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COMMENTARY
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The purpose of this note is to complement the review by Lesko et al.1 and to present 
readers with a comparison between two approaches to the analysis of generalizability: 

(1) potential outcomes and (2) model-based data fusion. We show that, while the inferential
power of the former is curtailed by a priori assumptions of conditional exchangeability,
the latter unveils and leverages the full range of opportunities that are licensed by both
the available data and one’s model of reality, regardless of whether the model supports the
assumption of conditional exchangeability.

In general, the potential outcomes perspective falls short of addressing three funda-
mental issues in causal analysis:

(1)  to determine if there exist sets of covariates W that satisfy “conditional exchange-
ability” (be it of treatment assignments, of populations’ heterogeneity, or of selection
indicators),

(2)  to estimate causal parameters at the target population in cases where such sets W do
not exist, and

(3)  to decide if one’s modeling assumptions are compatible with the available data.

These deficiencies curtail the analyses of both internal validity and external validity prob-
lems but are more pronounced in the latter, where the assumptions required are more 
involved. While the assumptions that ensure internal validity concern patients choice of 
treatments, those required for external validity concern both the way subjects are selected 
for the study, the factors that make the population different from the target population, and 
how those differences modify the effect of treatment on outcome. Technically, the stan-
dard conditional exchangeability that is assumed for neutralizing confounding, X Y x W� ( )| ,  
involves only three variables, X, Y, and W. By contrast, the conditional exchangeability 
assumed to neutralize disparities between the study and the target populations, S Y x W� ( )| ,  
involves four variables, Y, X, W, and S (where S is an indicator of membership in the study 
sample or source of unmodeled disparities). The parallels Lesko et al.1 draw between the 
two tasks are syntactic at best and should not suggest that a researcher who can judge the 
plausibility of the former can also judge the plausibility of the latter.
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Lesko et al.1(page 555) appear to be aware of the first 
limitation and state, “Judging whether a set of characteris-
tics W is sufficient to satisfy this independence assumption 
(i.e., conditional exchangeability) may be a difficult task”. 
They consequently recommend the use of a directed acyclic 
graph (DAG), with the help of which conditional exchange-
ability “can be verified by inspection.” This transparency of 
DAG-based models has long been recognized by practicing 
epidemiologists who have adapted these models as effec-
tive communication tools.2–4 What perhaps is less recognized 
among epidemiologists is the use of DAGs as inference tools, 
capable of extending the scope of analysis beyond the bound-
aries imposed by the potential outcome perspective.

The major difference between the two approaches lies in 
the fact that, whereas the potential outcomes framework con-
fines the analysis to problems where “conditional exchange-
ability” can be assumed a priori, the only assumptions invoked 
in the model-based framework are those encoded in the struc-
ture of the DAG, and these often have broader ramifications, 
going beyond the exchangeability variety. Consequently, the 
problems discussed in Lesko et al.1 can be given a more gen-
eral solution, covering transportability as well as other gen-
eralization tasks under the same umbrella, and embracing 
arbitrary disparities between multiple study populations and 
the target population. This model-based framework, called 
Data Fusion,5–7 will be described in the next section.

THE DATA FUSION FRAMEWORK: A GENERAL 
SOLUTION TO EXTERNAL VALIDITY

The Data Fusion framework takes an arbitrary set of hetero-
geneous data sources and produces a consistent estimand of 
the target quantity at the target population. Clearly, to embark 
on such ambitious task, we must first arm ourselves with a 
formal notation and a formal logic to assure that the resulting 
estimand is valid. Accordingly, the theory provides us with the 
notation needed to characterize the nature of each data source, 
the nature of the population interrogated, whether the source 
is an observational or experimental study, which variables are 
randomized and which are measured; finally, as output, the 
theory tells us how to fuse all these sources together to synthe-
size a consistent estimand of the target causal quantity at the 
target population. Moreover, if we feel uncomfortable about 
the assumed structure of any given data source, the theory 
tells us whether an alternative source can furnish the needed 
information and whether we can weaken any of the model’s 
assumptions.

As described above, the Data Fusion framework sounds 
like the Philosopher’s Stone of epidemiologic research, and 
readers would be justified in doubting the ability of any ana-
lytic method to accomplish such a general and ambitious goal. 
However, readers familiar with the power of the do-calculus 
to automate the derivation of internally valid effects8 should 
not be surprised to see this power replicated and ampli-
fied when applied to problems of external validity. Space 

limitations permit us merely to sketch the inference strategy 
of Data Fusion. A gentle introduction is given in Bareinboim 
and Pearl5 and Pearl and Bareinboim,6 while a full technical 
account and proofs of completeness can be found in Barein-
boim and Pearl.9,10

The inference strategy invoked by the Data Fusion 
framework stands almost diametrically opposed to that 
invoked in the potential outcome framework. Instead of start-
ing with exchangeability type assumptions in order to jus-
tify a familiar recalibration procedure, we reverse the order 
and start with the target quantity itself, also called “query,” 
and ask what estimation procedure would properly represent 
the query. This amounts to converting the query into a new 
mathematical form that would be estimable from the available 
data, however, heterogeneous. The conversion process relies 
solely on the transparent structure of the DAG, needing no 
external assumptions of ignorability or exchangeability. If the 
conversion is successful, the resulting expression provides a 
recipe for pooling chunks of data from their various sources 
and assembling them together so as to estimate the query. If 
the conversion is unsuccessful, we are assured that the query 
is inestimable given the model at hand. The conversion is 
done algorithmically, guided by the DAG and governed by the 
do-calculus.

In contrast to the potential outcome strategy, we impose 
no prior restriction on the form of the resulting estimand but, 
rather, allow it to emerge naturally and algorithmically from 
the problem description itself. Our strategy amounts to extract-
ing from the problem description all opportunities for valid 
generalizations, many of which would be excluded under the 
restrictions of Lesko et al.1 For example, problems in which 
conditional exchangeability does not hold can nevertheless be 
generalized,7 albeit by nonstandard estimands, going beyond 
the simple adjustment described in equation 4 of Lesko et al.1 
Complete conditions for generalizing under both confounding 
and selection bias are derived in Correa et al.11

To summarize, the Data Fusion framework substantially 
extends the class of problems analyzable by the potential out-
come framework and bases all its conclusions on transpar-
ent assumptions encoded in the DAG structure. Moreover, it 
provide us with guarantees of “completeness,” which tells us, 
in essence, that one cannot do any better. In other words, it 
delineates precisely the minimum set of assumptions needed 
to establish consistent estimate of causal effects in the target 
population. If any of those assumptions is violated, we know 
that we can do only worse. From a mathematical (and philo-
sophical) viewpoint, this is the most one can expect analysis to 
do for us, and therefore, completeness renders the generaliz-
ability problem “solved.”

Completeness also tells us that any strategy of gener-
alizing study results is either embraceable in the framework 
of Data Fusion or it is not workable in any framework. This 
means that one cannot dismiss the conclusions of Data Fusion 
theory on the grounds that “Its assumptions are too strong,” or 
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“I do not have the knowledge to specify the DAG.” If a set of 
assumptions is deemed necessary in the Data Fusion analysis, 
then it is necessary, period; it cannot be avoided or relaxed, 
unless it is supplemented by other assumptions elsewhere, and 
the algorithm can tell us where.

CONCLUSIONS
We commend Lesko et al.1 for an illuminating survey of how 
the potential outcome framework deals with the problem of 
generalizing study results to target populations. In this note, 
we highlighted the general limitations inherent in the potential 
outcome framework and the specific limitations that apply to 
generalization problems. We provided a brief description of 
an alternative framework, called Data Fusion, which circum-
vents the limitations above and provides a complete solution 
to the problem of external validity using transparent and test-
able assumptions.
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