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LETTERS

To the Editor:

In a recent communication, Breskin et al1 
aimed to demonstrate “how single-world 

intervention graphs can supplement tradi-
tional causal diagrams.” The example used 
in their demonstration involved selection 
bias due to attrition, namely, subjects drop-
ping out from a randomized trial before 
the outcome is observed. Here, we use the 
same example to demonstrate the oppo-
site conclusion; the derivation presented 
by Breskin et al is in fact longer and more 
complicated than the standard, three-step 
derivation facilitated by traditional causal 
diagrams. We further show that more 
natural solutions to attrition problems are 
obtained when viewed as missing-data 
problems encoded in causal diagrams.

The trial example of Breskin et al 
is shown in the causal diagram of  Figure 
A. The task is to estimate the average
causal effect E[Y|do(A = a)] in the gen-
eral population, given complete data on
A (vaccine assignment) and W (injection
site pain), whereas data on Y (disease
outcome) is available only for those sub-
jects who did not drop out of the study
(S = 0). U stands for unmeasured health
status, and participants with poor health
(U = 1) are assumed to be both more likely 
to experience pain and get the disease.

The standard strategy of causal 
diagrams is to convert the query expres-
sion, E[Y|do (A = a)], into an equivalent 

expression that can be estimated from 
the available data.2,3 The derivation goes 
as follows:

E Y do A a E Y A a[ | ( )] [ | ]= = = (1)

= = = = =∑E Y A a W w P W w A a
W

[ | , ] ( | ) (2)
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w

[ | , , ] ( | )0  (3)

The first equality is licensed by random-
ization (or null backdoor condition), the 
second by the law of total probability, and 
the latter by d-separation, that is, Y╨S|{A, 
W}. All components of the final expres-
sion can be estimated from the avail-
able data; the first factor from units who 
remained in the study (S = 0), and the 
second from all units entering the trial. 
As noted in the study by Breskin et al, the 
same derivation holds if the arrows A → 
S and W → Y are added to the diagram.

The extreme simplicity and trans-
parency of this derivation, vis-a-vis the 
elaborate derivation introduced by Bre-
skin et al is an illustrative example of the 
utility of traditional causal diagrams in 
modeling attrition, censoring, selection 
bias, and missing data problems  Single-
world intervention graphs may be use-
ful for researchers who are determined 
to verify ignorability conditions such as 
Y(a)╨S(a)|W(a), but d-separation ren-
ders such efforts unnecessary. A wide 
variety of selection bias and cross-pop-
ulation problems can be solved by the 
same query-conversion strategy that we 
described above, operating on traditional 
causal diagrams.2,3 General conditions 
for identifying causal effects under both 
confounding and selection bias are pre-
sented in the study by Correa et al.4.

As a final remark, we note that 
the example presented by Breskin et al 
may be better formulated as a missing 
data problem. Such formulation would 
allow us to specify explicitly which 
variables are still measured for every 
subject who drops out of the study. For 
instance, in the current example, miss-
ingness only occurs in the outcome 
variable Y, a fact that is not represented 
in the diagram of Figure A. Missing-
ness graphs,5 on the other hand, allow 
us to formally encode this distinction, 
as shown in Figure B.

Here, the variable Ry replaces S 
and represents the “missingness mecha-
nism” of the outcome variable Y, which 
is not observed directly. Instead, the vari-
able Y* stands for what we can observe 
of Y, such that Y* = Y when Ry = 0, and 
Y* = missing when Ry = 1. In this case, 
the derivation would proceed as before, 
but this formalism has some benefits: (1) 
it explicitly tells us that the two factors 
in Eq. 3 can be estimated from the same 
study and (2) more complicated missing-
ness mechanisms can be easily accom-
modated. A comprehensive review of 
graphical methods for missing data can 
be found in the study by Mohan and 
Pearl.6
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To the Editor:

We read with keen interest Cinelli 
and Pearl’s1 response to our let-

ter.2 A key difference in our approaches 
can be appreciated by examining the first 
line of each of our derivations. In our 
derivation, the quantity we begin with is 
E Y a( )[ ], but Cinelli and Pearl1 begin with
E Y do A a| =( )[ ]. Thus, a fundamental dis-
tinction, previously highlighted by Pearl,3 
is that our approach introduces new vari-
ables (in particular, the counterfactuals 
or potential outcomes Y a( ), W a( ), and
S a( )), whereas Cinelli and Pearl1 intro-
duce a new operator (the do operator). 
Because these counterfactuals appear on 
the single world intervention graph in  
Figure B of our letter, the counterfac-
tual independencies used in our deri-
vation can be determined immediately 
using standard graphical criteria such as 
Pearl’s d-separation. However, the causal 
diagram in Figure A of our letter only 
includes the observed factual random  
variables A S W Y, , ,  and the unobserved 

factual U , so it seems impossible to 
determine counterfactual independencies 
without additional context. In particular, 
if we equate E Y a( )[ ] with E Y do A a| =( )[ ]
(Richardson and Robins,4 page 7), then 
the first step in Cinelli and Pearl’s1 deri-
vation becomes E Y a E Y A a( )[ ] = =[ | ].
However, because Y a( ) does not appear
on the causal diagram, this step does not 
seem to be justified from the causal graph 
alone and requires knowledge that is not 
reflected by the causal diagram.

We appreciate the simplicity of 
Cinelli and Pearl’s1 derivation based on 
the causal diagram, but our intuition 
and insight are improved by working 
directly with counterfactuals. Before the 
introduction of single world interven-
tion graphs, a shortcoming of the coun-
terfactual approach was the conceptual 
difficulty of mapping knowledge of the 
factual variables to unobserved coun-
terfactuals.3 A key utility of single 
world intervention graphs is that they 
remove this difficulty. The first step in 
constructing a single world intervention 
graph is to construct a causal diagram 
based only on assumptions regarding 
the causal relationships between fac-
tuals.4 This is then followed by apply-
ing an algorithm to map the causal 
relationships from the causal diagram 
to the single world intervention graph 
and thus the counterfactuals.4 The con-
struction of the single world interven-
tion graph, therefore, explicitly links 
our assumptions regarding factuals to 
assumptions regarding counterfactuals.

We are pleased by the dialogue our 
letter has initiated. Causal inference holds 
a unique place at the intersection of many 
diverse fields, including epidemiology, 
statistics, philosophy, computer science, 
and economics, to name a few. Cross-
disciplinary conversations like this pro-
vide valuable opportunities for us to learn 
alternate perspectives, minimize ambigu-
ities, and enrich our understanding.
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To the Editor:

Generalized estimating equations 
(GEEs) are popular tools for esti-

mating associations in clustered data 
settings. The semiparametric nature of 
this approach makes it highly appealing 
because unbiased effect estimators can  
be obtained without knowing the true 
distribution of the data being modeled. 
For example, it is unnecessary to spec-
ify a specific parametric distribution 
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