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Introduction

The purpose of this note is to complement Lesko et al.’s review [1] and present
readers with a comparison between two approaches to the analysis of
generalizability: (1) potential outcomes and (2) model-based data fusion. We
show that, while the inferential power of the former is curtailed by a priori
assumptions of conditional exchangeability, the latter unveils and leverages the
full range of opportunities that are licensed by both the available data and
one’s model of reality, regardless of whether the model supports the
assumption of conditional exchangeability.

In general, the potential outcomes perspective falls short of addressing
three fundamental issues in causal analysis:

1. To determine if there exist sets of covariates W that satisfy “conditional
exchangeability” (be it of treatment assignments, of populations’
heterogeneity, or of selection indicators).

2. To estimate causal parameters at the target population in cases where
such sets W do not exist, and

3. To decide if one’s modeling assumptions are compatible with the
available data.
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These deficiencies curtail the analyses of both internal validity and external
validity problems, but are more pronounced in the latter, where the
assumptions required are more involved. While the assumptions that ensure
internal validity concern patients choice of treatments, those required for
external validity concern both the way subjects are selected for the study, the
factors that make the population different from the target population, and
how those differences modify the effect of treatment on outcome. Technically,
the standard conditional exchangeability that is assumed for neutralizing
confounding, X⊥⊥Y (x) | W , involves only three variables, X, Y , and W . By
contrast, the conditional exchangeability assumed to neutralize disparities
between the study and the target populations, S⊥⊥Y (x) | W , involves four
variables, Y , X, W , and S (where S is an indicator of membership in the
study sample or source of unmodeled disparities). The parallels Lesko et al.
draw between the two tasks are syntactic at best, and should not suggest that
a researcher who can judge the plausibility of the former can also judge the
plausibility of the latter.

Lesko et al. appear to be aware of the first limitation and state: “Judging
whether a set of characteristics W is sufficient to satisfy this independence
assumption [i.e., conditional exchangeability] may be a difficult task” [page
555]. They consequently recommend the use of a directed acyclic graph
(DAG), with the help of which conditional exchangeability “can be verified by
inspection.” This transparency of DAG-based models has long been recognized
by practicing epidemiologists who have adapted these models as effective
communication tools [2, 3, 4]. What perhaps is less recognized among
epidemiologists is the use of DAGs as inference tools, capable of extending the
scope of analysis beyond the boundaries imposed by the potential outcome
perspective.

The major difference between the two approaches lies in the fact that,
whereas the potential outcomes framework confines the analysis to problems
where “conditional exchangeability” can be assumed a priori, the only
assumptions invoked in the model-based framework are those encoded in the
structure of the DAG, and these often have broader ramifications, going
beyond the exchangeability variety. Consequently, the problems discussed in
Lesko et al. can be given a more general solution, covering transportability as
well as other generalization tasks under the same umbrella, and embracing
arbitrary disparities between multiple study populations and the target
population. This model-based framework, called Data Fusion [5, 6, 7] will be
described in the next section.

The Data Fusion framework: A general solution
to external validity

The Data Fusion framework takes an arbitrary set of heterogeneous data
sources and produces a consistent estimand of the target quantity at the
target population. Clearly, to embark on such ambitious task, we must first
arm ourselves with a formal notation and a formal logic to assure that the
resulting estimand is valid. Accordingly, the theory provides us with the
notation needed to characterize the nature of each data source, the nature of
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the population interrogated, whether the source is an observational or
experimental study, which variables are randomized and which are measured;
finally, as output, the theory tells us how to fuse all these sources together to
synthesize a consistent estimand of the target causal quantity at the target
population. Moreover, if we feel uncomfortable about the assumed structure of
any given data source, the theory tells us whether an alternative source can
furnish the needed information and whether we can weaken any of the model’s
assumptions.

As described above, the Data Fusion framework sounds like the
Philosopher’s Stone of epidemiologic research, and readers would be justified
in doubting the ability of any analytic method to accomplish such a general
and ambitious goal. However, readers familiar with the power of the
do-calculus to automate the derivation of internally valid effects [8] should not
be surprised to see this power replicated and amplified when applied to
problema of external validity. Space limitations permit us merely to sketch the
inference strategy of Data Fusion. A gentle introduction is given in [5, 6] while
a full technical account and proofs of completeness can be found in [9, 10].

The inference strategy invoked by the Data Fusion framework stands
almost diametrically opposed to that invoked in the potential outcome
framework. Instead of starting with exchangeability type assumptions in order
to justify a familiar re-calibration procedure, we reverse the order and start
with the target quantity itself, also called “query,” and ask what estimation
procedure would properly represent the query. This amounts to converting the
query into a new mathematical form that would be estimable from the
available data, however heterogeneous. The conversion process relies solely on
the transparent structure of the DAG, needing no external assumptions of
ignorability or exchangeability. If the conversion is successful, the resulting
expression provides a recipe for pooling chunks of data from their various
sources and assembling them together so as to estimate the query. If the
conversion is unsuccessful, we are assured that the query is inestimable given
the model at hand. The conversion is done algorithmically, guided by the
DAG and governed by the do-calculus.

In contrast to the potential outcome strategy, we impose no prior
restriction on the form of the resulting estimand but, rather, allow it to
emerge naturally and algorithmically from the problem description itself. Our
strategy amounts to extracting from the problem description all opportunities
for valid generalizations, many of which would be excluded under the
restrictions of Lesko’s et al. For example, problems in which conditional
exchangeability does not hold can nevertheless be generalized [7], albeit by
non-standard estimands, going beyond the simple adjustment described in Eq.
(4) of Lesko et al. Complete conditions for generalizing under both
confounding and selection bias are derived in [11].

To summarize, the Data Fusion framework substantially extends the class
of problems analyzable by the potential outcome framework, and bases all its
conclusions on transparent assumptions encoded in the DAG structure.
Moreover, it provide us with guarantees of “completeness,” which tells us, in
essence, that one cannot do any better. In other words, it delineates precisely
the minimum set of assumptions needed to establish consistent estimate of
causal effects in the target population. If any of those assumptions is violated
we know that we can do only worse. From a mathematical (and philosophical)
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viewpoint, this is the most one can expect analysis to do for us and, therefore,
completeness renders the generalizability problem “solved.”

Completeness also tells us that any strategy of generalizing study results is
either embraceable in the framework of Data Fusion, or it is not workable in
any framework. This means that one cannot dismiss the conclusions of Data
Fusion theory on the grounds that: “Its assumptions are too strong,” or “I do
not have the knowledge to specify the DAG.” If a set of assumptions is deemed
necessary in the Data Fusion analysis, then it is necessary, period; it cannot be
avoided or relaxed, unless it is supplemented by other assumptions elsewhere,
and the algorithm can tell us where.

Conclusions

We commend Lesko et al. for an illuminating survey of how the potential
outcome framework deals with the problem of generalizing study results to
target populations. In this note, we highlighted the general limitations
inherent in the potential outcome framework, and the specific limitations that
apply to generalization problems. We provided a brief description of an
alternative framework, called Data Fusion, which circumvents the limitations
above and provides a complete solution to the problem of external validity
using transparent and testable assumptions.
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