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Abstract

This paper reviews recent advances in missing data research using graphical models
to represent multivariate dependencies. We first examine the limitations of traditional
frameworks from three different perspectives: transparency, estimability and testability.
We then show how procedures based on graphical models can overcome these limita-
tions and provide meaningful performance guarantees even when data are Missing Not
At Random (MNAR). In particular, we identify conditions that guarantee consistent
estimation in broad categories of missing data problems, and derive procedures for
implementing this estimation. Finally we derive testable implications for missing data
models in both MAR (Missing At Random) and MNAR categories.

Keywords: Missing data, Graphical Models, Testability, Recoverability, Non-Ignorable,
Missing Not At Random (MNAR)

1 Introduction

Missing data present a challenge in many branches of empirical sciences. Sensors do not
always work reliably, respondents do not fill out every question in the questionnaire, and
medical patients are often unable to recall episodes, treatments or outcomes. The statistical
literature on this problem is rich and abundant and has resulted in powerful software
packages such as MICE in R, Stata, SAS and SPSS, which offer various ways of handling
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missingness. Most practices are based on the seminal work of Rubin (1976) who formulated
procedures and conditions under which the damage due to missingness can be reduced.
This theory has also resulted in a number of performance guarantees when data obey
certain statistical conditions. However, these conditions are rather strong, and extremely
hard to ascertain in real world problems. Little and Rubin (2014)(page 22), summarize
the state of the art by observing: “essentially all the literature on multivariate incomplete
data assumes that the data are Missing At Random ( MAR ).” The power of the MAR
assumption lies in permitting popular estimation methods such as Maximum Likelihood
(Dempster et al., 1977) and Multiple Imputation (Rubin, 1978) to be directly applied
without explicitly modeling the missingness process. Unfortunately, it is almost impossible
for a practicing statistician to decide whether the MAR condition holds in a given problem.
The literature on data that go beyond MAR suffers from the same problem. The methods
employed require assumptions that are not readily defensible from scientific understanding
of the missingness process. Graphical models, in contrast, provide a transparent encoding
of such understanding, as explained below.

Recent years have witnessed a growing interest in using graphical models to encode
assumptions about the reasons for missingness. This development is natural, partly because
graphical models provide efficient representation for reading conditional independencies
(Lauritzen, 1996; Cox and Wermuth, 1993), and partly because the missingness process
often requires causal rather than probabilistic assumptions (Pearl, 1995).

Earlier papers in this development are Daniel et al. (2012) who provided sufficient
criteria under which consistent estimates can be computed from complete cases (i.e. samples
in which all variables are fully observed), and Thoemmes and Rose (2013) (similarly
Thoemmes and Mohan (2015)) who developed techniques for selecting auxiliary variables
to improve estimability. In machine learning, particularly while estimating parameters of
Bayesian Networks, graphical models have long been used as a tool when dealing with
missing data (Darwiche (2009)).

Table 1: Highlights of Major Results

Criteria and procedures for recovering statistical and causal parameters from
missing data

1. We provide methods for recovering conditional distributions from missing data, based
on transparent and explainable assumptions about the missingness process.
2. We demonstrate the feasibility of recovering joint distributions in cases where variables
cause their own missingness.
3. We identify and characterize problems for which recoverability is infeasible.

In this paper we review the contributions of graphical models to missing data research
from three main perspectives: (1) Transparency (2) Recoverability (consistent estimation)
and (3) Testability. The main results of the paper are highlighted in Table 1.

Transparency Consider a practicing statistician who has acquired a statistical package
that handles missing data and would like to know whether the problem at hand meets the
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Tests for compatibility of a model with observed data

1. We establish general criteria for testing conditional independence claims.
2. We devise tests for MAR (Missing at Random) models.
3. We identify modeling assumptions that defy testability.

requirements of the software. As noted by Little and Rubin (2014) (see appendix) and
many others such as Rhoads (2012) and Balakrishnan (2010), almost all available software
packages implicitly assume that data fall under two categories: MCAR (Missing Completely
At Random) or MAR (formally defined in section 2.2). Failing these assumptions, there is
no guarantee that estimates produced by software will be less biased than those produced
by complete case analysis. Consequently, it is essential for the user to decide if the type of
missingness present in the data is compatible with the requirements of MCAR or MAR .

Prior to the advent of graphical models, no tool was available to assist in this decision,
since the independence conditions that define MCAR or MAR are neither visible in the
data, nor in a mathematical model that a researcher can consult to verify those conditions.
We will show how graphical models enable an efficient and transparent classification of
the missingness mechanism. In particular, the question of whether the data fall into the
MCAR or MAR categories can be answered by mere inspection of the graph structure1.
In addition, we will show how graphs facilitate a more refined, query-specific taxonomy of
missingness in MNAR (Missing Not At Random) problems.

The transparency associated with graphical models stems from three factors. First,
graphs excel in encoding and detecting conditional independence relations, far exceeding
the capacity of human intuition. Second, all assumptions are encoded causally, mirroring
the way researchers store qualitative scientific knowledge; direct judgments of conditional
independencies are not required, since these can be read off the structure of the graph.
Finally, the ultimate aim of all assumptions is to encode “the reasons for missingness”
which is a causal, not a statistical concept. Thus, even when our target parameter is purely
statistical, say a regression coefficient, causal modeling is still needed for encoding the
“process that causes missing data” (Rubin (1976)).

Recoverability (Consistent Estimation) Recoverability (to be defined formally in
Section 3) refers to the task of determining, from an assumed model, whether any method
exists that produces a consistent estimate of a desired parameter and, if so, how. If the
answer is negative, then no algorithm, however smart, can yield a consistent estimate. On
the other hand, if the answer is affirmative then there exists a procedure that can exploit
the features of the problem to produce consistent estimates. If the problem is MAR or
MCAR, standard missing data software can be used to obtain consistent estimates. But if
a recoverable problem is MNAR, the user would do well to discard standard software and
resort to an estimator based on graphical analysis. In Section 3 of this paper we present
several methods of deriving consistent estimators for both statistical and causal parameters
in the MNAR category.

The general question of recoverability, to the best of our knowledge, has not received

1These results apply to modified versions of MAR and MNAR as defined in section 2.2.
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due attention in the literature. The very notion that some parameters cannot be estimated
by any method whatsoever while others can, still resides in an uncharted territory. We will
show in Section 3 that most MNAR problems exhibit this dichotomy. That is, problems for
which it is impossible to properly impute all missing values in the data would still permit
the consistent estimation of some parameters of interest. More importantly, the estimable
parameters can often be identified directly from the structure of the graph.

Testability Testability asks whether it is possible to tell if any of the model’s assumptions
is incompatible with the available data (corrupted by missingness). Such compatibility
tests are hard to come by and the few tests reported in the literature are mostly limited to
MCAR (Little, 1988). As stated in Allison (2003), “Worse still, there is no empirical way
to discriminate one nonignorable model from another (or from the ignorable model).” In
section 4 we will show that remarkably, discrimination is feasible; MAR problems do have a
simple set of testable implications and MNAR problems can often be tested depending on
their graph structures.

In summary, although mainstream statistical analysis of missing data problems has
made impressive progress in the past few decades, it left key problem areas relatively
unexplored, especially those touching on transparency, estimability and testability. This
paper casts missing data problems in the language of causal graphs and shows how this
representation facilitates solutions to pending problems. In particular, we show how the
MCAR, MAR , MNAR taxonomy becomes transparent in the graphical language, how
the estimability of a needed parameter can be determined from the graph structure, what
estimators would guarantee consistency, and what modeling assumptions lend themselves
to empirical scrutiny.

2 Graphical Models for Missing Data: Missingness

Graphs (m-graphs)

Figure 1: (a) causal graph under no missingness (b), (c) & (d) m-graphs modeling MCAR,
MAR and MNAR missingness processes respectively.
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The following example, inspired by Little and Rubin (2002) (example-1.6, page 8),
describes how graphical models can be used to explicitly model the missingness process and
encode the underlying causal and statistical assumptions. Consider a study conducted in a
school that measured three (discrete) variables: Age (A), Gender (G) and Obesity (O).

No Missingness If all three variables are completely recorded, then there is no
missingness. The causal graph2 depicting the interrelations between variables is shown in
Figure 1 (a). Nodes correspond to variables and edges indicate the existence of a causal
relationship between pairs of nodes they connect. The value of a child node is a (stochastic)
function of the values of its parent nodes; i.e., Obesity is a (stochastic) function of Age
and Gender. The absence of an edge between Age and Gender indicates that A and G are
independent, denoted by A⊥⊥G.

Table 2: Missing dataset in which Age and Gender are fully observed and Obesity is partially
observed.

Sample # Age Gender Obesity∗ RO

1 16 F Obese 0
2 15 F m 1
3 15 M m 1
4 14 F Not Obese 0
5 13 M Not Obese 0
6 15 M Obese 0
7 14 F Obese 0

Representing Missingness Assume that Age and Gender are fully observed since
they can be obtained from school records. Obesity however is corrupted by missing values
since some students fail to reveal their weight. When the value of O is missing we get an
empty measurement which we designate by m. Table 2 exemplifies a missing dataset. The
missingness process can be modelled using an observed proxy variable Obesity∗(O∗) whose
values are determined by Obesity and its missingness mechanism RO:

O∗ = f(RO, O) =

{
O if RO = 0
m if RO = 1.

RO governs the masking and unmasking of Obesity. When RO = 1 the value of obesity is
concealed, i.e. O∗ assumes the values m as shown in samples 2 and 3 in Table 2. When
RO = 0, the true value of obesity is revealed, i.e. O∗ assumes the underlying value of
Obesity as shown in samples 1, 4, 5, 6 and 7 in Table 2.

Missingness can be caused by random processes (i.e. caused by variables that are
not correlated with other variables in the model ) or can depend on other variables in
the dataset. An example of random missingness is students accidentally losing their
questionnaires. This is depicted in Figure 1 (b) by the absence of parent nodes for RO.
Teenagers rebelling and not reporting their weight is an example of missingness caused by

2For a gentle introduction to causal graphical models see Elwert (2013); Lauritzen (2001), sections 1.2
and 11.1.2 in Pearl (2009b).
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a fully observed variable. This is depicted in Figure 1 (c) by an edge between A and RO.
Partially observed variables can be causes of missingness as well. For instance, consider
obese students who are embarrassed of their obesity and hence reluctant to reveal their
weight. This is depicted in Figure 1 (d) by an edge between O and RO indicating that O is
the cause of its own missingness.

The following subsection formally introduces missingness graphs (m-graphs) as discussed
in Mohan et al. (2013).

2.1 Missingness Graphs: Notations and Terminology

Let G(V, E) be the causal Directed Acyclic Graph (DAG) where V is the set of nodes and
E is the set of edges. Nodes in the graph correspond to variables in the data set and are
partitioned into five categories, i.e.

V = Vo ∪ Vm ∪ U ∪ V ∗ ∪R

where Vo is the set of variables that are observed in all records in the population and
Vm is the set of variables that are missing in at least one record. Variable X is termed as
fully observed if X ∈ Vo and partially observed if X ∈ Vm. Rvi and V ∗i are two variables
associated with every partially observed variable, where V ∗i is a proxy variable that is
actually observed, and Rvi represents the status of the causal mechanism responsible for
the missingness of V ∗i ; formally,

v∗i = f(rvi , vi) =

{
vi if rvi = 0
m if rvi = 1

(1)

V ∗ is the set of all proxy variables and R is the set of all causal mechanisms that are
responsible for missingness. U is the set of unobserved nodes, also called latent variables.
Unless stated otherwise it is assumed that no variable in Vo ∪ Vm ∪ U is a child of an R
variable. Two nodes X and Y can be connected by a directed edge i.e. X → Y , indicating
that X is a cause of Y , or by a bi-directed edge X <––> Y denoting the existence of a U
variable that is a parent of both X and Y .

We call this graphical representation a Missingness Graph (or m-graph). Figure
1 exemplifies three m-graphs in which Vo = {A,G}, Vm = {O}, V ∗ = {O∗}, U = ∅ and
R = {RO}. Proxy variables may not always be explicitly shown in m-graphs in order to
keep the figures simple and clear. The missing data distribution, P (V ∗, Vo, R) is referred
to as the observed-data distribution and the distribution that we would have obtained had
there been no missingness, P (Vo, Vm, R) is called the underlying distribution. Conditional
independencies are read off the graph using the d-separation3 criterion (Pearl, 2009b). For
example, Figure 1 (c) depicts the independence RO⊥⊥O|A but not RO⊥⊥G|O.

2.2 Classification of Missing Data Problems Based on Missingness
Mechanism

Rubin (1976) classified missing data into three categories: Missing Completely At Random

3For an introduction to d-separation see, http://bayes.cs.ucla.edu/BOOK-2K/d-sep.html and
http://www.dagitty.net/learn/dsep/index.html
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(MCAR), Missing At Random ( MAR ) and Missing Not At Random (MNAR) based on
the statistical dependencies between the missingness mechanisms (R variables) and the
variables in the dataset (Vm, Vo). We capture the essence of this categorization in graphical
terms below.

1. Data are MCAR if Vm ∪ Vo ∪ U⊥⊥R holds in the m-graph. In words, missingness
occurs completely at random and is entirely independent of both the observed and the
partially observed variables. This condition can be easily identified in an m-graph by
the absence of edges between the R variables and variables in Vo ∪ Vm.

2. Data are v-MAR if Vm ∪ U⊥⊥R|Vo holds in the m-graph. In words, conditional on the
fully observed variables Vo, missingness occurs at random. In graphical terms, v-MAR
holds if (i) no edges exist between an R variable and any partially observed variable
and (ii) no bidirected edge exists between an R variable and a fully observed variable.
MCAR implies v-MAR , ergo all estimation techniques applicable to v-MAR can be
safely applied to MCAR.

3. Data that are not v-MAR or MCAR fall under the MNAR category.

m-graphs in Figure 1 (b), (c) and (d) are typical examples of MCAR, v-MAR and MNAR
categories, respectively. Notice the ease with which the three categories can be identified.
Once the user lays out the interrelationships between the variables in the problem, the
classification is purely mechanical.

2.2.1 Missing At Random: A Brief Discussion

The original classification used in Rubin (1976) is very similar to the one defined in the
preceding paragraphs. The main distinction rests on the fact that MAR defined in Rubin
(1976) is defined in terms of conditional independencies between events whereas that in this
paper (referred to as v-MAR ) is defined in terms of conditional independencies between
variables. Clearly, we can have the former without the latter, in practice though it is rare
that scientific knowledge can be articulated in terms of event based independencies that are
not implied by variable based independencies.

Over the years the classification proposed in Rubin (1976) has been criticized both
for its nomenclature and its opacity. Several authors noted that MAR is a misnomer
(Scheffer (2002); Peters and Enders (2002); Meyers et al. (2006); Graham (2009)) noting
that randomness in this class is critically conditioned on observed data.

However, the opacity of the assumptions underlying MAR (Rubin, 1976) presents
a more serious problem. Clearly, a researcher would find it cognitively taxing, if not
impossible, to even decide if any of these independence assumptions is reasonable. This,
together with the fact that MAR (Rubin (1976)) is untestable (Allison (2002)) motivates
the variable-based taxonomy presented above. Seaman et al. (2013) and Doretti et al.
(2018) provide another taxonomy and a different perspective on MAR .

Nonetheless, MAR has an interesting theoretical property: It is the weakest simple
condition under which the process that causes missingness can be ignored while still
making correct inferences about the data (Rubin, 1976). It was probably this theoretical
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result that changed missing data practices in the 1970’s. The popular practice prior to
1976 was to assume that missingness was caused totally at random (Gleason and Staelin
(1975); Haitovsky (1968)). With Rubin’s identification of the MAR condition as sufficient
for drawing correct inferences, MAR became the main focus of attention in the statistical
literature.

Estimation procedures such as Multiple Imputation that worked under MAR assumption
became widely popular and textbooks were authored exclusively on MAR and its simplified
versions (Graham, 2012). In the absence of recognizable criteria for MAR , some authors
have devised heuristics invoking auxiliary variables, to increase the chance of achieving
MAR (Collins et al., 2001). Others have warned against indiscriminate inclusion of such
variables (Thoemmes and Rose, 2013; Thoemmes and Mohan, 2015). These difficulties
have engendered a culture with a tendency to blindly assume MAR , with the consequence
that the more commonly occurring MNAR class of problems remains relatively unexplored
(Resseguier et al., 2011; Adams, 2007; Osborne, 2012, 2014; Sverdlov, 2015; van Stein and
Kowalczyk, 2016).

In his seminal paper (Rubin, 1976) Rubin recommended that researchers explicitly
model the missingness process:

Figure 2: Quote from Rubin (1976)

This recommendation invites in fact the graphical tools described in this paper, for
they encourage investigators to model the details of the missingness process rather than
blindly assume MAR . These tools have further enabled researchers to extend the analysis
of estimation to the vast class of MNAR problems.

In the next section we discuss how graphical models accomplish these tasks.

3 Recoverability

Recoverability4 addresses the basic question of whether a quantity/parameter of interest
can be estimated from incomplete data as if no missingness took place; i.e., the desired
quantity can be estimated consistently from the available (incomplete) data. This amounts
to expressing the target quantity Q in terms of the observed-data distribution P (V ∗, VO, R).
Typical target quantities that shall be considered are conditional/joint distributions and
conditional causal effects.

Definition 1 (Recoverability of target quantity Q) Let A denote the set of assump-
tions about the data generation process and let Q be any functional of the underlying distri-
bution P (Vm, VO, R). Q is recoverable if there exists a procedure that computes a consistent

4The term identifiability is sometimes used in lieu of recoverability. We prefer using recoverability over
identifiability since the latter is strongly associated with causal effects, while the former is a broader concept,
applicable to statistical relationships as well. See section 3.5.
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estimate of Q for all strictly positive observed-data distributions P (V ∗, Vo, R) that may be
generated under A.5

Since we encode all assumptions in the structure of the m-graph G, recoverability becomes
a property of the pair {Q,G}, and not of the data. We restrict the definition above
to strictly positive observed-data distributions, P (V ∗, Vo, R) except for instances of zero
probabilities as specified in equation 1. The reason for this restriction can be understood
as the need for observing some unmasked cases for all combinations of variables, otherwise,
masked cases can be arbitrary. We note however that recoverability is sometimes feasible
even when strict positivity does not hold (Mohan et al. (2013), definition 5 in appendix).

We now demonstrate how a joint distribution is recovered given v-MAR data.

Example 1 Consider the problem of recovering the joint distribution given the m-graph in
Fig. 1 (c) and dataset in Table 3. Let it be the case that 15-18 year olds were reluctant
to reveal their weight, thereby making O a partially observed variable i.e. Vm = {O} and
Vo = {G,A}. This is a typical case of v-MAR missingness, since the cause of missingness is
the fully observed variable: Age. The following three steps detail the recovery procedure.

1. Factorization: The joint distribution may be factored as:

P (G,O,A) = P (G,O|A)P (A)

2. Transformation into observables: G implies the conditional independence (G,O)⊥⊥RO|A
since A d-separates (G,O) from RO. Thus,

P (G,O,A) = P (G,O|A,RO = 0)P (A)

3. Conversion of partially observed variables into proxy variables: RO = 0 implies O∗ = O
(by eq 1). Therefore,

P (G,O,A) = P (G,O∗|A,RO = 0)P (A) (2)

The RHS of Eq. (2) is expressed in terms of variables in the observed-data distribution.
Therefore, P (G,A,O) can be consistently estimated (i.e. recovered) from the available data.
The recovered joint distribution is shown in Table 4.

Note that samples in which obesity is missing are not discarded but are used instead to
update the weights p1, ..., p12 of the cells in which obesity has a definite value. This can be
seen by the presence of probabilities p13, ..., p18 in Table 4 and the fact that samples with
missing values have been utilized to estimate prior probability P (A) in equation 2. Note
also that the joint distribution permits an alternative decomposition:

P (G,O,A) = P (O|A,G)P (A,G)

= P (O∗|A,G,RO = 0)P (A,G)

5This definition is more operational than the standard definition of identifiability for it states explic-
itly what is achievable under recoverability and more importantly, what problems may occur under non-
recoverability.
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Table 3: observed-data Distribution P (G,A,O∗, RO) where Gender (G) and Age (A) are fully
observed, Obesity O is corrupted by missing values and Obesity’s proxy (O∗) is observed in
its place. Age is partitioned into three groups: [10 − 13), [13 − 15), [15 − 18). Gender and
Obesity are binary variables and can take values Male (M) and Female (F), and Yes (Y) and
No (N), respectively. The probabilities p1, p2, ..., p18 stand for the (asymptotic) frequencies
of the samples falling in the 18 cells (G,A,O∗, RO).

G A O∗ RO P (G,A,O∗, RO)
M 10− 13 Y 0 p1
M 13− 15 Y 0 p2
M 15− 18 Y 0 p3
M 10− 13 N 0 p4
M 13− 15 N 0 p5
M 15− 18 N 0 p6
F 10− 13 Y 0 p7
F 13− 15 Y 0 p8
F 15− 18 Y 0 p9

G A O∗ RO P (G,A,O∗, RO)
F 10− 13 N 0 p10
F 13− 15 N 0 p11
F 15− 18 N 0 p12
M 10− 13 m 1 p13
M 13− 15 m 1 p14
M 15− 18 m 1 p15
F 10− 13 m 1 p16
F 13− 15 m 1 p17
F 15− 18 m 1 p18

Table 4: Recovered joint distribution corresponding to dataset in Table 3 and m-graph in
Figure 1(c)

G A O P (G,O,A)

M 10− 13 Y p1∗(p1+p4+p7+p10+p13+p16)
p1+p4+p7+p10

M 13− 15 Y p2∗(p2+p5+p8+p11+p14+p17)
p2+p5+p8+p11

M 15− 18 Y p3∗(p3+p6+p9+p12+p15+p18)
p3+p6+p9+p12

M 10− 13 N p4∗(p1+p4+p7+p10+p13+p16)
p1+p4+p7+p10

M 13− 15 N p5∗(p2+p5+p8+p11+p14+p17)
p2+p5+p8+p11

M 15− 18 N p6∗(p3+p6+p9+p12+p15+p18)
p3+p6+p9+p12

G A O P (G,O,A)

F 10− 13 Y p7∗(p1+p4+p7+p10+p13+p16)
p1+p4+p7+p10

F 13− 15 Y p8∗(p2+p5+p8+p11+p14+p17)
p2+p5+p8+p11

F 15− 18 Y p9∗(p3+p6+p9+p12+p15+p18)
p3+p6+p9+p12

F 10− 13 N p10∗(p1+p4+p7+p10+p13+p16)
p1+p4+p7+p10

F 13− 15 N p11∗(p2+p5+p8+p11+p14+p17)
p2+p5+p8+p11

F 15− 18 N p12∗(p3+p6+p9+p12+p15+p18)
p3+p6+p9+p12

The equation above allows a different estimation procedure whereby P (A,G) is estimated
from all samples, including those in which obesity is missing, and only the estimation
of P (O∗|A,G,RO = 0) is restricted to the complete samples. The efficiency of various
decompositions are analysed in Van den Broeck et al. (2015); Mohan et al. (2014).

Finally we observe that for the MCAR m-graph in Figure 1 (b), a wider spectrum of
decompositions is applicable, including:

P (G,O,A) = P (O,A,G|RO = 0)

= P (O∗, A,G|RO = 0)

The equation above allows the estimation of the joint distribution using only those
samples in which obesity is observed. This estimation procedure, called listwise deletion
or complete-case analysis (Little and Rubin, 2002), would usually result in wastage of
data and lower quality of estimate, especially when the number of samples corrupted by
missingness is high. Considerations of estimation efficiency should therefore be applied once
we explicate the spectrum of options licensed by the m-graph.
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A completely different behavior will be encountered in the model of 1 (d) which, as we
have noted, belong to the MNAR category. Here, the arrow O → RO would prevent us
from executing step 2 of the estimation procedure, that is, transforming P (G,O,A) into an
expression involving solely observed variables. We can in fact show that in this example the
joint distribution is nonrecoverable; i.e., regardless of how large the sample or how clever
the imputation, no algorithm exists that produces consistent estimate of P(G,O,A).

The possibility of encountering non-recoverability is not discussed as often as it ought
to be in mainstream missing data literature mostly because the MAR assumption is either
taken for granted (Pfeffermann and Sikov, 2011) or thought of as a good approximation for
MNAR (Chang, 2011). Consequently it is often presumed that commonly used approaches
for estimation in the setting of missing data that depend on MAR (such as maximum
likelihood or multiple imputation) can deliver a consistent estimate of any desired full data
parameter. While it is true for MAR , it is certainly not true in cases for which we can
prove non-recoverability, and requires model-based analysis for MNAR.

Remark 1 Observe that equation 2 yields an estimand for the query, P (G,O,A), as
opposed to an estimator. An estimand is a functional of the observed-data distribution,
P (V ∗, R, Vo), whereas an estimator is a rule detailing how to calculate the estimate from
measurements in the sample. Our estimands naturally give rise to a closed form estimator,
for instance, the estimator corresponding to the estimand in equation 2 is:
#(G=g,O∗=o,A=a,RO=0)

#(A=a,RO=0)
#(A=a)

N
, where N is the total number of samples collected and #(X1 =

x1, X2 = x2, ...Xj = xj) is the frequency of the event x1, x2, ...xj. Algorithms inspired by such
closed form estimation techniques were shown in Van den Broeck et al. (2015) to outperform
conventional methods such as EM computationally, for instance by scaling to networks where
it is intractable to run even one iteration of EM. Such algorithms are indispensable for large
scale and big data learning tasks in machine learning and artificial intelligence for which EM
is not a viable option.

Figure 3: An MNAR m-graph in which joint distribution is not recoverable but
P (Y |X,Z1, Z2) and P (Z1) are recoverable. Proxy variables have not been explicitly por-
trayed, as stated in section 2.1.

A generic example for recoverability under MNAR is presented below.
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Example 2 (Recoverability in MNAR m-graphs) Consider the m-graph G in Figure
3 where all variables are subject to missingness. Y is the outcome of interest, X the exposure
of interest and Z1 and Z2 are baseline covariates. The target parameter is P (Y |X,Z1, Z2),
the regression of Y on X given both baseline covariates.
Since Y⊥⊥(RX , RY , RZ1 , RZ2)|(X,Z1, Z2) in G, P (Y |X,Z1, Z2) can be recovered as:

P (Y |X,Z1, Z2) = P (Y |(X,Z1, Z2, RX = 0, RY = 0, RZ1 = 0, RZ2 = 0))

= P (Y ∗|(X∗, Z∗1 , Z∗2 , RX = 0, RY = 0, RZ1 = 0, RZ2 = 0))( Using eq 1)

Though all variables are subject to missingness and missingness is highly dependent on par-
tially observed variables, the graph nevertheless licenses the estimation of the target parameter
from samples in which all variables are observed.

In the following subsection we define the notion of Ordered factorization which leads to
a criterion for sequentially recovering conditional probability distributions (Mohan et al.
(2013); Mohan and Pearl (2014a)).

3.1 Recovery by Sequential Factorization

Definition 2 (Ordered factorization of P (Y |Z)) Let Y1 < Y2 < . . . < Yk be an ordered
set of all variables in Y , 1 ≤ i ≤ |Y | = k and Xi ⊆ {Yi+1, . . . , Yn}∪Z. Ordered factorization
of P (Y |Z) is the product of conditional probabilities i.e. P (Y |Z) =

∏
i P (Yi|Xi), such that

Xi is a minimal set for which Yi⊥⊥({Yi+1, . . . , Yn} \Xi)|Xi holds.

The following theorem presents a sufficient condition for recovering conditional distributions
of the form P (Y |X) where {Y,X} ⊆ Vm ∪ Vo.

Theorem 1 Given an m-graph G and an observed-data distribution P (V ∗, Vo, R), a target
quantity Q is recoverable if Q can be decomposed into an ordered factorization, or a sum of
such factorizations, such that every factor Qi = P (Yi|Xi) satisfies Yi⊥⊥(Ryi , Rxi

)|Xi. Then,
each Qi may be recovered as P (Y ∗i |X∗i , RYi

= 0, RXi
= 0).

An ordered factorization that satisfies theorem 1 is called as an admissible factorization.

Example 3 Consider the problem of recovering P (X, Y ) given G, the m-graph in Figure
4(a). G depicts an MNAR problem since missingness in Y is caused by the partially ob-
served variable X. The factorization P (Y |X)P (X) is admissible since both Y⊥⊥Rx, Ry|X
and X⊥⊥Rx hold in G. P (X, Y ) can thus be recovered using theorem 1 as P (Y ∗|X∗, Rx =
0, Ry = 0)P (X∗|Rx = 0). Here, complete cases are used to estimate P (Y |X) and all samples
including those in which Y is missing are used to estimate P (X). Note that the decomposition
P (X|Y )P (Y ) is not admissible.

Corollary 1 Given an m-graph G depicting v-MAR joint distribution is recoverable in G as
P (Vo, Vm) = P (V ∗|Vo, R = 0)P (Vo).
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Recovering from Complete & Available cases Traditionally there has been great
interest in complete case analysis primarily due to its simplicity and ease of applicability.
However, it results in a large wastage of data and a more economical version of it, called
available case analysis would generally be more desirable. The former retains only samples
in which variables in the entire dataset are observed, whereas the latter retains all samples
in which the variables in the query are observed. Sufficient criteria for recovering conditional
distributions from complete cases as well as available cases are widely discussed in literature
(Bartlett et al. (2014); Little and Rubin (2002); White and Carlin (2010)) and we state
them in the form of a corollary below:

Corollary 2 (a) Given m-graph G, P (X|Y ) is recoverable from complete cases if X⊥⊥R|Y
holds in G where R is the set of all missingness mechanisms.
(b) Given m-graph G, P (X|Y ) is recoverable from available cases if X⊥⊥(Rx, Ry)|Y holds in
G.

In Figure 3 for example, we see that Z1⊥⊥RZ1 holds but Z⊥⊥Rx does not. Therefore P (Z1)
is recoverable from available cases but not complete cases.

The following example emphasizes the need for causal modeling of R variables. It
demonstrates that causal relations among various R variables play a pivotal role in the
recoverability procedure.

Example 4 Consider the following graphs: G1 : Y → X → Rx → Ry and G2 : Y → X →
Rx← Ry. The m-graphs are identical except that in G1, Rx causes Ry and in G2, Ry causes
RX . This seemingly minor difference in the underlying missingness process considerably
alters the recoverability procedure.

In G1, P(X,Y) is recovered as,

P (X, Y ) = P (Y |X)P (X)

= P (X|Y,Rx = 0, Ry = 0)P (X) (since X⊥⊥Rx, Ry|Y )

= P (X|Y,Rx = 0, Ry = 0)
∑
Rx

P (Y |Rx, Ry = 0)P (Rx) (since Y⊥⊥Ry|RX)

= P (X∗|Y ∗, Rx = 0, Ry = 0)
∑
Rx

P (Y ∗|Rx, Ry = 0)P (Rx) (using equation 1)

whereas in G2, P(X,Y) is recovered as,

P (X, Y ) = P (Y |X)P (X)

= P (X|Y,Rx = 0, Ry = 0)P (Y |Ry = 0) (since X⊥⊥Rx, Ry|Y & Y⊥⊥Ry)

= P (X∗|Y ∗, Rx = 0, Ry = 0)P (Y ∗|Ry = 0) (using equation 1)

3.2 R Factorization

Example 5 Consider the problem of recovering Q = P (X, Y ) from the m-graph of Figure
4(b). Interestingly, no ordered factorization over variables X and Y would satisfy the condi-
tions of Theorem 1. To witness we write P (X, Y ) = P (Y |X)P (X) and note that the graph
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Figure 4: m-graphs in which joint distribution is recoverable. (a) P (X, Y ) is recoverable
using sequential factorization, (b) & (c) P (X, Y ) and P (X, Y, Z) are recoverable using R
factorization.

does not permit us to augment any of the two terms with the necessary Rx or Ry terms;
X is independent of Rx only if we condition on Y , which is partially observed, and Y is
independent of Ry only if we condition on X which is also partially observed. This deadlock
can be disentangled however using a non-conventional decomposition:

Q = P (X, Y ) = P (X, Y )
P (Rx = 0, Ry = 0|X, Y )

P (Rx = 0, Ry = 0|X, Y )

=
P (Rx = 0, Ry = 0)P (X, Y |Rx = 0, Ry = 0)

P (Rx = 0|Y,Ry = 0)P (Ry = 0|X,Rx = 0)

where the denominator was obtained using the independencies Rx⊥⊥(X,Ry)|Y and
Ry⊥⊥(Y,Rx)|X shown in the graph. The final expression below,

P (X, Y ) =
P (Rx = 0, Ry = 0)P (X∗, Y ∗|Rx = 0, Ry = 0)

P (Rx = 0|Y ∗, Ry = 0)P (Ry = 0|X∗, Rx = 0)
(Using equation 1) (3)

which is in terms of variables in the observed-data distribution, renders P (X, Y ) recoverable.
This example again shows that recovery is feasible even when data are MNAR.

The following theorem (Mohan et al. (2013); Mohan and Pearl (2014a)) formalizes the
recoverability scheme exemplified above.

Theorem 2 (Recoverability of the Joint P (V )) Given a m-graph G with no edges be-
tween R variables the necessary and sufficient condition for recovering the joint distribution
P (V ) is the absence of any variable X ∈ Vm such that:
1. X and Rx are neighbors
2. X and Rx are connected by a path in which all intermediate nodes are colliders6 and
elements of Vm ∪ Vo. When recoverable, P (V ) is given by

P (v) =
P (R = 0, v)∏

i P (Ri = 0|Mbori ,Mbmri , RMbmri
= 0)

, (4)

where Mbori ⊆ Vo and Mbmri ⊆ Vm are the Markov blanket7 of Ri.

6A variable is a collider on the path if the path enters and leaves the variable via arrowheads (a term
suggested by the collision of causal forces at the variable) (Greenland and Pearl, 2011).

7Markov blanket MbX of variable X is any set of variables such that X is conditionally independent of
all the other variables in the graph given MbX (Pearl, 1988).
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The preceding theorem can be applied to immediately yield an estimand for joint
distribution. For instance, given the m-graphs in Figure 4 (c), joint distribution can be
recovered in one step yielding:

P (X, Y, Z) = P (X,Y,Z,Rx=0,Ry=0,Rz=0)

P (Rx=0|Y,Ry=0,Z,Rz=0)P (Ry=0|X,Rx=0,Z,Rz=0)P (Rz=0|Y,Ry=0,X,Rx=0)

Figure 5: (a) & (c) m-graphs in which joint distribution is recoverable aided by intervention.
Furthermore in (a) no separating set exists that can d-separate X and RX . (b) latent
structure (Pearl (2009b), chapter 2) corresponding to m-graph in (a) when X is treated as
a latent variable.

3.3 Constraint Based Recoverability

The recoverability procedures presented thus far relied entirely on conditional independencies
that are read off the m-graph using d-separation criterion. Interestingly, recoverability can
sometimes be accomplished by graphical patterns other than conditional independencies.
These patterns represent distributional constraints which can be detected using mutilated
versions of the m-graph. We describe below an example of constraint based recovery.

Example 6 Let G be the m-graph in Figure 5(a) and let the query of interest be P (X).
The absence of a set that d-separates X from Rx, makes it impossible to apply any of the
techniques discussed previously. While it may be tempting to conclude that P (X) is not
recoverable, we prove otherwise by using the fact that X⊥⊥Rx holds in the ratio distribution
P (X,Ry ,Rz ,Rx)

P (Rz |Ry)
. Such ratios are called interventional distributions and the resulting constraints

are called Verma Constraints (Verma and Pearl (1991); Tian and Pearl (2002)). The proof
presented below employs the rules of do-calculus8, to extract these constraints.

P (X) = P (X|do(Rz = 0)) (Rule-3 of do-calculus)

= P (X|do(Rz = 0), Rx = 0) (Rule-1 of do-calculus)

= P (X∗|do(Rz = 0), Rx = 0) (using equation 1)

=
∑
RY

P (X∗, RY |do(Rz = 0), Rx = 0) (5)

8For an introduction to do-calculus see, Pearl and Bareinboim (2014), section 2.5 and Koller and Friedman
(2009)
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Note that the query of interest is now a function of X∗ and not X. Therefore the problem
now amounts to identifying a conditional interventional distribution using the m-graph in
Figure 5(b). A complete analysis of such problems is available in Shpitser and Pearl (2006)
which identifies the causal effect in eq 5 as:

P (X) =
∑
RY

P (X∗|RY , Rx = 0, Rz = 0)
P (Rx = 0|Ry, Rz = 0)P (Ry)∑
RY

P (Rx = 0|Ry, Rz = 0)P (Ry)
(6)

In addition to P (X), this graph also allows recovery of joint distribution as shown below.
P (X, Y, Z) = P (X)P (Y )P (Z)

P (X, Y, Z) =
(∑

RY
P (X∗|RY , Rx = 0, Rz = 0) P (Rx=0|Ry ,Rz=0)P (Ry)∑

RY
P (Rx=0|Ry ,Rz=0)P (Ry)

)
P (Y ∗ = Y |Ry = 0)P (Z∗|Rz = 0)

The decomposition in the first line uses (X, Y )⊥⊥Z and X⊥⊥Y . Recoverability of P (X)
in the second line follows from equation 6. Theorem 1 can be applied to recover P (Y ) and
P (Z), since Y⊥⊥RY and Z⊥⊥RZ.

Remark 2 In the preceding example we were able to recover a joint distribution despite the
fact that the distribution P (X,RY , Rx) is void of independencies. The ability to exploit such
cases further underscores the need for graph based analysis.

The fields of epidemiology and bio-statistics have several impressive works dealing
with coarsened data (Van der Laan and Robins (2003); Gill et al. (1997); Gill and Robins
(1997)) and missing data (Robins (2000, 1997); Robins et al. (2000); Li et al. (2013)).
Many among these are along the lines of estimation (mainly of causal queries); Robins
et al. (1994) and Rotnitzky et al. (1998) deal with Inverse Probability Weighting based
estimators, and Bang and Robins (2005) demonstrates the efficacy of Doubly Robust
estimators using simulation studies. The recovery strategy of these existing works are
different from that discussed in this paper with the main difference being that these works
proceed by intervening on the R variable and thus converting the missing data problem
into that of identification of causal effect. For example the problem of recovering P (X)
is transformed into that of identifying the counterfactual query P (X∗Rx=0) (which in our
framework translates to identifying P (X∗|do(Rx = 0))) in the graph in which X is treated
as a latent variable. This technique while applicable in several cases is not general and
may not always be relied upon to establish recoverability. An example is the problem of
recovering joint distribution P (W,X, Y, Z) in Figure 5 (c). In this case the equivalent causal
query P (W ∗, X∗, Y ∗, Z∗|do(Rx = 0, Ry = 0, Rw = 0, Rz = 0)) is not identifiable in the graph
in which W,X, Y and Z are treated as latent variables. The procedure for recovering joint
distribution from the m-graph in Figure 5 (c) is presented in the appendix.

3.4 Overcoming Impediments to Recoverability

This section focuses on MNAR problems that are not recoverable9. One such problem is
elucidated in the following example.

9Unless otherwise specified non-recoverability will assume joint distribution as a target and does not
exclude recoverability of targets such as odds ratio (discussed in Bartlett et al. (2015)).
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Example 7 Consider a missing dataset comprising of a single variable, Income (I), obtained
from a population in which the very rich and the very poor were reluctant to reveal their
income. The underlying process can be described as a variable causing its own missingness.
The m-graph depicting this process is I → RI . Obviously, under these circumstances the
true distribution over income, P (I), cannot be computed error-free even if we were given
infinitely many samples.

The following theorem identifies graphical conditions that forbid recoverability of conditional
probability distributions (Mohan and Pearl (2014a)).

Theorem 3 Let X ∪ Y ⊆ Vm ∪ Vo and |X| = 1. P (X|Y ) is not recoverable if either X and
RX are neighbors or there exists a path from X to Rx such that all intermediate nodes are
colliders and elements of Y .

Quite surprisingly, it is sometimes possible to recover joint distributions given m-graphs
with graphical structures stated in theorem 3 by jointly harnessing features of the data and
m-graph. We exemplify such recovery with an example.

Example 8 Consider the problem of recovering P (Y, I) given the m-graph G : Y → I → RI ,
where Y is a binary variable that denotes whether candidate has sufficient years of relevant
work experience and I indicates income. I is also a binary variable and takes values high
and low. P (Y ) is implicitly recoverable since Y is fully observed. P (Y |I) may be recovered
as shown below:

P (Y |I) = P (Y |I, r′I) (using Y⊥⊥RI |I)

= P (Y ∗ = Y |I∗ = I, , r′I) (using equation 1)

Expressing P (Y ) =
∑

y P (Y |I)P (I) in matrix form, we get:(
P (y′)
P (y)

)
=

(
P (y′|i′) P (y′|i)
P (y|i′) P (y|i)

)(
P (i′)
P (i)

)
Assuming that the square matrix on R.H.S is invertible, P (I) can be estimated as:(

P (y′|i′) P (y′|i)
P (y|i′) P (y|i)

)−1(
P (y′)
P (y)

)
Having recovered P (I), the query P (Y, I) may be recovered as P (Y |I)P (I).

General procedures for handling non-recoverable cases using both data and graph are
discussed in Mohan (2018). The preceding recoverability procedure was inspired by similar
results in causal inference (Pearl, 2009a; Kuroki and Pearl, 2014). In contrast to Pearl
(2009a) that relied on external studies to compute causal effect in the presence of an
unmeasured confounder, Kuroki and Pearl (2014) showed how the same could be effected
without external studies. In missing data settings we have access to partial information
that allows us to compute conditional distributions. This allows us to adapt the procedure
in Pearl (2009a) to establish recoverability. The Heckman correction (Heckman, 1976)
originally developed for handling selection bias, can also be applied to some MNAR
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problems. However, it relies on strong assumptions of normality and guarantees only
weak identifiability. In its place, Little (2008) recommends conducting sensitivity analysis
or imposing additional parametric assumptions, some of which may create MAR models
and thus facilitate recoverability. Yet another way of handling MNAR problems is
based on double sampling wherein after the initial data collection a random sample of
non-respondents are tracked and their outcomes ascertained (Holmes et al., 2018; Zhang
et al., 2016).

3.5 Recovering Causal Effects

We assume the reader is familiar with the basic notions of “causal queries”, “causal effect”
and “identifiability” as described in Pearl (2009b) (chapter 3) and Pearl (2009a). Given a
causal query and a causal graph with no missingness, we can always determine whether or
not the query is identifiable using the complete algorithm in Shpitser and Pearl (2006) or
Huang and Valtorta (2006) which outputs an estimand whenever identifiability holds. In
the presence of missingness, a necessary condition for recoverability of a causal query is its
identifiability in the substantive model i.e. the subgraph comprising of Vo, Vm and U . In
other words, a query which is not identifiable in this model will not be recoverable under
missingness. A canonical example of such case is the bow-arc graph (Figure 7 (c)) for which
the query P (Y |do(X = x)) is known to be non-identifiable (Pearl (2009b)) In the remainder
of this subsection we will assume that queries of interest are identifiable in the substantive
model, and our task is to determine whether or not they are recoverable from the m-graph.
Clearly, identifiability entails the derivation of an estimand, a sufficient condition for
recoverability is that the estimand in question be recoverable from the m-graph.

Figure 6: m-graphs depicting the problem of attrition (i.e. loss of participants in longitudinal
studies). (a) attrition is v-MAR although the m-graph is semi-markovian (b) attrition is
MNAR.

Example 9 Consider the m-graph in in Figure 6 (a), where it is required to recover the
causal effect of two sequential treatments, Tt and Tt+1 on outcome Ot+1, namely
P (Ot+1|do(Tt, Tt+1). This graph models a longitudinal study with attrition, where the R vari-
ables represent subjects dropping out of the study due to side-effects St and St+1 caused by
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Figure 7: (a) m-graph in which P (y|do(z)) is recoverable although Y and Ry are not d-
separable. (b) m-graph in which Y is treated as a latent variable and not explicitly portrayed.
(c) bow-arc model in which causal effect of X on Y is non-identifiable.

the corresponding treatments (a practical problem discussed in Breskin et al. (2018); Cinelli
and Pearl (2018)). The bi-directed arrows represent unmeasured health status indicating that
participants with poor health are both more likely to experience side effects and incur unfa-
vorable outcomes. Leveraging the exogeneity of the two treatments (rule 2 of do-calculus),
we can remove the do-operator from the query expression, and obtain the identified esti-
mand P (Ot+1|do(Tt, Tt+1) = P (Ot+1|Tt, Tt+1). Since the parents of the R variables are fully
observed, the problem belongs to the v-MAR category, in which the joint distribution is re-
coverable (using corollary 1). Therefore P (Ot+1|Tt, Tt+1) and hence our causal effect is also
recoverable, and is given by:

∑
St,St+1

P (Ot+1|Tt, Tt+1, St, St+1, ROt+1 = 0)P (St, St+1|Tt, Tt+1).

Figure 6(b) represents a more intricate variant of the attrition problem, where
the side effects themselves are partially observed and, worse yet, they cause their
own missingness. Remarkably, the query is still recoverable, using Theorem 1 and
the fact that, (i) Ot+1 is d-separated from both ROt+1 and ROt given (Tt, Tt+1, Ot),
and (ii) Ot is d-separated from ROt given (Tt, Tt+1). The resulting estimand is:∑

Ot
P (Ot+1|Tt, Tt+1, Ot, ROt = 0, ROt+1 = 0)P (Ot|ROt = 0, Tt, Tt+1).

Figure 7(a) portrays another example of identifiable query, but in this case, the
recoverability of the identified estimand is not obvious; constraint-based analysis (5) is
needed to establish its recoverability.

Example 10 Examine the m-graph in Figure 7(a). Suppose we are interested in the causal
effect of Z (treatment) on outcome Y (death) where treatments are conditioned on (observed)
X-rays report (W). Suppose that some unobserved factors (say quality of hospital equipment
and staff) affect both attrition (Ry) and accuracy of test reports (W). In this setup the
causal-effect query P (y|do(z)) is identifiable (by adjusting for W) through the estimand:

P (y|do(z)) =
∑
w

P (y|z, w)P (w). (7)

However, the factor P (y|z, w) is not recoverable (by theorem 3), and one might be tempted to
conclude that the causal effect is non-recoverable. We shall now show that it is nevertheless
recoverable in three steps.
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Recovering P (y|do(z) given the m-graph in Figure 7(a) The first step is to transform
the query (using the rules of do-calculus) into an equivalent expression such that no partially
observed variables resides outside the do-operator.

P (y|do(z)) = P (y|do(z), Ry = 0) (follows from rule 1 of do-calculus)

= P (y∗|do(z), Ry = 0) (using eq 1) (8)

The second step is to simplify the m-graph by removing superfluous variables, still retaining
all relevant functional relationships. In our example, Y is irrelevant once we treat Y ∗ as
an outcome. The reduced m-graph is shown in Figure 7(b). The third step is to apply
the do-calculus (Pearl (2009b)) to the reduced graph (7(b)), and identify the modified query
P (y∗|do(z), Ry = 0).

P (y∗|do(z), Ry = 0) =
∑
w

P (y∗|do(z), w,Ry = 0)P (w|do(z), Ry = 0) (9)

P (y∗|do(z), w,Ry = 0) = P (y∗|z, w,Ry = 0) (by Rule-2 of do-calculus) (10)

P (w|do(z), Ry = 0) = P (w|Ry = 0) (by Rule-3 of do-calculus). (11)

Substituting (10) and (11) in (9) the causal effect becomes

P (y|do(z)) =
∑
w

P (y∗|z, w,Ry = 0)P (w|Ry = 0), (12)

which permits us to estimate our query from complete cases only. While in this case we were
able to recover the causal effect using one pass over the three steps, in more complex cases
we might need to repeatedly apply these steps in order to recover the query.

Figure 8: (a) m-graph with an untestable claim: Z⊥⊥Rz|X, Y , (b) & (c) Two statistically
indistinguishable models, (d) m-graph depicting MCAR.

4 Testability Under Missingness

In this section we seek ways to detect mis-specifications of the missingness model. While
discussing testability, one must note a phenomenon that recurs in missing data analysis:
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Not all that looks testable is testable. Specifically, although every d-separation in the
graph implies conditional independence in the recovered distribution, some of those
independencies are imposed by construction, in order to satisfy the model’s claims, and
these do not provide means of refuting the model. We exemplify this peculiarity below.

Example 11 Consider the m-graph in Figure 8(a). It is evident that the problem is MCAR
(definition in section 4.2). Hence P (X,Rx) is recoverable. The only conditional independence
embodied in the graph is X⊥⊥Rx. At first glance it might seem as if X⊥⊥Rx is testable
since we can go to the recovered distribution and check whether it satisfies this conditional
independence. However, X⊥⊥Rx will always be satisfied in the recovered distribution, because
it was recovered so as to satisfy X⊥⊥Rx. This can be shown explicitly as follows:

P (X,Rx) = P (X|Rx)P (Rx)

= P (X|Rx = 0)P (Rx) (Using X⊥⊥Rx)

= P (X∗|Rx = 0)P (Rx)( Using Equation 1)

Likewise,

P (X)P (Rx) = P (X∗|Rx = 0)P (Rx)

Therefore, the claim, X⊥⊥Rx, cannot be refuted by any recovered distribution, regardless
of what process actually generated the data. In other words, any data whatsoever with X
partially observed can be made compatible with the model postulated.

The following theorem characterizes a more general class of untestable claims.

Theorem 4 (Mohan and Pearl (2014b)) Let {Z,X} ⊆ Vm and W ⊆ Vo. Conditional
independencies of the form X⊥⊥Rx|Z,W,Rz are untestable.

The preceding example demonstrates this theorem as a special case, with Z = W = Rz = ∅.
The next section provides criteria for testable claims.

4.1 Graphical Criteria for Testability

The criterion for detecting testable implications reads as follows: A d-separation condition
displayed in the graph is testable if the R variables associated with all the partially observed
variables in it are either present in the separating set or can be added to the separating set
without spoiling the separation. The following theorem formally states this criterion using
three syntactic rules (Mohan and Pearl (2014b)).

Theorem 5 A sufficient condition for an m-graph to be testable is that it encodes one of
the following types of independence:

X⊥⊥Y |Z,Rx, Ry, Rz (13)

X⊥⊥Ry|Z,Rx, Rz (14)

Rx⊥⊥Ry|Z,Rz. (15)
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In words, any d-separation that can be expressed in the format stated above is testable. It
is understood that, if X or Y or Z are fully observed, the corresponding R variables may
be removed from the conditioning set. Clearly, any conditional independence comprised
exclusively of fully observed variables is testable. To search for such refutable claims,
one needs to only examine the missing edges in the graph and check whether any of its
associated set of separating sets satisfy the syntactic format above.

To illustrate the power of the criterion we present the following example.

Example 12 Examine the m-graph in Figure 8 (d). The missing edges between Z and Rz,
and X and Rz correspond to the conditional independencies: Z⊥⊥Rz|(X, Y ) and X⊥⊥Rz|Y ,
respectively. The former is untestable (following theorem 4) while the latter is testable, since
it complies with (14) in theorem 5.

4.1.1 Tests Corresponding to the Independence Statements in Theorem 5

A testable claim needs to be expressed in terms of proxy variables before it can be
operationalized. For example, a specific instance of the claim X⊥⊥Y |Z,Rx, Ry, Rz, when
Rx = 0, Ry = 0, Rz = 0 gives X⊥⊥Y |Z,Rx = 0, Ry = 0, Rz = 0. On rewriting this claim as
an equation and applying equation 1 we get,

P (X∗|Z∗, Rx = 0, Ry = 0, Rz = 0) = P (X∗|Y ∗, Z∗, Rx = 0, Ry = 0, Rz = 0)

This equation exclusively comprises of observed quantities and can be directly tested given
the input distribution: P (X∗, Y ∗, Z∗, Rx, Ry, Rz). Finite sample techniques for testing
conditional independencies are cited in the next section. In a similar manner we can devise
tests for the remaining two statements in theorem 5.

The tests corresponding to the three independence statements in theorem 5 are:

• P (X∗|Z∗, Rx = 0, Ry = 0, Rz = 0) = P (X∗|Y ∗, Z∗, Rx = 0, Ry = 0, Rz = 0),

• P (X∗|Z∗, Rx = 0, Rz = 0) = P (X∗|Ry, Z
∗, Rx = 0, Rz = 0)

• P (Rx|Z∗, Rz = 0) = P (Rx|Ry, Z
∗, Rz = 0)

The next section specializes these results to the classes of v-MAR and MCAR problems
which have been given some attention in the existing literature.

4.2 Testability of MCAR and v-MAR

A chi square based test for MCAR was proposed by Little (1988) in which a high value
falsified MCAR (Rubin, 1976). MAR is known to be untestable (Allison, 2002). Potthoff
et al. (2006) defined MAR at the variable-level (identical to that in section 2.2) and showed
that it can be tested. Theorem 6, given below, presents stronger conditions under which a
given v-MAR model is testable (Mohan and Pearl (2014b)). Moreover, it provides diagnostic
insight in case the test is violated. We further note that these conditional independence
tests may be implemented in practice using different techniques such as G-test, chi square
test, testing for zero partial correlations or by tests such as those described in Székely et al.
(2007); Gretton et al. (2012); Sriperumbudur et al. (2010).
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Theorem 6 ( v-MAR is Testable) Given that |Vm| > 0, Vm⊥⊥R|Vo is testable if and only
if |Vm| > 1 i.e. |Vm| is not a singleton set.

In words, given a dataset with two or more partially observed variables, it is always possible
to test whether v-MAR holds. We exemplify such tests below.

Example 13 (Tests for v-MAR ) Given a dataset where Vm = {A,B} and Vo = {C},
the v-MAR condition states that (A,B)⊥⊥(RA, RB)|C. This statement implies the following
two statements which match syntactic criterion 14 in theorem 5 and hence are testable.

1. A⊥⊥RB|C,RA

2. B⊥⊥RA|C,RB

The testable implications corresponding to (1) and (2) above are the following:

P (A∗, RB|C,RA = 0) = P (A∗|C,RA = 0)P (RB|C,RA = 0)

P (B∗, RA|C,RB = 0) = P (B∗|C,RB = 0)P (RA|C,RB = 0)

While refutation of these tests immediately implies that the data are not v-MAR , we can
never verify the v-MAR condition. However if v-MAR is refuted, it is possible to pinpoint
and locate the source of error in the model. For instance, if claim (1) is refuted then one
should consider adding an edge between A and RB.

Remark 3 A recent paper by I Bojinov, N Pillai and D Rubin (Bojinov et al., 2017) has
adopted some of the aforementioned tests for v-MAR models, and demonstrated their use on
simulated data. Their paper is a testament to the significance and applicability of our results
(specifically, section 3.1 and 6 in Mohan and Pearl (2014b)) to real world problems.

Corollary 3 (MCAR is Testable) Given that |Vm| > 0, (Vm, VO)⊥⊥R|Vo is testable if and
only if |Vm|+ |VO| ≥ 2.

Example 14 (Tests for MCAR) Given a dataset where Vm = {A,B} and Vo = {C},
the MCAR condition states that (A,B,C)⊥⊥(RA, RB). This statement implies the following
statements which match syntactic criteria (14) and (13) in theorem 5 and hence are testable.

1. A⊥⊥RB|RA

2. B⊥⊥RA|RB

3. C⊥⊥RA

The testable implications corresponding to (1) and (2) above are the following:

P (A∗, RB|C,RA = 0) = P (A∗|C,RA = 0)P (RB|C,RA = 0)

P (B∗, RA|C,RB = 0) = P (B∗|C,RB = 0)P (RA|C,RB = 0)

P (C,RA) = P (C)P (RA)
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4.3 On the Causal Nature of the Missing Data Problem

Examine the m-graphs in Figure 8(b) and (c). X⊥⊥Rx|Y and X⊥⊥Rx are the conditional
independence statements embodied in models 8(b) and (c), respectively. Neither of these
statements are testable. Therefore they are statistically indistinguishable. However, notice
that P (X, Y ) is recoverable in Figure 8(b) but not in Figure 8(c) implying that,

• No universal algorithm exists that can decide if a query is recoverable or not without
looking at the model.

Further notice that P (X) is recoverable in both models albeit using two different methods.
In model 8(b) we have P (X) =

∑
Y P (X∗|Y,Rx = 0)P (y) and in model 8(c) we have

P (X) = P (X∗|Rx = 0). This leads to the conclusion that,

• No universal algorithm exists that can produce a consistent estimate, whenever such
exists, without looking at the model.

The impossibility of determining from statistical assumptions alone, (i) whether a query
is recoverable and (ii) how the query is to be recovered, if it is recoverable, attests to the
causal nature of the missing data problem. Although Rubin (1976) alludes to the causal
aspect of this problem, subsequent research has treated missing data mostly as a statistical
problem. A closer examination of the testability and recovery conditions shows however
that a more appropriate perspective would be to treat missing data as a causal inference
problem.

5 Conclusions

All methods of missing data analysis rely on assumptions regarding the reasons for
missingness. Casting these assumptions in a graphical model permits researchers to benefit
from the inherent transparency of such models as well as their ability to explicate the
statistical implication of the underlying assumptions in terms of conditional independence
relations among observed and partially observed variables. We have shown that these
features of graphical models can be harnessed to study uncharted territories of missing data
research. In particular, we charted the estimability of statistical and causal parameters
in broad classes of MNAR problems, and the testability of the model assumptions under
missingness conditions.

It is important to emphasize at this point how recoverability and testability differ from
estimation and testing, a distinction that is often left ambiguous in traditional missing-data
literature. Recoverability is a data-independent task that takes as input a pair, a query
and a model, and determines if the value of the query can be estimated as sample size
approaches infinity, assuming that only variables assigned R variables can be corrupted by
missingness. If the answer is positive, it outputs an estimand, that is, a recipe of how the
query is to be estimated once the data become available. Estimation on the other hand
takes as input data and an estimand, and outputs an estimate of the query, in accordance
with the estimand. For a given model and query, the estimand remains the same regardless
of the dataset, whereas an estimate changes with the dataset. Clearly, to guarantee that the

24



estimate produced is meaningful, it is essential to first determine if a query is recoverable
and, only then proceed to the estimation phase. Similarly, testability and testing are
distinct notions. Testability takes a model as input and outputs testable implications i.e.
claims that can be tested on the incomplete data. Examples of testable implications are
conditional independence relationships among the variables present in the data. Testing,
on the other hand, takes as input both the data and the testable implications and outputs
an estimate of the degree to which the claims hold in the data. Clearly, given their
data-neutral qualities, the recoverability and testability results reported in this paper are
applicable to any problem area that matches the structure of the m-graph; no distributional
or parametric assumptions are needed.

An important feature of our analysis is its query dependence. In other words, while
certain properties of the underlying distribution may be deemed unrecoverable, others can
be proven to be recoverable, and by smart estimation algorithms.

In light of our findings we question the benefits of the traditional taxonomy that
classifies missingness problems into MCAR, MAR and MNAR. To decide if a problem falls
into any of these categories a user must have a model of the causes of missingness and once
this model is articulated the criteria we have derived for recoverability and testability can
be readily applied. Hence we see no need to refine and elaborate conditions for MAR .

The testability criteria derived in this paper can be used not only to rule out misspecified
models but also to locate specific mis-specifications for the purpose of model updating and
re-specification. More importantly, we have shown that it is possible to determine if and
how a target quantity is recoverable, even in models where missingness is not ignorable.
Finally, knowing which sub-structures in the graph prevent recoverability can guide data
collection procedures by identifying auxiliary variables that need to be measured to ensure
recovery, or problematic variables that may compromise recovery if measured imprecisely.
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Appendix

Estimation when the Data May not be Missing at Random. (Little
and Rubin (2014), page-22)

Essentially all the literature on multivariate incomplete data assumes that the data are
MAR , and much of it also assumes that the data are MCAR. Chapter 15 deals explicitly
with the case when the data are not MAR , and models are needed for the missing-data
mechanism. Since it is rarely feasible to estimate the mechanism with any degree of
confidence, the main thrust of these methods is to conduct sensitivity analyses to assess the
effect of alternative assumptions about the missing-data mechanism.

A Complex Example of Recoverability

We use R = 0 as a shorthand for the event where all variables are observed i.e. RVm = 0.

Example 15 Given the m-graph in Figure 5 (c), we will now recover the joint distribution.

P (W,X, Y, Z) = P (W,X, Y, Z)
P (W,X, Y, Z,R = 0)

P (W,X, Y, Z,R = 0)
=

P (W,X, Y, Z,R = 0)

P (R = 0|W,X, Y, Z)

Factorization of the denominator based on topological ordering of R variables yields,

P (W,X, Y, Z) =
P (W,X, Y, Z,R = 0)

P (Ry = 0|W,X, Y, Z,Rx = 0, Rw = 0, Rz = 0)P (Rx = 0|W,X, Y, Z,Rw = 0, Rz = 0)

1

P (Rw = 0|W,X, Y, Z,Rz = 0)P (Rz = 0|W,X, Y, Z)

On simplifying each factor of the form: P (Ra = 0|B), by removing from it all B1 ∈ B such
that Ra⊥⊥B1|B −B1, we get:

P (W,X, Y, Z) =
P (W,X, Y, Z,R = 0)

P (Rz = 0)P (Rw = 0|Z)P (Ry = 0|X,W,Rx = 0)P (Rx = 0|Y,W )
(16)

P (WXY Z) is recoverable if all factors in the preceding equation is recoverable. Examining
each factor one by one we get:

• P (W,X, Y, Z,R = 0): Recoverable as P (W ∗, X∗, Y ∗, Z∗, R = 0) using equation 1.

• P (Rz = 0): Directly estimable from the observed-data distribution.

• P (Rw = 0|Z): Recoverable as P (Rw = 0|Z∗, Rz = 0), using Rw⊥⊥Rz|Z and equation
1.

• P (Ry = 0|X,W,Rx = 0): Recoverable as P (Ry = 0|X∗,W ∗, Rx = 0, Rw = 0), using
Ry⊥⊥Rw|X,W,Rx and equation 1.
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• P (Rx = 0|Y,W ): The procedure for recovering P (Rx = 0|Y,W ) is rather involved and
requires converting the probabilistic sub-query to a causal one as detailed below.

P (Rx = 0|Y,W = w) = P (Rx = 0|Y, do(W = w))(Rule-2 of do calculus)

=
P (Rx = 0|Y,Ry = 0, do(w))

P (Rx = 0|Y,Ry = 0, do(w))
P (Rx = 0|Y, do(W = w))

= P (Rx = 0|Y,Ry = 0, do(w))
P (Ry = 0|Y, do(w))

P (Ry = 0|Y, do(w), Rx = 0)
(17)

To prove recoverability of P (Rx = 0|Y,W = w), we have to show that all factors in equation
17 are recoverable.

Recovering P(Ry = 0|Y,do(w),Rx = 0) : Observe that P (Ry = 0|Y, do(w), Rx = 0) =
P (Ry = 0|do(w), Rx = 0) by Rule-1 of do calculus. To recover P (Ry = 0|do(w), Rx = 0) it is
sufficient to show that P (X∗, Y ∗, Rx, Ry, Z|do(w)) is recoverable in G′, the latent structure
corresponding to G in which X and Y are treated as latent variables.

P (X∗, Y ∗, Rx, Ry, Z|do(w)) = P (X∗, Y ∗, Rx, Ry|Z, do(w))P (Z|do(w))

= P (X∗, Y ∗, Rx, Ry|Z,w)P (Z|do(w)) (Rule-2 of do-calculus)

= P (X∗, Y ∗, Rx, Ry|Z,w)P (Z) (Rule-3 of do-calculus)

Using (X∗, Y ∗, Rx, Ry)⊥⊥(Rz, Rw)|(Z,W ), equation 1 and Z⊥⊥Rz we show that the causal
effect is recoverable as:

P (X∗, Y ∗, Rx, Ry, Z|do(w)) = P (X∗, Y ∗, Rx, Ry|Z∗, w∗, Rw = 0, Rz = 0)P (Z∗|Rz = 0) (18)

Recovering P(Rx = 0|Y,do(w),Ry = 0) : Using equation 1, we can rewrite P (Rx =
0|Y, do(w), Ry = 0) as P (Rx = 0|Y ∗, do(w), Ry = 0). Its recoverability follows from equation
18.

Recovering P(Ry = 0|Y,do(w)) :

P (Ry = 0|Y, do(w)) =
P (Ry = 0, Y |do(w))∑

Rx
P (Ry = 0, Y, Rx|do(w)) + P (Ry = 1, Y, Rx|do(w))

=
P (Ry = 0, Y ∗|do(w))∑

Rx
P (Ry = 0, Y ∗, Rx|do(w)) + P (Ry = 1, Y, Rx|do(w))

(using eq 1)

P (Ry = 0, Y ∗|do(w)) and P (Ry = 0, Y ∗, Rx|do(w)) are recoverable from equation 18. We
will now show that P (Ry = 1, Y ∗, Rx|do(w)) is recoverable as well.

P (Ry = 1, Y, Rx|do(w)) =
P (Ry = 0, Y, Rx|do(w))

P (Ry = 0|Rx, Y |do(w))
− P (Ry = 0, Rx, Y |do(w))
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Using equation 1 and Rule-1 of do-calculus we get,

=
P (Ry = 0, Y ∗, Rx|do(w))

P (Ry = 0|Rx, do(w))
− P (Ry = 0, Rx, Y

∗|do(w))

Each factor in the preceding equation is estimable from equation 18. Hence P (Ry = 1, Y, Rx, do(w))
and therefore, P (Ry = 0|Y, do(w)) is recoverable.

Since all factors in equation 17 are recoverable, joint distribution is recoverable.
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