysis has been studied through-
out the sciences, ranging from statistics (Rosenbaum &
Rubin, 1983; Small, 2007; Rosenbaum, 2010; Cinelli & Ha-
zlett, 2018; Franks et al., 2019) to epidemiology (Brumback
et al., 2004; Vanderweele & Arah, 2011; Ding & Vander-
Weele, 2016; Arah, 2017), sociology (Frank, 2000), psy-
chology (Mauro, 1990), political science (Imai et al., 2010;
Blackwell, 2013), and economics (Leamer, 1983; Imbens,
2003; Oster, 2017; Masten & Poirier, 2018). Notwithstand-
ing all this attention, the current literature is still limited to
specific models and solved on a case-by-case basis. Consid-
ering the ubiquity of causal questions in the sciences and
artificial intelligence, a formal, algorithmic framework to
deal with violations of causal assumptions is needed.

Causal modeling requires a formal language where the char-
acterization of the data generating process can be encoded
explicitly. Structural Causal Models (Pearl, 2000) provide
such a language and, in many fields, including machine
learning, the health and social sciences, linearity is a popular
modeling choice. In this paper, we focus on the sensitivity
analysis of linear acyclic semi-Markovian SCMs. We al-
low violations of exclusion and independence restrictions,
such as (i) the absence or presence of unobserved common
causes; and, (ii) the absence, presence or reversal of direct
causal effects. Our contributions are the following:

1. We introduce a formal, algorithmic approach for sen-
sitivity analysis in linear SCMs and show it can be
reduced to a problem of identification with non-zero
constraints, i.e, identification when certain parameter
values are fixed to a known, but non-zero, number.

2. We develop a novel graphical procedure, called PUSH-
FORWARD, that reduces identification with a known
error covariance to vanilla identification, for which a
plethora of algorithms are available.

3. We develop an efficient graph-based constrained identi-
fication algorithm that takes as input a set of sensitivity
parameters and returns a sensitivity curve for the ef-
fect estimate. The algorithm is theoretically sound and

experimental results corroborate its generality, show-
ing canonical sensitivity analysis examples are a small
subset of the cases solved by our proposal.

This paper is structured as follows. Section 2 reviews basic
terminology and definitions that will be used throughout the
text. Section 3 shows how sensitivity analysis in the context
of linear SCMs can be reduced to a constrained identification
problem. In Section 4 we develop a novel approach that
allows researchers to systematically incorporate constraints
on error covariances of linear SCMs. Section 5 utilizes these
results to construct a constrained identification algorithm
for deriving sensitivity curves. Finally, Section 6 presents
experimental results to evaluate our proposals.

2. Preliminaries
In this paper, we use the language of structural causal mod-
els as our basic semantic framework (Pearl, 2000). In partic-
ular, we consider linear semi-Markovian SCMs, consisting
of a set of equations of the form V = ΛV +U , where V rep-
resent the endogenous variables, U the exogenous variables,
and Λ a matrix containing the structural coefficients repre-
senting both the strength of causal relationships and lack
of direct causation among variables (when λij = 0). The
exogenous variables are usually assumed to be multivariate
Gaussian with covariance matrix E , encoding independence
between error terms (when εij = 0).2 We focus on acyclic
models, where Λ can be arranged to be lower triangular.

The covariance matrix Σ of the endogenous variables in-
duced by model M is given by Σ = (I−Λ)−1E(I−Λ)−>.
Without loss of generality, we assume model variables have
been standardized to unit variance. For any three variables
x, y and z, we denote σyx to be the covariance of x and y,
σyx.z to be the partial covariance of y and x given z, and
Ryx.z the regression coefficient of y on x adjusting for z.
Causal quantities of interest in a linear SCM are usually en-
tries of Λ (or functions of those entries), and identifiability
reduces to checking whether they can be uniquely computed
from the observed covariance matrix Σ.

Causal graphs provide a parsimonious encoding of some
of the substantive assumptions of a linear SCM. The
causal graph (or the path diagram) of model M is a graph
G = (V,D,B), where V denotes the vertices (endogenous
variables), D the set of directed edges (non-zero entries
of Λ) and B the set of bidirected edges (non-zero entries
of E). Missing directed edges represent exclusion restric-
tions—a variable is not a direct cause of the other. Missing
bidirected edges denote independence restrictions, repre-
senting the fact that no latent common causes exist between
two observed variables. When clear from context, we may

2Gaussianity is not necessary for the results of the paper.
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treat model coefficients and their corresponding edges on
the graph interchangeably. We use standard graph nota-
tion, where Pa(y) denotes the parents, Ch(y) the children,
Anc(y) the ancestors, and De(y) the descendants of node y.

3. Sensitivity analysis and identification
In this section we demonstrate the pervasiveness of identi-
fication problems in sensitivity analysis in the context of a
simple example. Suppose a scientist hypothesizes model
GO shown in Fig. 1a with the goal of estimating the direct
effect of a treatment x on an outcome y (structural coeffi-
cient λxy). By the single-door criterion (Pearl 2000), she
verifies λxy is identifiable in GO and equal to the regression
estimand Ryx.z , licensing her to proceed with estimation.

Another investigator, however, is suspicious of the bold
assumption that no common causes (confounders) exist be-
tween z and x inGO. She goes on, therefore, and constructs
an alternative model GA (Fig. 1b) such that the bidirected
edge z ↔ x is included to account for that possibility. A
question now naturally arises: how wrong could one be
using Ryx.z to estimate λxy if the true causal model were
given by graph GA? Answering this question requires defin-
ing a measure of “wrongness” of the estimand, and perhaps
the simplest such measure is its bias in the additive scale.3

Definition 1 (Bias of ES with respect to Q). Let Q be a
computable quantity given a fully specified linear structural
causal model, and let ES be any estimand (a functional of
the covariance matrix Σ). The bias of ES with respect to Q
is the difference between the two quantities, B = ES −Q.

In our example, the proposed estimand is ES = Ryx.z ,
the target quantity is Q = λxy, and to compute the bias,
B = Ryx.z − λxy, one needs to identify λxy. Computing
the bias, thus, entails an identification problem (Prop. 1).

Proposition 1. The bias of estimand ES with respect to
target quantity Q is identifiable iff Q is identifiable.

In GA, however, the presence of the bidirected edge x↔ z
renders λxy unidentifiable, and computation of B is not
possible. How could one circumvent this impediment?

As in Cornfield et al. (1959), the impossibility of computing
the exact bias of Ryx.z with respect to λxy calls for another
strategy—expressing the bias as a function of the “strength”
of the omitted confounders. In this way, the analyst can
predict for any hypothetical strength of the confounders
whether it would be enough to change the research con-
clusions. This allows the analyst to bring new substantive
knowledge to bear, by submitting these quantitative results
to a judgment of plausibility and ruling out some scenarios.

3Note this refers to the bias of an estimand (not an estimator),
and it is the difference between the proposed estimand and the
desired (causal) target quantity in the population.
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Figure 1: Original model GO and two alternative models,
GA and GB . In GA any of the remaining parameters (λzx,
εzx or εzy) can be used as a sensitivity parameter for λxy,
whereasGB rules out εzx as a sensitivity parameter. Adding
a bidirected edge x ↔ y in GA does not prevent εzy from
being a valid sensitivity parameter, whereas in GB it does.

Implementing this idea requires a precise definition of how
to measure the “strength” of the omitted confounders. In our
example, a possible candidate for measuring such strength
is the structural parameter εzx of the added bidirected edge
z ↔ x. The task then becomes: (i) to determine whether
knowledge of εzx allows the identification of λxy; and, (ii) if
so, to find a parameterized estimand for λxy in terms of εzx.
This 2-step procedure can be seen as an identification prob-
lem with non-zero constraints (Def. 2).4

Definition 2 (θ-identifiability). LetM be a linear SCM and
θ a set of parameters of M with known (non-zero) values. A
causal quantityQ is said to be θ-identifiable if Q is uniquely
computable from Σ and θ.

We call any functional of Σ and θ, which identifies Q, a
θ-specific estimand (or sensitivity curve) for Q with re-
spect to sensitivity parameters θ. These estimands are the
workhorse for sensitivity analysis; they allow us to investi-
gate how strong certain relationships must be (as parameter-
ized by θ) in order to induce significant bias in our estimates.
In other words, identifying a bias function in terms of θ (and
the observed data) for sensitivity analysis is equivalent to
the constrained identification problem of Def. 2 (Prop. 2).

Proposition 2. The bias of ES with respect to Q can be
expressed as a function of θ (and Σ) iff Q is θ-identifiable.

Going back to GA, it is indeed possible to construct an
εzx-specific estimand for λxy (see Sec. 4):

λxy(εzx) =
σxy − (σzx − εzx)σyz
1− (σzx − εzx)σzx

(1)

Eq. 1 allows one to compute the bias ofRyx.z with respect to
the target quantity λxy , for any given hypothetical value of
εzx, if the true model were given byGA. Similarly, it allows
one to determine how strong the unobserved confounder
would need to be (as parameterized by εzx) such that the as-

4Note the relationship to z-ID (Bareinboim & Pearl, 2012), in
which case constraints are imposed on experimental distributions
in the non-parametric setting.
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sociation Ryx.z is completely explained by the unobserved
confounder (i.e., the value of εzx such that λxy(εzx) = 0).

Still, what if the analyst has no knowledge to plausibly
bound the strength of εzx? Even though the violation intro-
duced in model GA was the addition of the bidirected edge
x ↔ z, corresponding to εzx, there is no reason to limit
our attention to that parameter, and any θ-specific estimand
could be used for sensitivity analysis. In fact, the two re-
maining parameters of the model also yield valid θ-specific
estimands (Sec. 5 provides an algorithmic solution),

λxy(λzx) =
σxy − λzxσyz
1− λzxσzx

(2)

λxy(εzy) =
σzy − εzy
σzx

(3)

Having a diverse option of sensitivity curves is important,
because sensitivity analysis relies on plausibility judgments.
One could argue, for instance, that assessing the plausibility
of εzx could be hard because it involves judging the effect of
confounders of unknown cardinality, and perhaps, previous
studies give plausible bounds on the direct causal effect of
z on x (i.e., λzx), making a λzx-specific estimand more
attractive. Regardless of the specific scenario, it is clear that
the choice of sensitivity parameters should be guided by the
availability of substantive knowledge.

Remarkably, several subtleties arise when deriving
θ-specific estimands, even in simple models with three vari-
ables. For instance, a natural approach for tackling the
problem in our example could be the re-expression of Ryx.z

in terms of the covariance matrix implied by GA, yielding,

Ryx.z = λxy −
(σzx − λzx)εzy

1− σ2
zx

= λxy −
εzxεzy

1− σ2
zx

(4)

One may surmise upon the examination of such expression
that two sensitivity parameters are needed. As shown in
Eqs. 1 to 3, this conclusion would be misleading.

These subtleties also appear when solving several variations
of a model. Imagine the alternative model is now GB , in-
stead of GA, as shown in Figure 1c. Is εzx an admissible
sensitivity parameter in this case? Is the εzy-specific esti-
mand derived in GA still valid if the model were GB? If
we include another violation in both models, a bidirected
arrow x ↔ y, would the previously obtained εzy-specific
estimands still be valid? Despite the apparent similarity of
both models, the answers to these questions reveal their sen-
sitivity curves behave quite differently. The tools developed
in this paper not only provide an algorithmic solution to
these questions, but also allow researchers to swiftly answer
them by simple inspection of the graph.

The above examples demonstrate several of the identifica-
tion problems entailed by a sensitivity analysis. If in small
models these tasks are already complex, once we move to

models with more than three or four variables, an informal,
case-by-case approach to sensitivity analysis is simply infea-
sible. Therefore, we need a formal framework and efficient
algorithms to incorporate constraints in linear SCMs.

4. Incorporating constraints in linear SCMs
Existing methods for identification in linear SCMs,
such as the QID algorithm from Chen et al. (2017),
are able to incorporate constraints on directed edges
and can be used to derive sensitivity curves such as the
λzx-specific estimand of Eq. 2. The QID algorithm exploits
a known edge λab by creating an auxiliary variable (AV)
b∗ = b − λaba (Chen et al., 2016). Subtracting out
the direct effect of a on b in this way may help with
the identification of other coefficients in the model. For
instance, the λzx-specific estimand can be computed using
AVs in the following way: (i) create x∗ = x− λzxz;
(ii) use x∗ as an instrument for λxy, resulting in
λxy(λzx) = σyx∗/σxx∗ = (σxy − λzxσyz)/(1− λzxσzx).5

However, neither the εzx-specific nor the εzy-specific esti-
mands can be derived using QID; in fact, there is no current
identification algorithm that offers a principled and efficient
way to exploit knowledge of bidirected edges.6 As this is
critical for the derivation of sensitivity curves (see Sec. 6),
one of the core contributions of this work is the development
of a novel graphical procedure that allows one to systemati-
cally incorporate constraints on error covariances.

Conventional linear SCMs already impose one type of con-
straint on error covariances: a lack of a bidirected edge be-
tween two variables a and b encodes the assumption that the
structural parameter εab is zero. The identification problem
imposed by sensitivity analysis, nonetheless, sets a different
type of constraint—the error covariance εab is fixed to a
known but non-zero number. The essence of our method is
to represent this knowledge in the graph.

Considering a graph G, covariance matrix Σ, and a known
error covariance εab, our strategy consists of performing a
“manageable” transformation of G such that the bidirected
edge a↔ b is removed from the graph. By “manageable”
we mean the implied covariance matrix Σ′ of the trans-
formed graph G′ can still be derived from Σ and the known
value εab; otherwise, we would have no connection between
G′ and the data, making inference in G′ impossible. Once
this graphical transformation is applied, we can exploit any

5The QID algorithm extends generalized instrumental sets
(Brito & Pearl, 2002) using a bootstrapping procedure whereby
complex models can be identified by iteratively identifying co-
efficients and using them to generate new auxiliary variables. It
takes as inputs a graph G, covariance matrix Σ and known directed
edges D, and it returns the new set of identified directed edges.

6Methods from computer algebra offer a complete solution but
are computationally intractable. See Sec. 6 and Supp. Materials.
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existing graphical identification method on the modified
model G′, and solutions in G′ can be transfered back to so-
lutions in the original model G. In short, we manipulate the
graph to reduce an identification problem with a non-zero
constraint to a standard one.

The easiest way to introduce our method, which we call
PUSHFORWARD, is via an example. Consider again
graph GA in Fig. 1b, and assume εzy is known. Path-tracing
(Wright, 1921) results in the following covariances, where
the known parameter εzy is highlighted in red,

σzx = λzx + εzx (5)
σzy = λzxλxy + εzxλxy + εzy (6)
σxy = λxy + λzxεzy (7)

Ideally, we could create an alternative model G∗A where
the bidirected edge z ↔ y is fully removed from the graph.
For this to be useful, we need to be able to express the new
implied covariance matrix Σ∗A in terms of the original covari-
ance matrix ΣA and the known error covariance εzy . While
expressing σ∗zy in terms of ΣA and εzy is straightforward
(since, trivially, σ∗zy = σzy − εzy), it is not immediately
clear how to write σ∗xy = σxy − λzxεzy = λxy in terms of
ΣA and εzy, for this requires identifying either λxy or λzx
in the original model.

Thus, rather than fully removing z ↔ y, we “push it for-
ward” to the children of z, as shown in graph G′A of Fig. 2b.
Note the bidirected edge is moved from being between
z and y to being between x (a child of z) and y, with new
structural parameter ε′zy = λzxεzy. Path-tracing of G′A
shows its implied covariance matrix Σ′A is exactly the same
as ΣA, except for σ′zy , which can be obtained by subtracting
εzy from σzy ,

σ′zx := σzx =λzx + εzx (8)
σ′zy := σzy − εzy =λzxλxy + λxyεzx (9)

σ′xy := σxy =λxy + λzxεzy (10)

Since G′A has the same structural coefficients as G and we
know how to compute the covariance matrix induced by
G′A from the known values Σ and εzy, we can use G′A to
identify the coefficients in our original model. In this case,
z is an instrument for λxy in G′A, resulting in the estimand
λxy(εzy) = σ′zy/σ

′
zx = (σzy − εzy)/σzx of Eq. 3.

Applying the same logic to graph GB in Fig. 1c, assume
εzy is known. Since z has no other descendants except y,
pushing forward εzy simply removes the bidirected
edge z ↔ y. This results in the modified graph G′B
of Fig. 2d with the amortized covariance of z and y,
σ′zy = σzy − εzy. Note εzy enters in no other covariances
of the system. The graph G′B renders z single-door admis-
sible for the identification of λxy, giving us the estimand
λxy(εzy) = R′yx.z = (σyx − σxz(σzy − εzy))/(1− σ2

xz).
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Figure 2: Pushing forward εzy in GA renders z a valid
instrument in G′A. Pushing forward εzy in GB renders z
single-door admissible in G′B .

This simple graphical manipulation also makes it clear why
adding a bidirected edge x ↔ y as a further violation in
the original graphs GA and GB has different consequences
for the identification of λxy. In G′A, z still remains a valid
instrument even if the original graph had x↔ y; this would
only change the value of the structural coefficient ε′xy , which
would now read ε′xy = εxy + λzxεzy. In G′B , however,
adding x↔ y renders z inadmissible for single-door identi-
fication of λxy , since this backdoor path cannot be blocked.

Sometimes it might be necessary to prune variables from
G′ to guarantee Σ′ is computable. Consider again GA and
assume εzx is known. Pushing forward εzx results in Fig. 3b
where, as before, we know σ′zx = σzx − εzx. However,
path-tracing of Fig. 3b shows the covariance of z with y
would also need adjustment, σ′zy = σzy − λxyεzx. Thus,
we have two cases: (i) if λxy is known, the adjustment is
feasible and we are done; (ii) if λxy is not (yet) known,
the adjustment cannot be made; but, since y is a leaf node,
it can be pruned from G′ (Tian & Pearl, 2003), avoiding
this problem (Fig. 3c). In this case, note the pruned graph
is still helpful—now λzx can be identified. As previously
discussed, knowledge of λzx permits identification of λxy
using AVs, giving us the εzx-specific estimand of Eq. 1.
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Figure 3: Pushing forward εzx in GA requires adjusting σyz .
If the adjustment is possible, y is kept in the graph as in
Fig. 3b; if not, y is marginalized (pruned) as in Fig. 3c.

The graphical manipulation of PUSHFORWARD is general,
and can be performed whenever we have knowledge of a
known error covariance. Theorem 1 formalizes the proce-
dure to arbitrary models. Given any bidirected edge x↔ y
with known value εxy , we remove it from the graph and reg-
ister the new amortized covariance σ′xy = σxy − εxy . Next
we repair the covariances of the descendants of x with y by,
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for every c ∈ Ch(x), adding (or modifying) the bidirected
edge c ↔ y with the direct causal effect λxc times εxy.
Finally, for any descendant z of y, we either (i) amortize
its covariance with x, if all edges that compose the total
causal effect δyz of y on its descendant z are known, or
(ii) marginalize z out by pruning the graph. The final output
is a modified model 〈G′,Σ′〉 where any graphical identifica-
tion method can be applied; and, estimands in terms of Σ′

can be converted back to estimands in terms of Σ and εxy .

Theorem 1 (PUSHFORWARD). Given a linear SCM with
graph G, covariance matrix Σ, a set of known di-
rected edges D, and known bidirected edge εxy, let the
pair 〈G′,Σ′〉 be constructed from G and Σ as follows:

1. x↔ y is removed and σ′xy = σxy − εxy;

2. ∀c ∈ Ch(x), c 6= y, the bidirected edges c ↔ y are
added if they do not exist, and ε′cy = εcy + λcyεxy;

3. ∀z ∈ De(y), z 6= x, if there is an edge on any directed
path from y to z that is not in D, then z is removed
from G′. For the remaining z, σ′xz = σxz − εxyδyz ,
where δyz is the sum of all directed paths from y to z;

4. All other parameters and covariances remain the same.

Then, if λab is identifiable in G′, it is
(εxy,D)-identifiable in G.

We denote by PF(G,Σ,D, εxy, x) the function that returns
the modified model 〈G′,Σ′〉 as per Theorem 1. Pseudocode
for PF (which closely follows the steps of the theorem) as
well as the proof can be found in the supplementary material.

5. Algorithmic derivation of sensitivity curves
In this section, we construct a graph-based constrained iden-
tification algorithm for linear SCMs which systematically
exploits knowledge of both path coefficients and error co-
variances efficiently. Our algorithm relies on the PUSH-
FORWARD method to incorporate constraints on bidirected
edges, and on the AV technique (via the QID algorithm)
to incorporate constraints on directed edges. This allows
the algorithmic derivation of sensitivity curves for a target
query λxy in arbitrary linear models, with an arbitrary set
of directed and bidirected edges as sensitivity parameters.

Although the graphical modification of PUSHFORWARD
is defined for one bidirected edge, the modified graph G′

is a valid model in which any graphical operation can be
performed. We can thus extend PUSHFORWARD to handle
multiple bidirected edges by iteratively applying it whenever
a bidirected edge of the modified graph is still known—what
remains to be decided is the order in which to perform these
operations. Note that testing all possible orders of graphical
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Figure 4: PF multiple edges in topological order.

manipulations can result in an algorithm with exponential
computational complexity, even when initially pushing for-
ward a single bidirected edge εxy. This happens because
new bidirected edges are created for each c ∈ Ch(x) and,
if all the λcx are identifiable, all subsets of those bidirected
edges may be eligible to be pushed forward again. Thus,
here we propose an efficient procedure using topological
ordering, which performed as well as a brute-force approach
in our computational experiments (Sec. 6).

Consider the example given in Fig. 4a. The task is to de-
cide whether θ = (εxz, εxy, εzy) (in red) is an admissible
set of sensitivity parameters for the target coefficient λxy
(in blue) and, if so, to find the corresponding sensitivity
curve. Our strategy consists of, for each node v, listing its
ancestors a ∈ An(v), and, in topological order, iteratively
push forward εav if it is still known in the modified graph.
By performing operations in this way, we are guaranteed to
visit each ancestor of v only once. Starting with node v = z,
it has only one ancestor x and a single known bidirected
edge to be removed, εxz . This can be handled with a one-
step PUSHFORWARD operation (pruning y), resulting in the
modified graph G′z of Fig. 4b, in which λxz can be trivially
identified. Next, return to the original graph and consider
v = y, with ancestors x and z. Following a topological or-
der, we first push forward εxy , giving us the modified graph
G
′

y of Fig. 4c with new bidirected edge ε′zy = εzy +λxzεxy .
Note all components of ε′zy are known, we can thus push
forward ε′zy in G′y, obtaining the graph G

′′

y in Fig. 4d, in
which λxy is identified with sensitivity curve R′′yx.z .
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Figure 5: Instruments with ancestors and descendants.

In the previous example we demonstrated how to system-
atically deal with bidirected edges connected to ancestors
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Algorithm 1 CID(G,Σ,D,B)

1: initialize VB ← Vertices(B)
2: repeat
3: D ← D ∪ QID(G,Σ,D)
4: for each v ∈ VB do
5: 〈G′,Σ′〉 ← 〈G,Σ〉
6: for each a ∈ An(v) in topological order do
7: if ε′av is known then
8: 〈G′,Σ′〉 ← PF(G′,Σ′,D, ε′av, a)
9: D ← D ∪ QID(G′,Σ′,D)

10: end if
11: end for
12: end for
13: for each εab ∈ B do
14: 〈G′,Σ′〉 ← PF(G,Σ,D, εab, a)
15: D ← D ∪ QID(G′,Σ′,D)
16: end for
17: until all directed edges have been identified or no edge

has been identified in the last iteration

of a node v; however, in linear models, descendants of v
can also help with the identification of direct causal effects
λav. Consider, for instance, Fig. 5a. The task is to find a
sensitivity curve for λxy in terms of θ = (εxw, εyw). Start
with node w and, as before, push forward εxw as in Fig. 5b.
Here, λzw can be identified with x as an instrument. Re-
turning to the original graph, now consider node y and push
forward the bidirected edge εyw with its descendant w, as
in Fig. 5c. Since λzw has been identified, we can create the
AV w∗ = w − λzwz which is a valid instrument for λxy .

These two cases illustrate our general procedure for han-
dling multiple bidirected edges, which in combination with
the QID algorithm forms our constrained identification algo-
rithm CID, provided in Algorithm 1. Lines 4 to 12 perform
PUSHFORWARD (PF) in topological ordering, each time ap-
plying QID in the modified model to verify if new directed
edges can be identified; lines 13 to 16 perform a single
PUSHFORWARD operation on each bidirected edge, which
may free descendants to be used as instruments as in Fig. 5.
Since new identified edges can help both PUSHFORWARD
as well as QID, this process is repeated until all or no new
directed edges are identified in the last iteration. The com-
plexity of CID is dominated by QID, which is polynomial
if the degree of each node is bounded (Chen et al., 2017).

An interesting 4-node example is shown in Fig. 6a,
where εzw, a parameter neither related to x nor y, is an
admissible sensitivity parameter for λxy! Our algorithm
derives an εzw-specific estimand for λxy as follows. It first
pushes forward εzw, and runs QID in the modified graph,
resulting in the identification of λzw. Next, the algorithm
returns to the original graph, and runs QID, which uses λzw
to create the auxiliary variable w∗ = w − λzwz, enabling

z
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λxy

ε
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(a) λxy is εzw-identifiable (b) Sensitivity of λxy in terms of εzw

Figure 6: In Fig 6a note that, although not connected to x
nor y, εzw is an admissible sensitivity parameter for λxy.
Fig. 6b shows the sensitivity curve of λxy in terms of εzw
for a numerical simulation of the model in Fig. 6a.

the identification of λzx. Finally, still within QID, λxy is
obtained using the auxiliary variable x∗ = x− λzxz.

As discussed in Sec.3, the utility of θ-specific estimands is
to show how sensitive the target quantity of interest is to
different hypothetical values of the sensitivity parameters θ.
These results can then be submitted to quantitative plausi-
bility judgments, for instance, in the form of θ ∈ Θp, where
Θp is a plausibility region. To illustrate how one could de-
ploy this in practice, we provide a numerical example of the
causal model in Fig. 6a. Our goal is to assess how different
hypothetical values for εzw affects inference of λxy. In a
real context, this needs to be estimated from finite samples,
and here we use a maximum likelihood estimator. Fig. 6b
shows the estimates for λxy (blue) for different values of
the sensitivity parameter εzw, along with the corresponding
95% confidence interval (gray). If, for instance, we can
plausibly bound εzw to be within 0.1 to 0.3, the plot reveals
λxy can be safely judged to be within -0.2 to -0.6.

6. Computational experiments
The identification problem in linear systems has not yet
been efficiently solved. Although there exists a complete so-
lution using computer algebra (García-Puente et al., 2010),
these methods are computationally intractable, making it
impractical for graphs larger than 4 or 5 nodes. Since we
rely on existing identification algorithms that are polyno-
mial but not complete (i.e., QID cannot find all identifiable
parameters), we cannot expect the CID algorithm to find all
sensitivity curves as well. In this section, we report the re-
sults of an extensive set of experiments aimed to empirically
verify the generality of our approach. We have performed
an exhaustive study of all possible queries in 3 and 4-node
models, which are essentially the largest instances computer
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3-NODE MODELS 4-NODE MODELS

ID ALGORITHM Directed Bidirected Both Directed Bidirected Both

QID (AVs only) 19(100%) – (0%) 68 (21%) 14,952(95%) – (0%) 170,304(29%)
CID (AVs + PF) 19(100%) 109(100%) 320(100%) 14,952(95%) 50,708(97%) 555,758(96%)

GROUND TRUTH 19 109 320 15,740 52,016 578,858

Table 1: Number of θ-identifiable sensitivity queries (only when θ 6= ∅) per type of sensitivity parameters θ.

algebra methods can solve through brute force.7

A query consists of determining whether in model G, a
target parameter λxy is θ-identifiable given a set of sensi-
tivity parameters θ. For 3-node models, we have 50 con-
nected graphs with 720 possible queries; for 4-node models,
we have 3,745 connected graphs and 1,059,156 possible
queries.8 For each query, we used algebraic methods to
determine ground-truth identification and checked it against
the results of both QID and CID. Our interest lies in the
queries that are θ-identifiable only when θ 6= ∅.

The results are given in Table 1, where columns restrict
sensitivity parameters θ to be: (i) subsets of directed edges;
(ii) subsets of bidirected edges; and, (iii) subsets of both
directed and bidirected edges. The results show that our CID
algorithm correctly identifies all possible sensitivity curves
for 3-node models. Among 4-node models, our method
solves 96% of all identifiable sensitivity queries.

These numbers reveal that, in the context of linear SCMs,
canonical sensitivity analysis examples which have been
addressed on a case-by-case basis in the literature (e.g.,
Fig.7, target coefficient in blue and sensitivity parameters
in red), are only a small subset of all possible sensitivity
analyses exercises enabled by our proposal.When compar-
ing CID’s results to those of QID only, it is also clear that
systematically incorporating constraints on bidirected edges
is essential for obtaining sensitivity curves.

A valid concern regarding CID’s current implementation is
that the proposed topological ordering for processing bidi-
rected edges could be less capable than a general search
over all possible valid graphical manipulations. With this
in mind, we performed a thorough comparison of our pro-
posal against other ordering methods for all queries in 3 and
4-node models. Topological ordering proved to perform as
well as a brute-force search that recursively tests all possible
subsets of bidirected edges that can be pushed forward.

Finally, the incompleteness of CID can stem from two
sources: limitations of the graphical manipulations per-

7We use Gröbner bases, which has a doubly-exponential comp.
complexity (Bardet, 2002). See Supp. Materials for details.

8For 5-node models, these numbers reach 1 million graphs and
11 billion queries. Ground-truth computations in 5-node models
using computer algebra can take hours for a single graph.
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Figure 7: Canonical sensitivity analyses: (a) backdoor viola-
tion with unobserved confounders independent of observed
confounders (Carnegie et al., 2016); (b) putative instrumen-
tal variable, where both the exclusion and independence
restriction are suspected to be violated (Wang et al., 2018);
(c) randomized trial in which treatment x has side-effect m,
and unobserved mediation-outcome confounding cannot be
ruled out (VanderWeele, 2010). For linear SCMs, these are
special cases of all queries solved by our approach.

formed by PUSHFORWARD and the incompleteness of the
identification algorithm for directed edges, QID. Separat-
ing the two can help guide efforts for future research. To
achieve that, we used algebraic methods to simulate how
CID would have performed if it had access to a complete
identification algorithm for directed edges instead of QID.
We found that CID would have identified over 99.99% of
4-node sensitivity queries. This seem to suggest that: (i) the
main bottleneck of CID is QID; and (ii) PUSHFORWARD
with topological ordering can reap the benefits of improved
identification algorithms for directed edges.

7. Conclusion
We introduced a general algorithmic framework of sensitiv-
ity analysis for linear SCMs. We reduced sensitivity anal-
ysis to a constrained identification problem and developed
a novel graphical procedure to systematically incorporate
constraints on bidirected edges. We then devised an effi-
cient graph-based algorithm for deriving sensitivity curves.
Exhaustive experiments corroborated the generality of our
proposal. Such systematic tools can help analysts better
navigate in the model space and understand the trade-off
between the plausibility of assumptions and the strength of
conclusions. Extensions to other types of violations and to
nonlinear models are promising directions for future work.
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