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Abstract
Traditional methods for handling incomplete data,
including Multiple Imputation and Maximum Like-
lihood, require that the data be Missing At Ran-
dom (MAR). In most cases, however, missingness
in a variable depends on the underlying value of
that variable. In this work, we devise model-based
methods to consistently estimate mean, variance
and covariance given data that are Missing Not At
Random (MNAR). While previous work on MNAR
data require variables to be discrete, we extend the
analysis to continuous variables drawn from Gaus-
sian distributions. We demonstrate the merits of our
techniques by comparing it empirically to state of
the art software packages.

1 Introduction
Incomplete (or missing) data are data in which values of one
or more variables are missing. Almost all existing techniques
for handling incomplete data employ maximum likelihood or
multiple imputation methods to fill in the missing values and
estimate parameters of interest. To guarantee convergence
and consistency, these techniques require that the missing
data mechanism be ignorable (Rubin [1976]) i.e. the causes
of missingness be either random or fully observed.

In practice, however, missingness is almost always caused
by variables that are themselves afflicted by missingness (Os-
borne [2012, 2014]; Sverdlov [2015]; Adams [2007]; van
Stein and Kowalczyk [2016]). Such data are called Missing
Not At Random (MNAR). Among all MNAR problems, the
most frequently encountered case is that of a variable caus-
ing its own missingness which we call self-masking MNAR.
It is discussed in almost all literature on missing data includ-
ing Koller and Friedman [2009] (chapter 19) and Darwiche
[2009] (chapter 17). Examples include smokers not answer-
ing questions about their smoking behavior in insurance ap-
plications, longitudinal studies with attrition (Little [1995]),
people with high income not revealing their incomes and a
general reluctance to answer questions about sensitive topics
such as religion, sexual preference and abortion (Greenland
and Finkle [1995]).

While there has been some recent work (Daniel et al.
[2012]; Mohan et al. [2013]; Mohan and Pearl [2014a, 2018];

Thoemmes and Mohan [2015]; Shpitser et al. [2015]) on es-
timation in MNAR data with discrete variables, to the best
of our knowledge there exists no theoretically sound and em-
pirically efficient graph based procedure for handling MNAR
missingness in datasets with continuous variables.

In this paper we focus on MNAR problems in linear sys-
tems. As in Mohan and Pearl [2014b] and Mohan and Pearl
[2018], we treat missing data as a causal inference prob-
lem. We present sound, graph-based procedures for recov-
ering (i.e. consistently estimating) parameters such as mean,
variance and covariance. In the following section we review
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Figure 1: Examples of (a) MCAR, (b) MAR and (c) MNAR models

missingness graphs and structural equation models.

2 Preliminaries
2.1 Missingness Graphs: Notations and

Terminology
Let G(V, E) be the causal DAG where V = Vo ∪ Vm ∪
U ∪ V ∗ ∪R. Nodes in the graph correspond to variables in
the data set. E is the set of edges in the DAG. Vo is the set of
variables that are observed in all records in the population and
Vm is the set of variables that have missing values in at least
one record. Variable X is termed as fully observed if X ∈
Vo and partially observed if X ∈ Vm. Rvi and V ∗i are two
variables associated with every partially observed variable,
where V ∗i is a proxy variable that is actually observed, and
Rvi represents the status of the causal mechanism responsible
for the missingness of V ∗i ; formally,

v∗i = f(rvi , vi) =

{
vi if rvi = 0
m if rvi = 1

(1)

V ∗ is the set of all proxy variables and R is the set of all
missingness mechanisms. U is the set of unobserved nodes
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(or latent variables). We use bi-directed edges as a shorthand
notation to denote the existence of a U variable as common
parent of two variables in Vo ∪ Vm ∪ R. For any W ⊆ Vo,
Rw = ∅. Unless stated otherwise it is assumed that no vari-
able in V ∪U is a child of anR variable. This graphical repre-
sentation is called Missingness Graph (or m-graph) (Mohan
et al. [2013]). An m-graph portrays Missing Completely At
Random (MCAR) missingness if (Vm, Vo, U)⊥⊥R, Missing
At Random (MAR) if (Vm, U)⊥⊥R|Vo and Missing Not At
Random (MNAR) if neither MAR nor MCAR hold. Figure
1 (a), (b) and (c) exemplify MCAR, MAR and MNAR miss-
ingness respectively.

Proxy variables may not always be explicitly shown in m-
graphs in order to keep the figures simple and clear. Con-
ditional Independencies are read off the graph using the d-
separation1 criterion [Pearl, 2009]. Before formally defining
the linear missingness model, we shall briefly review Struc-
tural Equation Models. For a detailed discussion see Pearl
[2009] (chapter 5) and Brito [2004].

2.2 Structural Equation Models
A structural equation model (SEM) is a system of equations
defined over a set of variables, such that each variable appears
on the left hand side of at most one equation. Each equation
describes the dependence of one variable in terms of the oth-
ers and contains an error term to account for the influence of
unobserved factors. Example: X = εx and Y = αX + εy .
As in Pearl [2013], we interpret structural equations as an as-
signment process whose directionality is captured by a path
diagram (see Figure 2). In this work all substantive variables
({Vm∪Vo∪U}) and error terms are assumed to be drawn from
a Gaussian distribution. Linear Structural Equation Modeling
is widely used for estimating parameters of interest given data
that are missing at random (Allison [2003]; Graham [2003];
Ullman and Bentler [2003]; Enders [2006]; Schlomer et al.
[2010]).

2.3 Recoverability
Definition 1 (Recoverability of target quantity Q (Mohan et
al. [2013])). Let A denote the set of assumptions about the
data generation process and letQ be any functional of the un-
derlying distribution P (Vm, VO, R). Q is recoverable if there
exists an algorithm that computes a consistent estimate of Q
for all strictly positive manifest distributions P (V ∗, Vo, R)
that may be generated under A.

We present an example of recoverability in linear mod-
els in section 3.1. For examples of recoverability in non-
parametric models with discrete variables, please see Mohan
et al. [2013].

3 Quasi-linear Missingness Model
The causal missingness mechanism is a binary variable and
as such the function generating it cannot be linear. The quasi-
linear model defined below captures the missingness process.

1For a quick introduction to d-separation see,
http://www.dagitty.net/learn/dsep/index.html

(i)X1 = εx1

(ii)Y = αX1 + εy

(iii)X2 = γY + δX1 + εx2

(iv)Ry = f(Y, εry )

(v)Y ∗ = (1−Ry)Y +mRy

Figure 2: Quasi-linear missingness model and equations constituting
the SEM corresponding to it.

Definition 2. A Quasi-linear Missingness Model is a Struc-
tural Equation Model such that:
1. every substantive variable X is a linear function of its
causes ,Y , and a random error term εx

X = α1Y1 + α2Y2 + ...+ αnYn + εx

The coefficient α’s are called path coefficients or structural
parameters.
2. For every Rx ∈ R, Rx = f(Z, εRx) where Z is the set
of causes and f is a non-linear function. No R variable is a
parent of any substantive variable.
3. Every proxy variable X∗ is generated by the non-linear
function: X∗ = (1−Rx)X +mRx

Figure 2 and equations (i) to (v) exemplify an m-graph and
its corresponding quasi-linear missingness model. Path coef-
ficients can be identified in linear models by applying criteria
such as single door and back door (see Pearl [2009] (chap-
ter 5)). Appendix 8.1 lists basic formulae used in this paper.
In the following lemma we rephrase and state a basic result
in linear path analysis that links covariance with path coeffi-
cients (Pearl [2013, 2009]; Brito [2004]; Wright [1921]).

Lemma 1. Let G be an m-graph with k unblocked paths
p1, ..pk between X and Y . Let Api be the ancestor of all
nodes on path pi. Let the number of nodes on pi be npi .

cov(X,Y ) =

k∑
i=1

var(Api) ∗
npi
−1∏

j=1

αpij (2)

where
npi
−1∏

j=1

αpij is the product of all causal parameters on

path pi.

For example, in figure 2, there exist two paths,X1 → Y →
X2 and X1 → X2, between X1 and X2. On applying lemma
1 we get, cov(X1, X2) = αγvar(X1) + δvar(X1).

In the following subsection we will exemplify a novel path
analytic procedure for consistent estimation of the covariance
matrix given MAR data.

3.1 Recoverability of Covariance Matrix: An
Example

For any target quantityQ we useQ‖RX=0
to denote: compute

Q from samples in which all variables in X are observed.

Example 1. Consider the problem of estimating the covari-
ance matrix given the MAR model of Figure 1 (b). Y is fully
observed and hence var(Y ) is trivially recoverable. In order



to recover cov(X,Y ), we will first recover βXY , the regres-
sion coefficient of X on Y . Since X⊥⊥Rx|Y we have the
license to compute βXY (using OLS) from samples in which
X is observed i.e. βXY = βXY ‖Rx=0

. cov(X,Y ) can now
be recovered as:

cov(X,Y ) = βXY ‖Rx=0
var(Y ) (3)

To recover var(X), we apply the law of total variance:
var(X) = E(var(X|Y )) + var(E(X|Y ))

• Recovering var(E(X|Y )): E(X|Y ) = βXY Y + cx
where βXY and cx denote the slope and intercept of
the regression line. Since X⊥⊥Rx|Y , E(X|Y ) =
E(X|Y )‖RX=0

. Therefore,

var(E(X|Y )) = var
(
βXY ‖Rx=0

Y + cy‖Rx=0

)
= (βXY ‖Rx=0

)2var(Y ) (4)

• Recovering E(var(X|Y )): The variance of a condi-
tional gaussian distribution is constant. Therefore,

E(var(X|Y )) = var(X|Y )

Variance of a conditional bivariate Gaussian distribu-
tion, var(X|Y ), is given by var(X)(1 − ρ2), where
ρ = cov(X,Y )

(var(X)var(Y ))
1
2

denotes the correlation coeffi-

cient. Since X⊥⊥Rx|Y , var(X|Y ) = var(X|Y )‖RX=0
.

Hence,
var(X|Y ) = var(X)‖Rx=0

(1− (ρ‖Rx=0
)2) (5)

Using 4 and 5 var(X) is computed as,
var(X) =var(X)‖Rx=0

(1− (ρ‖Rx=0
)2)

+ (βXY ‖Rx=0
)2var(Y )

Note that while all factors in the preceding estimand, except
var(Y ) are estimated from samples in which X is observed,
var(Y ) is recovered from all samples in the dataset, includ-
ing those in which X is missing. In other words, although
a consistent estimate of var(X) cannot be computed directly
from fully observed data (i.e. P (X∗, Y, Rx = 0)), it can be
recovered by a procedure in which each factor in the estimand
is estimated from subsets of the available data.
We further note that as a consequence of recovering var(X),
βY X , the causal effect of X on Y can be recovered as,
cov(X,Y )
var(X) =

βXY ‖Rx=0
var(Y )

var(X)‖Rx=0
(1−(ρ‖Rx=0

)2)+(βXY ‖Rx=0
)2var(Y ) .

The following section presents procedures for computing
parameters of interest in quasi linear models.

4 Recovering mean, variance and covariance
Theorem 1 (Recovering Mean of Partially Observed Vari-
ables). Let {X,Z} ⊆ Vm ∪ Vo, X ∩ Z = ∅, |X| = 1.
Given m-graph G, E(X) is recoverable if there exists Z =
{Z1, Z2, ...Zn} such that X⊥⊥RxRz|Z and E(Zi) is recov-
erable for all Zi ∈ Z. If recoverable, E(X) is given by

E(X) = c‖Rxz=0
+

n∑
i=1

αi‖Rxz=0
E(Zi) (6)

where c and αi’s denote the intercept and coefficients of the
regression line of X on Z.

Proof. Let X = α1Z1 + α2Z2 + ... + αnZn + c be the re-
gression line of X on Z. Since X⊥⊥RxRz|Z, E(X|Z) =
E(X|Z)‖Rxz=0

. Hence,

E(X|Z) = α1‖Rxz=0
Z1 + ...+ αn‖Rxz=0

Zn + c‖Rxz=0

However since E(X) = E(E(X|Z)) we can write,

E(X) = E
(
α1‖Rxz=0

Z1 + ...+ αn‖Rxz=0
Zn + c‖Rxz=0

)
= c‖Rxz=0

+

n∑
i=1

αi‖Rxz=0
E(Zi)

Theorem 2 (Recovering covariance of X and Y ). Let
{X,Y, Z} ⊆ Vm ∪ Vo, X ∩ Y ∩ Z = ∅, |X| = 1, |Y | =
1 and |Z| = n. Given m-graph G, cov(Y,X) is recov-
erable if there exists Z = {Z1, Z2, ...Zn} such that (i)
Y⊥⊥Rx, Ry, Rz|X,Z, and (ii) E(X), E(Y ), var(X), and
∀i E(Zi) and cov(X,Zi) are recoverable. If recoverable,
cov(Y,X) is given by

cov(Y,X) = αx‖Rxyz=0
(var(X) + E(X)2) + c‖Rxyz=0

E(X)

+
∑
i

αi‖Rxyz=0
(cov(XZi) + E(X)E(Zi))− E(X)E(Y )

where c and α’s denote the intercept and coefficients of the
regression line of Y on X,Z.

Proof.

cov(Y,X) = E(E(XY |Z))− E(Y )E(X)

= E(XE(Y |Z,X))− E(Y )E(X)

Using Y⊥⊥Rx, Ry, Rz|X,Z, we get
E(Y |X,Z) = E(Y |X,Z)‖Rxyz=0

. Therefore,

E(XE(Y |X,Z)) = E(X
(
αx‖Rxyz=0

X + α1‖Rxyz=0
Z1

+ α2‖Rxyz=0
Z2 + ...+ αk‖Rxyz=0

Zk + c‖Rxyz=0

)
= αx‖Rxyz=0

E(X2) + c‖Rxyz=0
E(X) +

∑
i

αi‖Rxyz=0
E(XZi)

= αx‖Rxyz=0
(var(X) + E(X)2) + c‖Rxyz=0

E(X)

+
∑
i

αi‖Rxyz=0
(cov(XZi) + E(X)E(Zi))

A well known and widely used property of Gaussian dis-
tributions is that their conditional variances are constant. Let
|X| = m and |Y | = n. Let Mxx,Myy and Mxy denote the
covariance matrix of X , Y and X and Y respectively. Vari-
ance of the conditional Gaussian distribution f(Y |X) is given
by,

V ar(Y |X) =Myy −M ′xyM−1xxMxy (7)

Theorem 3 (Recovering variance of a partially observed vari-
able X). Let {X,Z} ⊆ Vm ∪ Vo, X ∩ Z = ∅, |X| = 1
and |Z| = n. Given m-graph G, var(X) is recoverable if



there exists Z = {Z1, Z2, ...Zn} such that X⊥⊥RxRz|Z and
cov(Zi, Zj) is recoverable for all Zi, Zj ∈ Z. If recoverable,
var(X) is given by

var(X) = (Mxx −M ′zxM−1zz Mzx)‖Rxz=0

+
∑
i

α2
i ‖Rxz=0

var(Zi) +
∑
i6=j

(αiαj)‖Rxz=0
cov(Zi, Zj)

where αi’s denote the coefficients of the regression line of X
on Z.

Proof. We first apply the law of total variance: var(X) =
E(var(X|Z)) + var(E(X|Z)), and then prove recoverabil-
ity of var(X) by showing that both summands are recover-
able.
Recovering E(var(X|Z)): Since X and Zi ∈ Z, ∀i are
Gaussian variables, var(X|Z) is constant; therefore,

E(var(X|Z)) = var(X|Z)
= var(X|Z)‖Rxz=0

(since X⊥⊥Rx, Rz|Z)

= (Mxx −M ′zxM−1zz Mzx)‖Rxz=0
(using eqn 7)

Recovering var(E(X|Z)): Since X⊥⊥Rx, Rz|Z we have,

E(X|Z) = E(X|Z)‖Rxz=0
= cx‖Rxz=0

+
∑
i

αi‖Rxz=0
Zi

var(E(X|Z)) = var
(
c‖Rxz=0

+
∑
i

αi‖Rxz=0
Zi
)

=
∑
i

α2
i ‖Rxz=0

var(Zi) + 2
∑
i6=j

(αiαj)‖Rxz=0
cov(Zi, Zj)

Lemma 2. [Recovering Partial Regression Coefficients] Let
{X,Y, Z} ⊆ Vo ∪ Vm. Given m-graph G and missing
data D, partial regression coefficient βXY.Z is recoverable
if X⊥⊥RX , RY , RZ |Y, Z and is given by βXY.Z‖Rxyz=0

.

Notice that recoverability of E(X) using theorem 1 is con-
tingent upon the recoverability of E(Zi), for all i. Clearly,
to recover E(X) we should recover all E(Zi)’s first. Similar
is the case with theorems 2 and 3. In the case of recover-
ability of conditional distributions in datasets with discrete
variables, Mohan et al. [2013] defined the notion of ordered
factorization to sequence the recoverability procedure. In the
following theorem we adapt the idea of ordered factorization
in Mohan et al. [2013] to formulate a sufficient condition for
recovering mean.

Theorem 4. Let Y ∪{Z} ⊆ Vm ∪Vo and let O: Y1 < Y2 <
. . . < Z = Yk be an ordered set of all variables in Y ∪ {Z}.
Let Xi ⊆ {Y1, . . . , Yi−1}, 1 ≤ i ≤ k.

Given an m-graph G, a sufficient condition for recov-
ering E(Z) is that there exist O and Xi ∀i such that
Yi⊥⊥(Ryi , Rxi)|Xi.

Proof. Recoverability follows from theorem 1. We pro-
ceed by first recovering E(Y1) and then recovering
E(Y2),..,E(Yk) sequentially in the order dictated by O.

Example 2. Consider the problem of recovering E(X) and
E(Y ) given the m-graph G in figure 1 (c) and ordering
O : Y < X . Ordering O directs us to first recover E(Y ) and
then recover E(X). Since Y⊥⊥Ry in G, we can apply theo-
rem 1 to recover E(Y ) as E(Y )‖Ry=0

. Since X⊥⊥Rx, Ry|Y
and E(Y ) is recoverable, we can apply theorem 1 to recover
E(X) as c‖Rxy=0

+ α1‖Rxy=0
E(Y )‖Ry=0

.

In a similar manner, ordered recoverability procedures can
be extended to recover covariance and variance as well. In the
case of MCAR data, all orderings of variables will guarantee
recoverability, whereas in the case of MAR data, orderings in
which all fully observed variables precede partially observed
variables will guarantee recoverability. Finally in the case of
MNAR data, the ordering is determined by graph structure,
and heuristics for finding admissible orders are discussed in
Mohan et al. [2013].

5 Extending recoverability to complex MNAR
models

In this section we focus on m-graphs in which conditional
independence between a variable and its missingness mech-
anism (such as Y⊥⊥Ry and Yi⊥⊥(Ryi , Rxi)|Xi) that are re-
quired by theorems 1, 2, 3 and 4 does not hold in the graph.
In the following subsection we present a theorem for recov-
ering E(Y ) for any Y ∈ Vm, by leveraging X , a neighbor of
Y .

5.1 Recovering E(Y ) when Y and Ry are not
separable

Theorem 5 (Recovering E(Y ) for any Y ∈ Vm). Let
X ∈ Vm ∪ Vo be a neighbor of Y . Given m-graph G and
missing data D, E(Y ) is recoverable if E(X) is recover-
able and there exists Z ⊆ Vm ∪ Vo − {X,Y } such that
X⊥⊥Rx, Ry, Rz|Y, Z and E(Zi) is recoverable for all i. If
recoverable, E(Y ) is given by,

E(Y ) =
E(X)− cx‖Rxyz=0

−
∑k
i=1 αi‖Rxyz=0

E(Zi)

αy‖Rxyz=0

(8)

where α’s, and c denote the coefficients and intercept of the
regression line of X on Z and Y.

Proof: See Appendix 8.2
Example 3. To recover E(Y ) given the m-graph in figure 2,
we leverage X1. X1⊥⊥Ry|Y and E(X1) is recoverable since
X1 ∈ VO. Hence mean of Y can be recovered using theorem

5 as,
E(X1)−c‖Ry=0

βX1,Y ‖Ry=0

.

5.2 Recovering var(Y ) when Y and Ry are not
separable

Algorithm 1 recovers variance of a variable Y given an m-
graph in which X1 is a parent of Y and X2 is a child of Y . It
uses two subroutines (outlined in appendix 8.3) that compute
path coefficient and covariance using lemma 1. If a quantity
of interestQ is recoverable, thenQ∗ is used as a shorthand for
the recovered estimand. For example if var(Y ) is recoverable



Figure 3: (a) Self masking model in which all variables are partially
observed, yet E(Y ) and var(Y ) are recoverable. (b) m-graph con-
structed from (a) by treating Z, Y,Rz and Rw as latent.

Algorithm 1 RecoverVariance(Y,G,X1, X2)

Input: Y : variable whose variance is to be recovered. G:
Markovian m-graph in which X1 is a parent of Y and X2 is a
child of Y
Output: var(Y )∗ if var(Y ) is recoverable

NULL if var(Y ) is not recoverable
1: if var(Y ) is recoverable using theorem 3 then
2: Recover estimand var(Y )∗

3: return var(Y )∗

4: if βX1,Y is recoverable by lemma 2 then
5: Recover estimand βX1,Y

∗

6: else return NULL
7: αy∗ ← Recover αy(G, Y,X1, X2)
8: if αy∗== NULL then return NULL
9: cov(X1, Y )∗ ← Recover cov(G, Y,X1, αy

∗)
10: if cov(X1, Y )∗ == NULL then return NULL
11: return cov(X1,Y )∗

βX1,Y
∗

then var(Y )
∗ denotes the recovered estimand. We exemplify

below the recovery procedure using algorithm 1.
Example 4. Consider the problem of recovering mean and
variance of Y given the m-graph in figure 2. We will show
that var(Y ) is recoverable using algorithm 1.
Steps 1-3: Since Y and Ry are neighbors theorem 3 is not
applicable. Hence we proceed to the next step.
Steps 4-6: SinceX1⊥⊥Ry|Y , βX1,Y is recoverable using
lemma 2 i.e. βX1,Y

∗ = βX1,Y ‖Ry=0
.

Steps 7-8: We invoke subroutine Recover αy to recover the
path coefficient α in figure 2. Since X1 and X2 are fully ob-
served, cov(X1, X2) is recoverable. Path coefficients δ and
γ may be recovered as:

δ = βX2X1.Y (by single door criterion, Pearl [2009])
= βX2X1.Y ‖Ry=0

(using lemma 2)

γ = βX2Y.X1
(by back door criterion, Pearl [2009])

= βX2Y.X1‖Ry=0
(using lemma 2)

Since X1 is fully observed, var(X1) is recoverable. On ap-
plying lemma 1 we get,

cov(X2, X1) = γαvar(X1) + δvar(X1)

Therefore, α =
1

βX2Y.X1‖Ry=0

(cov(X2, X1)

var(X1)
− βX2X1.Y ‖Ry=0

)

Steps 9-10: We invoke subroutine Recover cov to recover
cov(X1, Y ). On applying lemma 1 we get: cov(X1, Y ) =
βX1Y var(X1) = (βX1Y )‖Ry=0

var(X1).
Step 11: var(Y ) is recovered as:

var(Y ) =
cov(X1, Y )

βX1Y
=
α ∗ var(X1)

(βX1Y )‖Ry=0

=
var(X1)

(βX1Y )‖Ry=0

1

βX2Y.X1‖Ry=0

∗
(cov(X2, X1)

var(X1)
− βX2X1.Y ‖Ry=0

)
While algorithm 1 currently handles only Markovian

graphs, we note that it is possible to extend the algorithm
to Semi-Markovian models provided we make additional as-
sumptions (pertaining to variances of latent variables). We
further note that suitable candidates for X1 and X2 are the
non-descendants and descendants of Y , respectively. Latent
projection (Pearl [2009], chapter 2) of the input graph con-
structed by treating all intermediate nodes on unblocked paths
between X1 and Y , and X2 and Y , as latent can yield graphs
compatible with the requirements of algorithm 1. When la-
tent projection does not introduce bi-directed edges, recovery
is straight forward. We exemplify this in section 6.

6 Empirical Evaluation
We denominate the graph based recovery procedure presented
in this paper as Model Based Estimation (MBE) and evaluate
MBE by simulating partially observed datasets from missing-
ness graphs and estimating their parameters from the incom-
plete data. We compare our estimates against those yielded by
state of the art packages for SEM that apply Multiple Impu-
tation (MI) (using mice package in R Mic [2018]) and Max-
imum Likelihood (ML) (using lavaan in R Lav [2018]) tech-
niques [Schminkey et al., 2016; Enders, 2006]. Parameters
are evaluated in terms of mean squared error and KL Diver-
gence between original and learned distributions.
Missing At Random: We generate data according to the fol-
lowing model and evaluate the performance of MBE, MI and
FIML in terms of Mean Squared Error (MSE) and time taken
to compute mean of X .
X = εx,
Ry = f(Y1, Y2, ...Yk, εry )
Yi = αiX + εy, 1 ≤ i ≤ k
The first experiment measures the mean squared errors of the
three estimators: MI, ML, MBE, and studies how it varies
with increase in sample size, for the problem of recovering
mean(X) when |Y | = k = 5. The results of this experi-
ment are plotted in figure 4. We further estimated the average
time each procedure took in recovering and plotted time vs
sample size in figure 5. Figure 4 shows that all three meth-
ods (MBE, MI, FIML) work almost identically so far as the
quality of estimate of E(X) is concerned. From figure 5 it
is clear that MBE (a non-iterative procedure) takes less time
in computing E(X) as compared to MI and FIML. While all
the reported numbers (MSE and time) are averaged over 50
repetitions with different random estimation problems, for a



Figure 4: MSE of E(X) vs Sample Size for MAR: X⊥⊥Rx|Y ,
when |Y | = 5

Figure 5: Time to recover E(X) vs Sample Size for MAR:
X⊥⊥Rx|Y , when |Y | = 5

given problem each individual MSE was computed from 500
simulations. In the next experiment we study the efficiency
of these procedures as the complexity of the model increases.
In MAR models, complexity of recoverability depends on the
size of the separating set Y that d-separates X from Rx (and
on the size of the dataset). This experiment was conducted by
fixing sample size to 100,000. We observe in Figure 6 that as
the separating set becomes larger, the time taken to recover
estimates also increases. Note that in this case the time gain
pertains to computing parameters of one partially observed
variable X . Clearly, in a real world dataset with several par-
tially observed variables, the time savings offered by MBE
will be substantial.
Missing Not At Random: The goal here is to evaluate the

Figure 6: Time to recover E(X) vs |Y | for MAR: X⊥⊥Rx|Y

Figure 7: KL divergence vs Sample size for self masking model

effectiveness of algorithm 1 using data generated by the self
masking model in 3. βwy and βzy are not recoverable by
lemma 2; hence Z and W cannot be used for recovering
var(Y ). However, βx1y is recoverable. We can create a
latent projection by treating Z,W,Rz and Rw as latent vari-
ables as shown in figure 3 (b). Figure 7 depicts the KL diver-
gence between true and estimated distribution of Y . As ex-
pected, FIML and MI behave unpredictably while MBE with
minimum KL Divergence behaves ideally.

7 Conclusions
We presented novel graph-based procedures that are non-
iterative and independent of likelihood function, for recov-
ering parameters in quasi-linear missingness models. We fur-
ther developed procedures for recovering parameters in self
masking models. Finally we showed that given MAR data,
our techniques are much faster than state of the art procedures
and given MNAR data our techniques can recover parameters
where existing techniques fail.
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8 Appendix
8.1 Basic Formulae Used in Linear Models

cov(X,Y ) = E(XY )− E(X)E(Y )

var(X) = E(X2)− E(X)2

βY X =
cov(X,Y )

var(X)
=

d

dx
E(Y |X = x)

βY X.Z =
d

dx
E(Y |X = x, Z = z)

8.2 Proof of theorem 5
E(X) = E(E(X|Z, Y )) = E(E(X|Z, Y )‖Rxyz=0

)

= αy‖Rxyz=0
E(Y ) +

∑k
i=1 αi‖Rxyz=0

E(Zi) + cx‖Rxyz=0

Therefore, E(Y ) =
E(X)−cx‖Rxyz=0

−
∑k

i=1 αi‖Rxyz=0
E(Zi)

αy‖Rxyz=0

8.3 Subroutines used in Algorithm 1
In this subsection we outline the subroutines Recover α
and Recove cov invoked by algorithm 1. Recoverability of
queries in these subroutines are determined using results in
section 4. Note that in this work we only deal with recover-
ability of statistical parameters. Path coefficients (which are
causal parameters) are considered recoverable if (i) they are
identifiable and (ii) all factors in the (identified) estimand are
recoverable.
Recover αy: Input: G: m-graph in which X1 is a parent
of Y and X2 is a child of Y . αy: Path coefficient of edge
X1 → Y . Output: αy

∗ if αy is recoverable, NULL other-
wise.
This routine applies lemma 1 on X1 and X2 to obtain,

cov(X1, X2) =
k∑
i=1

var(Api) ∗
npi
−1∏

j=1

αpij . If cov(X1, X2),

var(Api)’s and all αj’s (excluding αy) are recoverable, their
recovered estimands are substituted into the equation above
to recover and return the estimand of αy .
Recover cov: Input: G: m-graph in which X1 is a parent
of Y and X2 is a child of Y , αy∗: Recovered estimand of αy ,
the path coefficient of edge X1 → Y . Output: Estimand for
cov(X1, Y ) if it is recoverable, NULL otherwise.
This routine applies lemma 1 on X1 and Y and returns the
estimand for recovering cov(X1, Y ) if all variances and path
coeffients on the RHS of equation 2 are recoverable.

https://cran.r-project.org/web/packages/lavaan/README
https://cran.r-project.org/web/packages/lavaan/README
https://cran.r-project.org/web/packages/mice/README.html
https://cran.r-project.org/web/packages/mice/README.html
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