Graphical Models for Processing Missing Data

Karthika Mohana and Judea Pearlb

aDepartment of Computer Science, University of California Berkeley, Berkeley, CA; bDepartment of Computer Science, University of California Los Angeles, Los Angeles, CA

\textbf{ABSTRACT}

This article reviews recent advances in missing data research using graphical models to represent multivariate dependencies. We first examine the limitations of traditional frameworks from three different perspectives: transparency, estimability, and testability. We then show how procedures based on graphical models can overcome these limitations and provide meaningful performance guarantees even when data are missing not at random (MNAR). In particular, we identify conditions that guarantee consistent estimation in broad categories of missing data problems, and derive procedures for implementing this estimation. Finally, we derive testable implications for missing data models in both missing at random and MNAR categories.

1. Introduction

Missing data present a challenge in many branches of empirical sciences. Sensors do not always work reliably, respondents do not fill out every question in the questionnaire, and medical patients are often unable to recall episodes, treatments, or outcomes. The statistical literature on this problem is rich and abundant and has resulted in powerful software packages such as MICE in R, Stata, SAS, and SPSS, which offer various ways of handling missingness. Most practices are based on the seminal work of Rubin (1976) who formulated procedures and conditions under which the damage due to missingness can be reduced. This theory has also resulted in a number of performance guarantees when data obey certain statistical conditions. However, these conditions are rather strong, and extremely hard to ascertain in real world problems. Little and Rubin (2014, p. 22), summarize the state of the art by observing: "essentially all the literature on multivariate incomplete data assumes that the data are missing at random (MAR)." The power of the MAR assumption lies in permitting popular estimation methods such as maximum likelihood (Dempster, Laird, and Rubin 1977) and multiple imputation (Rubin 1978) to be directly applied without explicitly modeling the missingness process. Unfortunately, it is almost impossible for a practicing statistician to decide whether the MAR condition holds in a given problem. The literature on data that go beyond MAR suffers from the same problem. The methods employed require assumptions that are not readily defensible from scientific understanding of the missingness process. Graphical models, in contrast, provide a transparent encoding of such understanding, as explained below.

Recent years have witnessed a growing interest in using graphical models to encode assumptions about the reasons for missingness. This development is natural, partly because graphical models provide efficient representation for reading conditional independencies (Cox and Wermuth 1993; Lauritzen 1996), and partly because the missingness process often requires causal rather than probabilistic assumptions (Pearl 1995).

Earlier articles in this development are Daniel et al. (2012) who provided sufficient criteria under which consistent estimates can be computed from complete cases (i.e., samples in which all variables are fully observed), and Thoemmes and Rose (2013) (similarly Thoemmes and Mohan (2015)) who developed techniques for selecting auxiliary variables to improve estimability. In machine learning, particularly while estimating parameters of Bayesian networks, graphical models have long been used as a tool when dealing with missing data (Darwiche 2009).

In this article, we review the contributions of graphical models to missing data research from three main perspectives: (1) transparency, (2) recoverability (consistent estimation), and (3) testability. The main results of the article are highlighted in Table 1.

1.1. Transparency

Consider a practicing statistician who has acquired a statistical package that handles missing data and would like to know whether the problem at hand meets the requirements of the software. As noted by Little and Rubin (2014, Appendix) and many others such as Rhoads (2012) and Balakrishnan (2010), almost all available software packages implicitly assume that data fall under two categories: missing completely at random (MCAR) or MAR (formally defined in Section 2.2). Failing these assumptions, there is no guarantee that estimates produced by software will be less biased than those produced by complete case analysis. Consequently, it is essential for the user to decide if the type of missingness present in the data is compatible with the requirements of MCAR or MAR.
Prior to the advent of graphical models, no tool was available to assist in this decision, since the independence conditions that define MCAR or MAR are neither visible in the data, nor in a mathematical model that a researcher can consult to verify those conditions. We will show how graphical models enable an efficient and transparent classification of the missingness mechanism. In particular, the question of whether the data fall into the MCAR or MAR categories can be answered by mere inspection of the graph structure. In addition, we will show how graphs facilitate a more refined, query-specific taxonomy of missingness in missing not at random (MNAR) problems.

The transparency associated with graphical models stems from three factors. First, graphs excel in encoding and detecting conditional independence relations, far exceeding the capacity of human intuition. Second, all assumptions are encoded causally, mirroring the way researchers store qualitative scientific knowledge; direct judgments of conditional independencies are not required, since these can be read off the structure of the graph. Finally, the ultimate aim of all assumptions is to encode “the reasons for missingness” which is a causal, not a statistical concept. Thus, even when our target parameter is purely statistical, say a regression coefficient, causal modeling is still needed for encoding the “process that causes missing data” (Rubin 1976).

1.2. Recoverability (Consistent Estimation)

Recoverability (to be defined formally in Section 3) refers to the task of determining, from an assumed model, whether any method exists that produces a consistent estimate of a desired parameter and, if so, how. If the answer is negative, then no algorithm, however smart, can yield a consistent estimate. On the other hand, if the answer is affirmative then there exists a procedure that can exploit the features of the problem to produce consistent estimates. If the problem is MAR or MCAR, standard missing data software can be used to obtain consistent estimates. But if a recoverable problem is MNAR, the user would do well to discard standard software and resort to an estimator based on graphical analysis. In Section 3 of this article, we present several methods of deriving consistent estimators for both statistical and causal parameters in the MNAR category.

The general question of recoverability, to the best of our knowledge, has not received due attention in the literature. The very notion that some parameters cannot be estimated by any method whatsoever while others can, still resides in an uncharted territory. We will show in Section 3 that most MNAR problems exhibit this dichotomy. That is, problems for which it is impossible to properly impute all missing values in the data would still permit the consistent estimation of some parameters of interest. More importantly, the estimable parameters can often be identified directly from the structure of the graph.

1.3. Testability

Testability asks whether it is possible to tell if any of the model’s assumptions is incompatible with the available data (corrupted by missingness). Such compatibility tests are hard to come by and the few tests reported in the literature are mostly limited to MCAR (Little 1988). As stated in Allison (2003), “Worse still, there is no empirical way to discriminate one nonignorable model from another (or from the ignorable model).” In Section 4, we will show that remarkably, discrimination is feasible; MAR problems do have a simple set of testable implications and MNAR problems can often be tested depending on their graph structures.

In summary, although mainstream statistical analysis of missing data problems has made impressive progress in the past few decades, it left key problem areas relatively unexplored, especially those touching on transparency, estimability and testability. This article casts missing data problems in the language of causal graphs and shows how this representation facilitates solutions to pending problems. In particular, we show how the MCAR, MAR, MNAR taxonomy becomes transparent in the graphical language, how the estimability of a needed parameter can be determined from the graph structure, what estimators would guarantee consistency, and what modeling assumptions lend themselves to empirical scrutiny.

2. Graphical Models for Missing Data: Missingness Graphs (m-graphs)

The following example, inspired by Little and Rubin (2002, Example 1.6, p. 8), describes how graphical models can be used to explicitly model the missingness process and encode the underlying causal and statistical assumptions. Consider a study conducted in a school that measured three (discrete) variables: age (A), gender (G), and obesity (O).

No missingness: If all three variables are completely recorded, then there is no missingness. The causal graph depicting the interrelations between variables is shown in Figure 1(a). Nodes correspond to variables and edges indicate the existence of a causal relationship between pairs of nodes they connect. The value of a child node is a (stochastic) function of the values of its parent nodes; that is, obesity is a (stochastic) function of age and gender. The absence of an edge between age and gender indicates that A and G are independent, denoted by $A \perp \perp G$.

For a gentle introduction to causal graphical models, see Elwert (2013), Lauritzen (2001), and Pearl (2009b, secs. 1.2 and 11.1.2).
Representing missingness: Assume that age and gender are fully observed since they can be obtained from school records. Obesity however is corrupted by missing values since some students fail to reveal their weight. When the value of Obesity is concealed, that is, O^* assumes the values m as shown in samples 2 and 3 in Table 2. When $R_O = 0$, the true value of obesity is revealed, that is, O^* assumes the underlying value of obesity as shown in samples 1, 4, 5, 6, and 7 in Table 2.

Missingness can be caused by random processes (i.e., caused by variables that are not correlated with other variables in the model) or can depend on other variables in the dataset. An example of random missingness is students accidentally losing their questionnaires. This is depicted in Figure 1(b) by the absence of parent nodes for R_O. Teenagers rebelling and not reporting their weight is an example of missingness caused by a fully observed variable. This is depicted in Figure 1(c) by an edge between A and R_O. Partially observed variables can be causes of missingness as well. For instance, consider obese students who are embarrassed of their obesity and hence reluctant to reveal their weight. This is depicted in Figure 1(d) by an edge between O and R_O indicating that O is the cause of its own missingness.

The following subsection formally introduces missingness graphs (m-graphs) as discussed in Mohan, Pearl, and Tian (2013).

2.1. Missingness Graphs: Notations and Terminology

Let $G(V, E)$ be the causal directed acyclic graph (DAG) where V is the set of nodes and E is the set of edges. Nodes in the graph correspond to variables in the dataset and are partitioned into five categories, that is,

$$V = V_o \cup V_m \cup U \cup V^* \cup R$$

where V_o is the set of variables that are observed in all records in the population and V_m is the set of variables that are missing in at least one record. Variable X is termed as fully observed if $X \in V_o$ and partially observed if $X \not\in V_m$. V_o and V_m^* are two variables associated with every partially observed variable, where V_m^* is a proxy variable that is actually observed, and R_v represents the status of the causal mechanism responsible for the missingness of V_v^*; formally,

$$v_v^* = f(r_v, v_i) = \begin{cases} v_i & \text{if } r_v = 0 \\ m & \text{if } r_v = 1. \end{cases}$$

V^* is the set of all proxy variables and R is the set of all causal mechanisms that are responsible for missingness. U is the set of unobserved nodes, also called latent variables. Unless stated otherwise it is assumed that no variable in $V_o \cup V_m \cup U$ is a child of an R variable. Two nodes X and Y can be connected by a directed edge, that is, $X \rightarrow Y$, indicating that X is a cause of Y, or by a bi-directed edge $X \leftrightarrow Y$ denoting the existence of a U variable that is a parent of both X and Y.

We call this graphical representation a missingness graph (or m-graph). Figure 1 exemplifies three m-graphs in which $V_o = \{A, G\}$, $V_m = \{O\}$, $V^* = \{O^*\}$, $U = \emptyset$ and $R = \{R_o\}$. Proxy variables may not always be explicitly shown in m-graphs to keep the figures simple and clear. The missing data distribution, $P(V^*, V_o, R)$ is referred to as the observed data distribution and the distribution that we would have obtained had there been no missingness, $P(V_o, V_m, R)$ is called the underlying distribution. Conditional independencies are read off the graph using the d-separation criterion (Pearl 2009b). For example, Figure 1(c) depicts the independence $R_o \perp \!\!\!\! \perp O | A$ but not $R_o \perp \!\!\!\! \perp G | O$.

2.2. Classification of Missing Data Problems Based on Missingness Mechanism

Rubin (1976) classified missing data into three categories: MCAR, MAR, and MNAR based on the statistical dependencies...

Table 2. Missing dataset in which age and gender are fully observed and obesity is partially observed.

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Age</th>
<th>Gender</th>
<th>Obesity*</th>
<th>R_O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>F</td>
<td>Obese</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>F</td>
<td>m</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>M</td>
<td>m</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>F</td>
<td>Not obese</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>M</td>
<td>Not obese</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>M</td>
<td>Obese</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>F</td>
<td>Obese</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 1. (a) Causal graph under no missingness. (b)–(d) m-graphs modeling MCAR, MAR, and MNAR missingness processes, respectively.
between the missingness mechanisms (R variables) and the variables in the dataset (V_m, V_o). We capture the essence of this categorization in graphical terms below.

1. Data are MCAR if V_m \cup V_o \cup U \perp R holds in the m-graph. In words, missingness occurs completely at random and is entirely independent of both the observed and the partially observed variables. This condition can be easily identified in an m-graph by the absence of edges between the R variables and variables in V_o \cup V_m.

2. Data are v-MAR if V_m \cup U \perp R|V_o holds in the m-graph. In words, conditional on the fully observed variables V_o, missingness occurs at random. In graphical terms, v-MAR holds if (i) no edges exist between an R variable and any partially observed variable and (ii) no bidirected edge exists between an R variable and a fully observed variable. MCAR implies v-MAR, ergo all estimation techniques applicable to v-MAR can be safely applied to MCAR.

3. Data that are not v-MAR or MCAR fall under the MNAR category.

m-graphs in Figures 1(b), (c), and (d) are typical examples of MCAR, v-MAR, and MNAR categories, respectively. Notice the ease with which the three categories can be identified. Once the user lays out the interrelationships between the variables in the problem, the classification is purely mechanical.

2.2.1. MAR: A Brief Discussion

The original classification used in Rubin (1976) is very similar to the one defined in the preceding paragraphs. The main distinction rests on the fact that MAR defined in Rubin (1976) is defined in terms of conditional independencies between events whereas that in this article (referred to as v-MAR) is defined in terms of conditional independencies between variables. Clearly, we can have the former without the latter, in practice though it is rare that scientific knowledge can be articulated in terms of event based independencies that are not implied by variable based independencies.

Over the years the classification proposed in Rubin (1976) has been criticized both for its nomenclature and its opacity. Several authors noted that MAR is a misnomer (Peters and Enders 2002; Scheffer 2002; Meyers, Gamst, and Guarrino 2006; Graham 2009) noting that randomness in this class is critically conditioned on observed data.

However, the opacity of the assumptions underlying MAR (Rubin 1976) presents a more serious problem. Clearly, a researcher would find it cognitively taxing, if not impossible, to even decide if any of these independence assumptions is reasonable. This, together with the fact that MAR (Rubin 1976) is untestable (Allison 2002) motivates the variable-based taxonomy presented above. Seaman et al. (2013) and Doretti, Geneletti, and Stanghellini (2018) provided another taxonomy and a different perspective on MAR.

Nonetheless, MAR has an interesting theoretical property: It is the weakest simple condition under which the process that causes missingness can be ignored while still making correct inferences about the data (Rubin 1976). It was probably this theoretical result that changed missing data practices in the 1970s. The popular practice prior to 1976 was to assume that missingness was caused totally at random (Haitovsky 1968; Gleason and Staelin 1975). With Rubin’s identification of the MAR condition as sufficient for drawing correct inferences, MAR became the main focus of attention in the statistical literature.

Estimation procedures such as Multiple Imputation that worked under MAR assumption became widely popular and textbooks were authored exclusively on MAR and its simplified versions (Graham 2012). In the absence of recognizable criteria for MAR, some authors have devised heuristics invoking auxiliary variables, to increase the chance of achieving MAR (Collins, Schafer, and Kam 2001). Others have warned against indiscriminate inclusion of such variables (Thoemmes and Rose 2013; Thoemmes and Mohan 2015). These difficulties have engendered a culture with a tendency to blindly assume MAR, with the consequence that the more commonly occurring MNAR class of problems remains relatively unexplored (Adams 2007; Reseguier, Giorgi, and Paoletti 2011; Osborne 2012; 2014; Sverdlov 2015; van Stein and Kowalczyk 2016).

In his seminal article (Rubin 1976), Rubin recommended that researchers explicitly model the missingness process:

This recommendation invites in fact the graphical tools described in this article, for they encourage investigators to model the details of the missingness process rather than blindly assume MAR. These tools have further enabled researchers to extend the analysis of estimation to the vast class of MNAR problems.

In the next section, we discuss how graphical models accomplish these tasks.

3. Recoverability

Recoverability\(^4\) addresses the basic question of whether a quantity/parameter of interest can be estimated from incomplete data as if no missingness took place; that is, the desired quantity can be estimated consistently from the available (incomplete) data. This amounts to expressing the target quantity Q in terms of the observed-data distribution \(P(V^*, V_o, R)\). Typical target quantities that shall be considered are conditional/joint distributions and conditional causal effects.

\(\text{Definition 1 (Recoverability of target quantity } Q)\). Let A denote the set of assumptions about the data generation process and let Q be any functional of the underlying distribution \(P(V_m, V_o, R)\). Q is recoverable if there exists a procedure that computes a consistent estimate of Q for all strictly positive observed-data distributions \(P(V^*, V_o, R)\) that may be generated under A.\(^5\)

Since we encode all assumptions in the structure of the m-graph G, recoverability becomes a property of the pair \((Q, G)\), and not of the data. We restrict the definition above to strictly positive observed-data distributions, \(P(V^*, V_o, R)\) except for instances of zero probabilities as specified in Equation (1). The reason for this restriction can be understood as the need

\(^4\)The term identifiability is sometimes used in lieu of recoverability. We prefer using recoverability over identifiability since the latter is strongly associated with causal effects, while the former is a broader concept, applicable to statistical relationships as well. See Section 3.5.

\(^5\)This definition is more operational than the standard definition of identifiability for it states explicitly what is achievable under recoverability and more importantly, what problems may occur under nonrecoverability.
for observing some unmasked cases for all combinations of variables, otherwise, masked cases can be arbitrary. We note however that recoverability is sometimes feasible even when strict positivity does not hold (Mohan, Pearl, and Tian 2013, Definition 5 in the appendix).

We now demonstrate how a joint distribution is recovered given v-MAR data.

Example 1. Consider the problem of recovering the joint distribution given the m-graph in Figure 1(c) and dataset in Table 3. Let it be the case that 15–18 year olds were reluctant to reveal their weight, thereby making O a partially observed variable, that is, $V_{m} = \{O\}$ and $V_{o} = \{G,A\}$. This is a typical case of v-MAR missingness, since the cause of missingness is the fully observed variable: age. The following three steps detail the recovery procedure.

1. **Factorization:** The joint distribution may be factored as

 $$P(G, O, A) = P(G, O|A)P(A).$$

2. **Transformation into observables:** G implies the conditional independence $(G, O) \perp R_{O}|A$ since A d-separates (G, O) from R_{O}. Thus,

 $$P(G, O, A) = P(G, O|A, R_{O} = 0)P(A).$$

3. **Conversion of partially observed variables into proxy variables:** $R_{O} = 0$ implies $O^* = O$ (by Equation (1)). Therefore,

 $$P(G, O, A) = P(G, O^*|A, R_{O} = 0)P(A). \tag{2}$$

The RHS of Equation (2) is expressed in terms of variables in the observed-data distribution. Therefore, $P(G, O, A)$ can be consistently estimated (i.e., recovered) from the available data. The recovered joint distribution is shown in Table 4.

Note that samples in which obesity is missing are not discarded but are used instead to update the weights p_{1}, \ldots, p_{12} of the cells in which obesity has a definite value. This can be seen by the presence of probabilities p_{13}, \ldots, p_{18} in Table 4 and the fact that samples with missing values have been used to estimate prior probability $P(A)$ in Equation (2). Note also that the joint distribution permits an alternative decomposition:

$$P(G, O, A) = P(O|A, G)P(A, G),$$

$$= P(O^*|A, G, R_{O} = 0)P(A, G).$$

The equation above allows a different estimation procedure whereby $P(A, G)$ is estimated from all samples, including those in which obesity is missing, and only the estimation of $P(O^*|A, G, R_{O} = 0)$ is restricted to the complete samples. The efficiency of various decompositions are analyzed in Van den Broeck et al. (2015) and Mohan et al. (2014).

Finally, we observe that for the MCAR m-graph in Figure 1(b), a wider spectrum of decompositions is applicable, including:

$$P(G, O, A) = P(O, A, G|R_{O} = 0),$$

$$= P(O^*|A, G|R_{O} = 0).$$

The equation above allows the estimation of the joint distribution using only those samples in which obesity is observed. This estimation procedure, called listwise deletion or complete-case analysis (Little and Rubin 2002), would usually result in wastage of data and lower quality of estimate, especially when the number of samples corrupted by missingness is high. Considerations of estimation efficiency should therefore be applied once we explicate the spectrum of options licensed by the m-graph.

A completely different behavior will be encountered in the model of Figure 1(d) which, as we have noted, belong to the
The inescapable conclusion seems to be that when dealing with real data, the practising statistician should explicitly consider the process that causes missing data far more often than he does. However, to do so, he needs models for this process and these have not received much attention in the statistical literature.

Figure 2. Quote from Rubin (1976).

MNAR category. Here, the arrow $O \rightarrow R_O$ would prevent us from executing Step 2 of the estimation procedure, that is, transforming $P(G, O, A)$ into an expression involving solely observed variables. We can in fact show that in this example the joint distribution is nonrecoverable; that is, regardless of how large the sample or how clever the imputation, no algorithm exists that produces consistent estimate of $P(G, O, A)$.

The possibility of encountering non-recoverability is not discussed as often as it ought to be in mainstream missing data literature mostly because the MAR assumption is either taken for granted (Pfeffermann and Sikov 2011) or thought of as a good approximation for MNAR (Chang 2011). Consequently it is often presumed that commonly used approaches for estimation in the setting of missing data that depend on MAR (such as maximum likelihood or multiple imputation) can deliver a consistent estimate of any desired full data parameter. While it is true for MAR, it is certainly not true in cases for which we can prove non-recoverability, and requires model-based analysis for MNAR (Figure 2).

Remark 1. Observe that Equation (2) yields an *estimand* for the query, $P(G, O, A)$, as opposed to an *estimator*. An estimand is a functional of the observed-data distribution, $P(V^*, R, V_o)$, whereas an estimator is a rule detailing how to calculate the estimate from measurements in the sample. Our estimands naturally give rise to a closed form estimator, for instance, the estimator corresponding to the estimand in Equation (2) is:

$$
\frac{\#(G = g, O^* = a, A = a, R_O = 0)}{\#(A = a, R_O = 0)} \cdot \frac{N}{\#(X = x_1, X_2 = x_2, \ldots, X_j = x_j)}
$$

where N is the total number of samples collected and $\#(X_1 = x_1, X_2 = x_2, \ldots, X_j = x_j)$ is the frequency of the event x_1, x_2, \ldots, x_j. Algorithms inspired by such closed form estimation techniques were shown in Van den Broeck et al. (2015) to outperform conventional methods such as EM computationally, for instance by scaling to networks where it is intractable to run even one iteration of EM. Such algorithms are indispensable for large scale and big data learning tasks in machine learning and artificial intelligence for which EM is not a viable option.

A generic example for recoverability under MNAR is presented below.

Example 2 (Recoverability in MNAR m-graphs). Consider the m-graph G in Figure 3 where all variables are subject to missingness. Y is the outcome of interest, X the exposure of interest and Z_1 and Z_2 are baseline covariates. The target parameter is $P(Y|X, Z_1, Z_2)$, the regression of Y on X given both baseline covariates. Since $Y \perp (R_X, R_Y, R_{Z_1}, R_{Z_2})|(X, Z_1, Z_2)$ in G, $P(Y|X, Z_1, Z_2)$ can be recovered as

$$
P(Y|X, Z_1, Z_2)
= P(Y|(X, Z_1, Z_2, R_X = 0, R_Y = 0, R_{Z_1} = 0, R_{Z_2} = 0))
$$

(3.1). Recovery by Sequential Factorization

Definition 2 (Ordered factorization of $P(Y|Z)$). Let $Y_1 < Y_2 < \cdots < Y_n$ be an ordered set of all variables in Y, $1 \leq i \leq |Y| = n$ and $X_i \subseteq \{Y_{i+1}, \ldots, Y_n\} \cup Z$. Ordered factorization of $P(Y|Z)$ is the product of conditional probabilities, that is, $P(Y|Z) = \prod_i P(Y_i|X_i)$, such that X_i is a minimal set for which $Y_i \perp (Y_{i+1}, \ldots, Y_n) \setminus X_i) \mid X_i$ holds.

The following theorem presents a sufficient condition for recovering conditional distributions of the form $P(Y|X)$ where $\{Y, X\} \subseteq V_m \cup V_o$.

Theorem 1. Given an m-graph G and an observed-data distribution $P(V^*, V_o, R)$, a target quantity Q is recoverable if Q can be decomposed into an ordered factorization, or a sum of such factorizations, such that every factor $Q_i = P(Y_i|X_i)$ satisfies $Y_i \perp (R_{Y_i}, R_{X_i}) \mid X_i$. Then, each Q_i may be recovered as $P(Y_i^*|X_i^*, R_{Y_i} = 0, R_{X_i} = 0)$.

An ordered factorization that satisfies Theorem 1 is called as an *admissible factorization.*
Example 3. Consider the problem of recovering $P(X, Y)$ given G, the m-graph in Figure 4(a). G depicts an MNAR problem since missingness in Y is caused by the partially observed variable X. The factorization $P(Y|X)P(X)$ is admissible since both $Y \perp R_x, R_y|X$ and $X \perp R_x$ hold in G. $P(X, Y)$ can thus be recovered using Theorem 1 as $P(Y^*|X^*, R_x = 0, R_y = 0)P(X^*)|R_x = 0)$. Here, complete cases are used to estimate $P(Y|X)$ and all samples including those in which Y is missing are used to estimate $P(X)$. Note that the decomposition $P(X|Y)P(Y)$ is not admissible.

Corollary 1. Given an m-graph G depicting v-MAR joint distribution is recoverable in G as $P(V_o, V_m) = P(V^*|V_o, R = 0)P(V_o)$.

3.1.1. Recovering From Complete and Available Cases

Traditionally there has been great interest in complete case analysis primarily due to its simplicity and ease of applicability. However, it results in a large wastage of data and a more economical version of it, called available case analysis would generally be more desirable. The former retains only samples in which variables in the entire dataset are observed, whereas the latter retains all samples in which the variables in the query are observed. Sufficient criteria for recovering conditional distributions from complete cases as well as available cases are widely discussed in literature (Little and Rubin 2002; White and Carlin 2010; Bartlett et al. 2014) and we state them in the form of a corollary below:

Corollary 2.

(a) Given m-graph G, $P(X|Y)$ is recoverable from complete cases if $X \perp R|Y$ holds in G where R is the set of all missingness mechanisms.

(b) Given m-graph G, $P(X|Y)$ is recoverable from available cases if $X \perp (R_x, R_y)|Y$ holds in G.

In Figure 3, for example, we see that $Z_1 \perp R_{Z_1}$ holds but $Z \perp R_x$ does not. Therefore, $P(Z_1)$ is recoverable from available cases but not complete cases.

The following example emphasizes the need for causal modeling of R variables. It demonstrates that causal relations among various R variables play a pivotal role in the recoverability procedure.

Example 4. Consider the following graphs: $G_1 : Y \to X \to Rx \to R_y$ and $G_2 : Y \to X \to Rx \leftarrow R_y$. The m-graphs are identical except that in G_1, R_x causes R_y and in G_2, R_x causes R_y. This seemingly minor difference in the underlying missingness process considerably alters the recoverability procedure.

In G_1, $P(X, Y)$ is recovered as,

$$P(X, Y) = P(Y|X)P(X)$$

$$= P(X|Y, R_x = 0, R_y = 0)P(X) \text{ (since } X \perp R_x, R_y|Y)$$

$$= P(X|Y, R_x = 0, R_y = 0) \sum_{R_y} P(Y|R_x, R_y = 0)P(R_y)$$

$$\text{ (using Equation (1))}$$

whereas in G_2, $P(X, Y)$ is recovered as

$$P(X, Y) = P(Y|X)P(X)$$

$$= P(X|Y, R_x = 0, R_y = 0)P(Y|R_y = 0)$$

$$\text{ (since } X \perp R_x, Y \| Y \perp R_y)$$

$$= P(X^*|Y^*, R_x = 0, R_y = 0)P(Y^*|R_y = 0)$$

$$\text{ (using Equation (1)).}$$

3.2. R Factorization

Example 5. Consider the problem of recovering $Q = P(X, Y)$ from the m-graph of Figure 4(b). Interestingly, no ordered factorization over variables X and Y would satisfy the conditions of Theorem 1. To witness we write $P(X, Y) = P(Y|X)P(X)$ and note that the graph does not permit us to augment any of the two terms with the necessary R_x or R_y terms; X is independent of R_x only if we condition on Y, which is partially observed, and Y is independent of R_y if we condition on X which is also partially observed. This deadlock can be disentangled however using a nonconventional decomposition:

$$Q = P(X, Y) = P(X, Y)P(R_x = 0, R_y = 0|X, Y)$$

$$= P(R_x = 0, R_y = 0)P(X, Y|R_x = 0, R_y = 0)$$

$$= P(R_x = 0|Y, R_y = 0)P(R_y = 0|X, R_x = 0),$$

where the denominator was obtained using the independencies $R_x \perp (X, R_y)|Y$ and $Y \perp (Y, R_y)|X$ shown in the graph. The final expression below,

$$P(X, Y) = \frac{P(R_x = 0, R_y = 0)P(X^*, Y^*|R_x = 0, R_y = 0)}{P(R_x = 0|Y^*, R_y = 0)P(R_y = 0|X^*, R_x = 0)}$$

$$\text{ (using Equation (1)),}$$

(3)
which is in terms of variables in the observed-data distribution, renders \(P(X, Y) \) recoverable. This example again shows that recovery is feasible even when data are MNAR.

The following theorem (Mohan, Pearl, and Tian 2013; Mohan and Pearl 2014a) formalizes the recoverability scheme exemplified above.

Theorem 2 (Recoverability of the joint \(P(V) \)). Given a m-graph \(G \) with no edges between \(R \) variables the necessary and sufficient condition for recovering the joint distribution \(P(V) \) is the absence of any variable \(X \in V_m \) such that:

1. \(X \) and \(R \) are neighbors
2. \(X \) and \(R \) are connected by a path in which all intermediate nodes are colliders\(^6\) and elements of \(V_m \cup V_o \). When recoverable, \(P(V) \) is given by

\[
P(v) = \frac{P(R = 0, v)}{\prod_i P(R_i = 0 | M_{V_i}^c, M_{V_i}^m, R_{M_{V_i}^c} = 0)}
\]

where \(M_{V_i}^c \subseteq V_o \) and \(M_{V_i}^m \subseteq V_m \) are the Markov blanket\(^7\) of \(R_i \).

The preceding theorem can be applied to immediately yield an estimand for joint distribution. For instance, given the m-graphs in Figure 4(c), joint distribution can be recovered in one step yielding:

\[
P(X, Y, Z) = \frac{P(X, Y, Z, R_x = 0, R_y = 0, R_z = 0, Z, R_z = 0)}{P(R_x = 0 | Y, R_y = 0, Z, R_z = 0)}
\]

\[
\times P(R_y = 0 | X, R_x = 0, Z, R_z = 0)
\]

\[
\times P(R_z = 0 | Y, R_y = 0, X, R_x = 0)
\]

3.3. Constraint Based Recoverability

The recoverability procedures presented thus far relied entirely on conditional independencies that are read off the m-graph using \(\perp \perp \) separation criterion. Interestingly, recoverability can sometimes be accomplished by graphical patterns other than conditional independencies. These patterns represent distributional constraints which can be detected using mutilated versions of the m-graph. We describe below an example of constraint based recovery.

\(X \) is a collider on the path if the path enters and leaves the variable via arrowheads (a term suggested by the collision of causal forces at the variable) (Greenland and Pearl 2011).

\(M_{V_i} \) of variable \(X \) is any set of variables such that \(X \) is conditionally independent of all the other variables in the graph given \(M_{V_i} \) (Pearl 1988).

Example 6. Let \(G \) be the m-graph in Figure 5(a) and let the query of interest be \(P(X) \). The absence of a set that \(\perp \perp \) separates \(X \) from \(R_x \), makes it impossible to apply any of the techniques discussed previously. While it may be tempting to conclude that \(P(X) \) is not recoverable, we prove otherwise by using the fact that \(X \perp \perp R_x \) holds in the ratio distribution \(\frac{P(X, R_x, R_z)}{P(R_x, R_z)} \). Such ratios are called interventional distributions and the resulting constraints are called Verma constraints (Verma and Pearl 1991; Tian and Pearl 2002). The proof presented below employs the rules of do-calculus\(^8\) to extract these constraints.

\[
P(X) = P(X | \text{do}(R_z = 0)) \quad \text{(Rule-3 of do-calculus)}
\]

\[
= P(X | \text{do}(R_z = 0), R_x = 0) \quad \text{(Rule-1 of do-calculus)}
\]

\[
= P(X^* | \text{do}(R_z = 0), R_x = 0) \quad \text{(using Equation (1))}
\]

\[
= \sum_{R_y} P(X^*, R_y | \text{do}(R_z = 0), R_x = 0).
\]

Note that the query of interest is now a function of \(X^* \) and not \(X \). Therefore, the problem now amounts to identifying a conditional interventional distribution using the m-graph in Figure 5(b). A complete analysis of such problems is available in Shpitser and Pearl (2006) which identifies the causal effect in Equation (5) as

\[
P(X) = \sum_{R_y} \left(P(X^* | R_Y, R_x = 0, R_z = 0) \right.
\]

\[
\times \frac{P(R_x = 0 | R_y, R_z = 0)P(R_z)}{\sum_{R_y} \left(P(R_x = 0 | R_y, R_z = 0)P(R_z) \right)} \left. \right) \]

In addition to \(P(X) \), this graph also allows recovery of joint distribution as shown below.

\[
P(X, Y, Z) = P(X)P(Y)P(Z)
\]

\[
P(X, Y, Z) = \left(\sum_{R_z} P(X^* | R_Y, R_x = 0, R_z = 0) \right.
\]

\[
\times \frac{P(R_x = 0 | R_y, R_z = 0)P(R_z)}{\sum_{R_y} \left(P(R_x = 0 | R_y, R_z = 0)P(R_z) \right)}
\]

\[
\times P(Y^* = Y | R_y = 0)P(Z^* | R_z = 0).
\]

The decomposition in the first line uses \(X, Y \perp \perp Z \) and \(X \perp \perp Y \). Recoverability of \(P(X) \) in the second line follows from Equation (6). **Theorem 1** can be applied to recover \(P(Y) \) and \(P(Z) \), since \(Y \perp \perp R_Y \) and \(Z \perp \perp R_Z \).
Remark 2. In the preceding example, we were able to recover a joint distribution despite the fact that the distribution \(P(X, R_Y, R_Z) \) is void of independencies. The ability to exploit such cases further underscores the need for graph based analysis.

The fields of epidemiology and bio-statistics have several impressive works dealing with coarsened data (Gill, Van Der Laan, and Robins 1997; Gill and Robins 1997; Van der Laan and Robins 2003) and missing data (Robins 1997, 2000; Robins, Rotnitzky, and Zhao 1994; Robins, Rotnitzky, and Zhao 1995; Gill and Robins 1997; Van der Laan and Robins 1998; Robins, Rotnitzky, and Zhao 1994; Rotnitzky, Robins, and Scharfstein 2000; Li et al. 2013). Many among these are along the lines of estimation (mainly of causal queries); Robins, Rotnitzky, and Zhao (1994) and Rotnitzky, Robins, and Scharfstein (1998) dealt with inverse probability weighting based estimators, and Bang and Robins (2005) demonstrated the efficacy of doubly robust estimators using simulation studies. The recovery strategy of these existing works are different from those discussed in this article with the main difference being that these works proceed by intervening on the \(R \) variable and thus converting the missing data problem into that of identification of causal effect. For example the problem of recovering \(P(X) \) is transformed into that of identifying the counterfactual query \(P(X^n_{R^n=0}) \) (which in our framework translates to identifying \(P(X^n|do(R_n = 0)) \)) in the graph in which \(X \) is treated as a latent variable. This technique while applicable in several cases is not general and may not always be relied upon to establish recoverability. An example is the problem of recovering joint distribution \(P(W, X, Y, Z) \) in Figure 5(c). In this case, the equivalent causal query \(P(W^n, X^n, Y^n, Z^n|do(R_n = 0, R_p = 0, R_w = 0, R_s = 0)) \) is not identifiable in the graph in which \(W, X, Y, \) and \(Z \) are treated as latent variables. The procedure for recovering joint distribution from the m-graph in Figure 5(c) is presented in Appendix A.

\textbf{3.4. Overcoming Impediments to Recoverability}

This section focuses on MNAR problems that are not recoverable\(^8\). One such problem is elucidated in the following example.

Example 7. Consider a missing dataset comprising of a single variable, income \((I)\), obtained from a population in which the very rich and the very poor were reluctant to reveal their income. The underlying process can be described as a variable causing its own missingness. The m-graph depicting this process is \(I \rightarrow R_I \). Obviously, under these circumstances the true distribution over income, \(P(I) \), cannot be computed error-free even if we were given infinitely many samples.

The following theorem identifies graphical conditions that forbid recoverability of conditional probability distributions (Mohan and Pearl 2014a).

\textit{Theorem 3.} Let \(X \cup Y \subseteq V_m \cup V_a \) and \(|X| = 1 \). \(P(X|Y) \) is not recoverable if either \(X \) and \(R_X \) are neighbors or there exists a path from \(X \) to \(R_X \) such that all intermediate nodes are colliders and elements of \(Y \).

Quite surprisingly, it is sometimes possible to recover joint distributions given m-graphs with graphical structures stated in \textit{Theorem 3} by jointly harnessing features of the data and m-graph. We exemplify such recovery with an example.

Example 8. Consider the problem of recovering \(P(Y, I) \) given the m-graph \(G : Y \rightarrow I \rightarrow R_I \), where \(Y \) is a binary variable that denotes whether candidate has sufficient years of relevant work experience and \(I \) indicates income. \(I \) is also a binary variable and takes values high and low. \(P(Y) \) is implicitly recoverable since \(Y \) is fully observed. \(P(Y|I) \) may be recovered as shown below:

\[P(Y|I) = P(Y|I, r_I) \quad (\text{using } Y \perp R_I|I) \]

\[= P(Y^* = Y|I^* = I, r_I) \quad (\text{using Equation (1))}. \]

Expressing \(P(Y) = \sum_y P(Y|I)P(I) \) in matrix form, we get

\[\begin{pmatrix} P(y') \\ P(y) \end{pmatrix} = \begin{pmatrix} P(y'|i') & P(y'|i) \\ P(y|i') & P(y|i) \end{pmatrix} \begin{pmatrix} P(i') \\ P(i) \end{pmatrix}. \]

Assuming that the square matrix on the R.H.S. is invertible, \(P(I) \) can be estimated as

\[\begin{pmatrix} P(y'|i') & P(y'|i) \\ P(y|i') & P(y|i) \end{pmatrix}^{-1} \begin{pmatrix} P(y') \\ P(y) \end{pmatrix}. \]

Having recovered \(P(I) \), the query \(P(Y, I) \) may be recovered as \(P(Y|I)P(I) \).

General procedures for handling non-recoverable cases using both data and graph are discussed in Mohan (2018). The preceding recoverability procedure was inspired by similar results in causal inference (Pearl 2009a; Kuroki and Pearl 2014). In contrast to Pearl (2009a) that relied on external studies to compute causal effect in the presence of an unmeasured confounder, Kuroki and Pearl (2014) showed how the same could be effected without external studies. In missing data settings, we have access to partial information that allows us to compute conditional distributions. This allows us to adapt the procedure in Pearl (2009a) to establish recoverability. The Heckman correction (Heckman 1976) originally developed for handling selection bias, can also be applied to some MNAR problems. However, it relies on strong assumptions of normality and guarantees only weak identifiability. In its place, Little (2008) recommended conducting sensitivity analysis or imposing additional parametric assumptions, some of which may create MAR models and thus facilitate recoverability. Yet another way of handling MNAR problems is based on double sampling wherein after the initial data collection a random sample of non-respondents are tracked and their outcomes ascertained (Zhang, Chen, and Elliott 2016; Holmes et al. 2018).

\textbf{3.5. Recovering Causal Effects}

We assume the reader is familiar with the basic notions of “causal queries,” “causal effect,” and “identifiability” as described in (Pearl 2009b, chap. 3) and Pearl (2009a). Given a causal query and a causal graph with no missingness, we can always determine whether or not the query is identifiable using the complete algorithm in Shpitser and Pearl (2006) or Huang and

\(^8\)Unless otherwise specified nonrecoverability will assume joint distribution as a target and does not exclude recoverability of targets such as odds ratio (discussed in Bartlett, Harel, and Carpenter (2015)).
Valtorta (2006) which outputs an estimand whenever identifiability holds. In the presence of missingness, a necessary condition for recoverability of a causal query is its identifiability in the substantive model, that is, the subgraph comprising of V_o, V_m, and U. In other words, a query which is not identifiable in this model will not be recoverable under missingness. A canonical example of such case is the bow-arc graph (Figure 7(c)) for which the query $P(Y|do(X = x))$ is known to be non-identifiable (Pearl 2009b). In the remainder of this subsection, we will assume that queries of interest are identifiable in the substantive model, and our task is to determine whether or not they are recoverable from the m-graph. Clearly, identifiability entails the derivation of an estimand, a sufficient condition for recoverability is that the estimand in question be recoverable from the m-graph.

Example 9. Consider the m-graph in Figure 6(a), where it is required to recover the causal effect of two sequential treatments, T_t and T_{t+1} on outcome O_{t+1}, namely $P(O_{t+1}|do(T_t, T_{t+1})$. This graph models a longitudinal study with attrition, where the R variables represent subjects dropping out of the study due to side-effects S_t and S_{t+1} caused by the corresponding treatments (a practical problem discussed in Breskin, Cole, and Hudgens (2018) and Cinelli and Pearl (2018)). The bi-directed arrows represent unmeasured health status indicating that participants with poor health are both more likely to experience side effects and incur unfavorable outcomes. Leveraging the exogeneity of the two treatments (rule 2 of do-calculus), we can remove the do-operator from the query expression, and obtain the identified estimand $P(O_{t+1}|do(T_t, T_{t+1}) = P(O_{t+1}|T_t, T_{t+1})$. Since the parents of the R variables are fully observed, the problem belongs to the v-MAR category, in which the joint distribution is recoverable (using Corollary 1). Therefore, $P(O_{t+1}|T_t, T_{t+1})$ and hence our causal effect is also recoverable, and is given by: $\sum_{S_t, S_{t+1}} P(O_{t+1}|T_t, T_{t+1}, S_t, S_{t+1}, R_{O_{t+1}} = 0)P(S_t, S_{t+1}|T_t, T_{t+1})$.

Figure 6(b) represents a more intricate variant of the attrition problem, where the side effects themselves are partially observed and, worse yet, they cause their own missingness. Remarkably, the query is still recoverable, using Theorem 1 and the fact that, (i) O_{t+1} is d-separated from both $R_{O_{t+1}}$ and R_{O_t} given (T_t, T_{t+1}, O_t), and (ii) O_t is d-separated from R_{O_t} given (T_t, T_{t+1}). The resulting estimand is: $\sum_{S_t} P(O_{t+1}|T_t, T_{t+1}, O_t, R_{O_t} = 0, R_{O_{t+1}} = 0)P(O_t|R_{O_t} = 0, T_t, T_{t+1})$.

Figure 7(a) portrays another example of identifiable query, but in this case, the recoverability of the identified estimand is not obvious; constraint-based analysis (S) is needed to establish its recoverability.

Example 10. Examine the m-graph in Figure 7(a). Suppose we are interested in the causal effect of Z (treatment) on outcome Y (death) where treatments are conditioned on (observed) X-rays report (W). Suppose that some unobserved factors (say quality of hospital equipment and staff) affect both attrition (R_t) and accuracy of test reports (W). In this setup the causal-effect query $P(y|do(z))$ is identifiable (by adjusting for W) through the estimand:

$$P(y|do(z)) = \sum_w P(y|z, w)P(w).$$

(7)

However, the factor $P(y|z, w)$ is not recoverable (by Theorem 3), and one might be tempted to conclude that the causal effect is non-recoverable. We shall now show that it is nevertheless recoverable in three steps.
3.5.1. Recovering $P(y|do(z))$ Given the m-Graph in Figure 7(a)

The first step is to transform the query (using the rules of do-calculus) into an equivalent expression such that no partially observed variables resides outside the do-operator.

$$P(y|do(z)) = P(y|do(z), R_y = 0)$$

(follows from rule 1 of do-calculus)

$$= P(y^*|do(z), R_y = 0) \text{ (using Equation (1))}. \quad (8)$$

The second step is to simplify the m-graph by removing superfluous variables, still retaining all relevant functional relationships. In our example, Y is irrelevant once we treat Y^* as an outcome. The reduced m-graph is shown in Figure 7(b). The third step is to apply the do-calculus (Pearl 2009b) to the reduced graph (Figure 7(b)), and identify the modified query $P(y^*|do(z), R_y = 0)$.

$$P(y^*|do(z), R_y = 0) = \sum_w P(y^*|do(z), w, R_y = 0) \times P(w|do(z), R_y = 0) \quad (9)$$

$$P(y^*|do(z), w, R_y = 0) = P(y^*|z, w, R_y = 0) \quad (10) \text{ (by Rule-2 of do-calculus)}$$

$$P(w|do(z), R_y = 0) = P(w|R_y = 0) \quad (11) \text{ (by Rule-3 of do-calculus)}.$$

Substituting (10) and (11) in (9) the causal effect becomes

$$P(y|do(z)) = \sum_w P(y^*|z, w, R_y = 0)P(w|R_y = 0), \quad (12)$$

which permits us to estimate our query from complete cases only. While in this case we were able to recover the causal effect using one pass over the three steps, in more complex cases we might need to repeatedly apply these steps to recover the query.

4. Testability Under Missingness

In this section, we seek ways to detect misspecifications of the missingness model. While discussing testability, one must note a phenomenon that recurs in missing data analysis: Not all that looks testable is testable. Specifically, although every d-separation in the graph implies conditional independence in the recovered distribution, some of those independencies are imposed by construction, to satisfy the model's claims, and these do not provide means of refuting the model. We exemplify this peculiarity below.

Example 11. Consider the m-graph in Figure 8(a). It is evident that the problem is MCAR (definition in Section 4.2). Hence, $P(X, R_x)$ is recoverable. The only conditional independence embodied in the graph is $X \perp \!\!\!\!\perp R_x$. At first glance it might seem as if $X \perp \!\!\!\!\perp R_x$ is testable since we can go to the recovered distribution and check whether it satisfies this conditional independence. However, $X \perp \!\!\!\!\perp R_x$ will always be satisfied in the recovered distribution, because it was recovered so as to satisfy $X \perp \!\!\!\!\perp R_x$. This can be shown explicitly as follows:

$$P(X, R_x) = P(X|R_x)P(R_x)$$

$$= P(X|R_x = 0)P(R_x) \text{ (Using } X \perp \!\!\!\!\perp R_x)$$

$$= P(X^*|R_x = 0)P(R_x) \text{ (using Equation (1))}.$$

Likewise,

$$P(X)P(R_x) = P(X^*|R_x = 0)P(R_x).$$

Therefore, the claim, $X \perp \!\!\!\!\perp R_x$, cannot be refuted by any recovered distribution, regardless of what process actually generated the data. In other words, any data whatsoever with X partially observed can be made compatible with the model postulated.

The following theorem characterizes a more general class of untestable claims.

Theorem 4 (Mohan and Pearl 2014b). Let $\{Z, X\} \subseteq V_m$ and $W \subseteq V_o$. Conditional independencies of the form $X \perp \!\!\!\!\perp R_x|Z, W, R_z$ are untestable.

The preceding example demonstrates this theorem as a special case, with $Z = W = R_e = \emptyset$. The next section provides criteria for testable claims.

4.1. Graphical Criteria for Testability

The criterion for detecting testable implications reads as follows: A d-separation condition displayed in the graph is testable if the R variables associated with all the partially observed variables in it are either present in the separating set or can be added to the separating set without spoiling the separation.

The following theorem formally states this criterion using three syntactic rules (Mohan and Pearl 2014b).

Theorem 5. A sufficient condition for an m-graph to be testable is that it encodes one of the following types of independence:

$$X \perp \!\!\!\!\perp Y|Z, R_x, R_y, R_e, \quad (13)$$

$$X \perp \!\!\!\!\perp R_y|Z, R_x, R_e, \quad (14)$$

$$R_x \perp \!\!\!\!\perp R_y|Z, R_z. \quad (15)$$
In words, any d-separation that can be expressed in the format stated above is testable. It is understood that, if X or Y or Z are fully observed, the corresponding R variables may be removed from the conditioning set. Clearly, any conditional independence comprised exclusively of fully observed variables is testable. To search for such refutable claims, one needs to only examine the missing edges in the graph and check whether any of its associated set of separating sets satisfy the syntactic format above.

To illustrate the power of the criterion we present the following example.

Example 12. Examine the m-graph in Figure 8(d). The missing edges between Z and R_z, and X and R_x correspond to the conditional independencies: $Z \perp R_z | (X, Y)$ and $X \perp R_x | Y$, respectively. The former is untestable (following Theorem 4) while the latter is testable, since it complies with (14) in Theorem 5.

4.1.1. Tests Corresponding to the Independence Statements in Theorem 5

A testable claim needs to be expressed in terms of proxy variables before it can be operationalized. For example, a specific instance of the claim $X \perp Y | Z, R_x, R_y, R_z$, when $R_x = 0, R_y = 0, R_z = 0$ gives $X \perp Y | Z, R_x = 0, R_y = 0, R_z = 0$. On rewriting this claim as an equation and applying Equation (1) we get,

$$P(X^* | Z^*, R_x = 0, R_y = 0, R_z = 0)$$

$$= P(X^* | Y^*, Z^*, R_y = 0, R_y = 0, R_z = 0).$$

This equation exclusively comprises of observed quantities and can be directly tested given the input distribution: $P(X^*, Y^*, Z^*, R_x, R_y, R_z)$. Finite sample techniques for testing conditional independencies are cited in the next section. In a similar manner, we can devise tests for the remaining two statements in Theorem 5.

The tests corresponding to the three independence statements in Theorem 5 are

- $P(X^* | Z^*, R_x = 0, R_y = 0, R_z = 0) = P(X^* | Y^*, Z^*, R_y = 0, R_y = 0, R_z = 0)$,
- $P(X^* | Z^*, R_x = 0, R_y = 0, R_z = 0) = P(X^* | Y^*, Z^*, R_x = 0, R_z = 0)$,
- $P(R_x | Z^*, R_z = 0) = P(R_x | R_y, Z^*, R_z = 0)$.

The next section specializes these results to the classes of v-MAR and MCAR problems which have been given some attention in the existing literature.

4.2. Testability of MCAR and v-MAR

A chi-square based test for MCAR was proposed by Little (1988) in which a high value falsified MCAR (Rubin 1976). MAR is known to be untestable (Allison 2002). Potthoff et al. (2006) defined MAR at the variable-level (identical to that in Section 2.2) and showed that it can be tested. Theorem 6, given below, presents stronger conditions under which a given v-MAR model is testable (Mohan and Pearl 2014b). Moreover, it provides diagnostic insight in case the test is violated. We further note that these conditional independence tests may be implemented in practice using different techniques such as G-test, chi square test, testing for zero partial correlations or by tests such as those described in Székely, Rizzo, and Bakirov (2007), Gretton et al. (2012), and Sriperumbudur et al. (2010).

Theorem 6 (v-MAR is testable). Given that $|V_m| > 0, V_m \perp R | V_o$ is testable if and only if $|V_m| > 1$, that is, $|V_m|$ is not a singleton set.

In words, given a dataset with two or more partially observed variables, it is always possible to test whether v-MAR holds. We exemplify such tests below.

Example 13 (Tests for v-MAR). Given a dataset where $V_m = \{A, B\}$ and $V_o = \{C\}$, the v-MAR condition states that $(A, B) \perp (R_A, R_B) | C$. This statement implies the following two statements which match syntactic criterion 14 in Theorem 5 and hence are testable.

1. A $\perp R_B | C, R_A$
2. B $\perp R_A | C, R_B$

The testable implications corresponding to (1) and (2) above are the following:

- $P(A^* | R_B | C, R_A = 0) = P(A^* | C, R_A = 0)P(R_B | C, R_A = 0)$,
- $P(B^* | R_A | C, R_B = 0) = P(B^* | C, R_B = 0)P(R_A | C, R_B = 0)$.

While refutation of these tests immediately implies that the data are not v-MAR, we can never verify the v-MAR condition. However if v-MAR is refuted, it is possible to pinpoint and locate the source of error in the model. For instance, if claim (1) is refuted then one should consider adding an edge between A and R_B.

Remark 3. A recent article by Bojinov, Pillai, and Rubin (2017) has adopted some of the aforementioned tests for v-MAR models, and demonstrated their use on simulated data. Their article is a testament to the significance and applicability of our results (specifically, Mohan and Pearl 2014b, secs. 3.1 and 6) to real world problems.

Corollary 3 (MCAR is testable). Given that $|V_m| > 0$, $(V_m, V_o) \perp R$ is testable if and only if $|V_m| + |V_o| > 2$.

Example 14 (Tests for MCAR). Given a dataset where $V_m = \{A, B\}$ and $V_o = \{C\}$, the MCAR condition states that $(A, B, C) \perp (R_A, R_B)$. This statement implies the following statements which match syntactic criteria (14) and (13) in Theorem 5 and hence are testable.

1. A $\perp R_B | R_A$
2. B $\perp R_A | R_B$
3. C $\perp R_A$

The testable implications corresponding to (1) and (2) above are the following:

- $P(A^* | R_B | R_A = 0) = P(A^* | R_A = 0)P(R_B | R_A = 0)$,
- $P(B^* | R_A | R_B = 0) = P(B^* | R_B = 0)P(R_A | R_B = 0)$,
- $P(C, R_A) = P(C)P(R_A)$.

4.3. On the Causal Nature of the Missing Data Problem

Examine the m-graphs in Figures 8(b) and (c). $X \perp R_X | Y$ and $X \perp R_Y$ are the conditional independence statements embodied in models 8(b) and (c), respectively. Neither of these statements are testable. Therefore, they are statistically indistinguishable. However, notice that $P(X, Y)$ is recoverable in Figure 8(b) but not in Figure 8(c) implying that,

- No universal algorithm exists that can decide if a query is recoverable or not without looking at the model.

Further notice that $P(X)$ is recoverable in both models albeit using two different methods. In model 8(b), we have $P(X) = \sum_y P(X^y | Y, R_Y = 0) P(y)$ and in model 8(c), we have $P(X) = P(X^0 | R_X = 0)$. This leads to the conclusion that,

- No universal algorithm exists that can produce a consistent estimate, whenever such exists, without looking at the model.

The impossibility of determining from statistical assumptions alone, (i) whether a query is recoverable and (ii) how the query is to be recovered, if it is recoverable, attests to the causal nature of the missing data problem. Although Rubin (1976) alluded to the causal aspect of this problem, subsequent research has treated missing data mostly as a statistical problem. A closer examination of the testability and recovery conditions shows however that a more appropriate perspective would be to treat missing data as a causal inference problem.

5. Conclusions

All methods of missing data analysis rely on assumptions regarding the reasons for missingness. Casting these assumptions in a graphical model permits researchers to benefit from the inherent transparency of such models as well as their ability to explicate the statistical implication of the underlying assumptions in terms of conditional independence relations among observed and partially observed variables. We have shown that these features of graphical models can be harnessed to study uncharted territories of missing data research. In particular, we charted the estimability of statistical and causal parameters in broad classes of MNAR problems, and the testability of the model assumptions under missingness conditions.

It is important to emphasize at this point how recoverability and testability differ from estimation and testing, a distinction that is often left ambiguous in traditional missing-data literature. Recoverability is a data-independent task that takes as input a pair, a query and a model, and determines if the value of the query can be estimated as sample size approaches infinity, assuming that only variables assigned R variables can be corrupted by missingness. If the answer is positive, it outputs an estimand, that is, a recipe of how the query is to be estimated once the data become available. Estimation on the other hand takes as input data and an estimand, and outputs an estimate of the query, in accordance with the estimand. For a given model and query, the estimand remains the same regardless of the dataset, whereas an estimate changes with the dataset. Clearly, to guarantee that the estimate produced is meaningful, it is essential to first determine if a query is recoverable and, only then proceed to the estimation phase. Similarly, testability and testing are distinct notions. Testability takes a model as input and outputs testable implications, that is, claims that can be tested on the incomplete data. Examples of testable implications are conditional independence relationships among the variables present in the data. Testing, on the other hand, takes as input both the data and the testable implications and outputs an estimate of the degree to which the claims hold in the data. Clearly, given their data-neutral qualities, the recoverability and testability results reported in this article are applicable to any problem area that matches the structure of the m-graph; no distributional or parametric assumptions are needed.

An important feature of our analysis is its query dependence. In other words, while certain properties of the underlying distribution may be deemed unrecoverable, others can be proven to be recoverable, and by smart estimation algorithms.

In light of our findings, we question the benefits of the traditional taxonomy that classifies missingness problems into MCAR, MAR, and MNAR. To decide if a problem falls into any of these categories a user must have a model of the causes of missingness and once this model is articulated, the criteria we have derived for recoverability and testability can be readily applied. Hence, we see no need for researchers to concern themselves with conditions that satisfy MAR.

The testability criteria derived in this article can be used not only to rule out misspecified models but also to locate specific misspecifications for the purpose of model updating and respecification. More importantly, we have shown that it is possible to determine if and how a target quantity is recoverable, even in models where missingness is not ignorable. Finally, knowing which sub-structures in the graph prevent recoverability can guide data collection procedures by identifying auxiliary variables that need to be measured to ensure recovery, or problematic variables that may compromise recovery if measured imprecisely.

Appendix A

A.1. Estimation When the Data May Not be MAR

Essentially all the literature on multivariate incomplete data assumes that the data are MAR, and much of it also assumes that the data are MCAR (Little and Rubin 2014, p. 22). Chapter 15 deals explicitly with the case when the data are not MAR, and models are needed for the missing-data mechanism. Since it is rarely feasible to estimate the mechanism with any degree of confidence, the main thrust of these methods is to conduct sensitivity analyses to assess the effect of alternative assumptions about the missing-data mechanism.

A.2. A Complex Example of Recoverability

We use $R = 0$ as a shorthand for the event where all variables are observed, that is, $R_{V_m} = 0$.

Example 15. Given the m-graph in Figure 5(c), we will now recover the joint distribution.

$$= P(W, X, Y, Z, R = 0)$$

Factorization of the denominator based on topological ordering of R variables yields,

$$P(W, X, Y, Z) = \frac{P(W, X, Y, Z, R = 0)}{P(R_w = 0|W, X, Y, Z, R_x = 0, R_y = 0, R_z = 0)} \times \frac{1}{P(R_y = 0|W, X, Y, Z, R_x = 0)P(R_x = 0|W, X, Y, Z)}.$$

On simplifying each factor of the form: $P(R_d = 0|B)$, by removing from it all $B_1 \in B$ such that $R_d \perp B_1|B - B_1$, we get

$$P(W, X, Y, Z) = \frac{P(W, X, Y, Z, R = 0)}{P(R_w = 0|W, X, Y, Z)P(R_y = 0|W, X, Y, Z)}.$$

(A.1)

$P(WXYZ)$ is recoverable if all factors in the preceding equation are recoverable. Examining each factor one by one we get,

- $P(W, X, Y, Z, R = 0)$: Recoverable as $P(W^*, X^*, Y^*, Z^*, R = 0)$ using Equation (1).
- $P(R_z = 0)$: Directly estimable from the observed-data distribution.
- $P(R_w = 0|Z)$: Recoverable as $P(R_w = 0|Z^*, R_z = 0)$, using $R_w \perp Z$ and Equation (1).
- $P(R_y = 0|X, W, R_x = 0)$: Recoverable as $P(R_y = 0|X^*, W^*, R_x = 0, R_w = 0)$, using $R_y \perp Z, R_y \perp X, W, R_x$ and Equation (1).
- $P(R_x = 0|Y, W)$: The procedure for recovering $P(R_x = 0|Y, W)$ is rather involved and requires converting the probabilistic sub-query to a causal one as detailed below.

$$P(R_x = 0|Y, W = w) = \frac{P(R_x = 0|Y, do(W = w))}{P(R_x = 0|Y, do(W = w))} \quad \text{(Rule-2 of do calculus)}$$

$$= \frac{P(R_x = 0|Y, R_y = 0, do(w))}{P(R_x = 0|Y, do(W = w))} \quad \text{(Rule-2 of do calculus)}$$

$$= \frac{P(R_x = 0|Y, R_y = 0, do(w))}{P(R_x = 0|Y, do(W = w))} \quad \text{(Rule-2 of do calculus)}$$

$$= \frac{P(R_x = 0|Y, do(w), R_x = 0)}{P(R_x = 0|Y, do(w))} \quad \text{(A.2)}$$

(A.2)

To prove recoverability of $P(R_x = 0|Y, W = w)$, we have to show that all factors in Equation (A.2) are recoverable.

A.2.1. Recovering $P(R_x = 0|Y, do(w), R_x = 0)$

Observe that $P(R_x = 0|Y, do(w), R_x = 0) = P(R_x = 0|do(W), R_x = 0)$ by Rule-1 of do calculus. To recover $P(R_x = 0|do(W), R_x = 0)$ it is sufficient to show that $P(X^*, Y^*, R_x, R_y, Z|do(w))$ is recoverable in G', the latent structure corresponding to G in which X and Y are treated as latent variables.

$$P(X^*, Y^*, R_x, R_y, Z|do(w)) = P(X^*, Y^*, R_x, R_y, Z|do(w))P(Z|do(w))$$

$= P(X^*, Y^*, R_x, R_y, Z|w)P(Z|do(w))$ (Rule-2 of do-calculus)

Using $(X^*, Y^*, R_x, R_y, Z) \perp (R_y, R_x, w)(Z, W)$, Equation (1) and $Z \perp R_z$ we show that the causal effect is recoverable as

$$P(X^*, Y^*, R_x, R_y, Z|do(w)) = P(X^*, Y^*, R_x, R_y|Z^*, w^*, R_w = 0, R_z = 0)$$

$$P(Z^*|R_z = 0) \quad \text{(A.3)}$$

A.2.2. Recovering $P(R_y = 0|Y, do(w), R_y = 0)$

Using Equation (1), we can rewrite $P(R_y = 0|Y, do(w), R_y = 0)$ as $P(R_y = 0|Y^*, do(w), R_y = 0)$. Its recoverability follows from Equation (A.3).

A.2.3. Recovering $P(R_x = 0|Y, do(w))$

$$P(R_y = 0|Y, do(w)) = \frac{P(R_y = 0, Y|do(w))}{\sum_{R_x} \left\{ P(R_y = 0, Y, R_x|do(w)) \right\}}$$

$$= \frac{P(R_y = 0, Y^*, R_x|do(w))}{\sum_{R_x} \left\{ P(R_y = 0, Y^*, R_x|do(w)) \right\}}$$

(Using Equation (1)).

$P(R_y = 0, Y^*, do(w))$ and $P(R_y = 0, Y^*, R_x|do(w)$ are recoverable from Equation (A.3). We will now show that $P(R_y = 1, Y^*, R_x|do(w))$ is recoverable as well.

$$P(R_y = 1, Y, R_x|do(w)) = \frac{P(R_y = 0, Y, R_x|do(w))}{P(R_y = 0, R_x, Y|do(w))} - P(R_y = 0, R_x, Y|do(w))$$

Using Equation (1) and Rule-1 of do-calculus we get,

$$= \frac{P(R_y = 0, Y^*, R_x|do(w))}{P(R_y = 0, R_x, Y^*|do(w))} - P(R_y = 0, R_x, Y|do(w)).$$

Each factor in the preceding equation is recoverable using Equation (A.3). Hence $P(R_y = 1, Y, R_x|do(w)$ and therefore, $P(R_y = 0|Y, do(w)$ is recoverable. Since all factors in Equation (A.2) are recoverable, the joint distribution is recoverable.

Funding

The authors gratefully acknowledge support of this work by grants from NSF IIS-1302448, IIS-1527490, and IIS-1704932; ONR N00014-17-1-2091; DARPA W911NF-16-1-0579.

References

—— (2009b), *Causality: Models, Reasoning and Inference*, New York: Cambridge University Press. [2,3,8,9,10,11]

Rubin, D. B. (1976), "Inference and Missing Data," Biometrika, 63, 581–592. [1,2,3,4,6,12,13]

