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Abstract

We consider ways of enabling systems to apply previously learned informa-
tion to novel situations so as to minimize the need for retraining. We show
that theoretical limitations exist on the amount of information that can be
transported from previous learning, and that robustness to changing environ-
ments depends on a delicate balance between the relations to be learned and
the causal structure of the underlying model. We demonstrate by examples
how this robustness can be quantified.
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1 Introduction

Assume that we have learned a certain relation R in environment that is governed
by a probability function P . Now the environment changes and P turns into P ∗. We
would still like to estimate R, but in the new environment, P ∗. The basis of much
works on “Transfer Learning,” “Robust Learning,” “Domain Adaptation,” and “Life
Long Learning” (L2L) hinges on the intuition that it would be a great waste to start
learning R(P ∗) from scratch, instead of amortizing what we learned in P .

This intuition assumes, of course, that the two environments share some features
in common, and that the shared features are significant in determining R. Surely,
if the two environments are totally different, then we might as well start learning
things from scratch – there is simply no other choice. Similarly, if the target relation
R is defined exclusively on the novelty part of P ∗, no advantage would be realized by
transferring what was learned in P .

To anchor this intuition in a formal setting1 let us assume that the target relation

1The formal analysis provided by transportability theory (Pearl and Bareinboim, 2011, 2014) asks
what variables must be observed in the new environment, so that R can be estimated consistently (in
the limit of a large sample) despite environmental changes. In contrast, we now seek a finite-sample
assessment of the gains that can be realized by borrowing information from P , regardless of whether
asymptotic consistency is feasible.

1

Forthcoming, Journal of Causal Inference. TECHNICAL REPORT 
R-472 

February 2018



R can be decomposed into a set S of sub-relations, and that these sub-relations fall
into two categories:

SA - sub-relations on which P and P ∗ agree, and

SD - sub-relations on which P and P ∗ disagree.

One obvious saving that can be realized from knowing SA is in learning time. If we
have trained the learner on 100 cases from each distribution, we can estimate SA using
all 200 samples, and SD using the 100 samples of P ∗. The net result being that some
portions of R receive extra samples, which render them more precise, thus making
the estimate of R more precise (i.e., less susceptible to sampling bias). Conversely,
if we aspire to achieve a given precision in R, less samples, or shorter learning time,
would be realized overall.

A simple example can illustrate this logic.

Example 1. Let X and Y be two sets of variables governed by a joined distribution
P = P (x, y). X could represent class labels and Y a set of measurements, or features.
If our task is to infer X on the basis of measurements of Y , then the relation of interest
is R = P (x|y), which can be learned by drawing samples from P .

Let us assume that P changes into P ∗ such that the prior probability remains the
same, P (x) = P ∗(x), but the conditional probability P (y|x) changes. (This would
be the case, for example, when the instruments for measuring Y undergo changes.)
We can either learn P ∗(x|y) from scratch, by drawing samples from P ∗, or we can
borrow samples drawn previously from P , pool them with what we observe in P ∗ and
obtain an improved estimate of R = P ∗(x|y). This can be done by decomposing R
into a product of prior and conditional probabilities, then capitalizing on the equality
P (x) = P ∗(x).

We have:

R = P ∗(x|y)

= P ∗(y|x)P ∗(x)/P ∗(y)

= P ∗(y|x)P (x)/P ∗(y) (1)

The last expression permits us to use the more precise estimated P (x) rather than
rely solely on the small-sample estimate of P ∗(x|y).

This simple example raises a fundamental question: Is it always beneficial to
decompose a relation into components, estimate each component individually, some
with improved precision, then recombine the results?

A competing intuition might claim that the exercise of decomposing, estimating,
and combining introduces new sources of noise, compared to, say, estimating the
relation in one shot.

The question is further complicated by the fact that decompositions are not
unique. Eq. (1), for example can also be written as:

R = P ∗(x|y) = P ∗(y|x)P (x)/
∑
x′

P ∗(y|x′)P (x′) (2)
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This calls for refraining from learning P ∗(y) directly in the new environment, but
estimating P ∗(y|x) and P ∗(y|x′) for all x′ at the new environment, then averaging
the results to get a composite estimate of P ∗(y) as shown in the denominator.

It is not at all clear that the refinement offered by the denominator of (2) would
improve precision over the estimator defined in (1). Assume for example that Y is a
single binary variable, whereas X is a vector of continuous variables. Decomposing
the P (y) as in the denominator of Eq. 1 would entail estimating all factors P (y|x′)
and averaging the estimates. Estimating P (y) from scratch, in contrast, may offer
definite advantages, despite the fact that we have not borrowed any information from
P .

We thus ask the following questions:

1. Given a relation R, which of its decompositions gain by borrowing and which
does not?

2. Which relations R have a beneficial decomposition and which do not?

3. Given that borrowing is beneficial, can we quantify the benifit?

2 The Transfer Benefit Ratio (TBR)

To get a theoretical handle on the problem, let us take the simple problem of esti-
mating the regression coefficient τ of Y on X in the chain model of Fig. 1.

a b
X Z Y

Figure 1: A chain model where b changes and a remains the same.

Here b is the regression coefficient of Y on Z,

b = ∂/dzE[Y |Z = z],

a is the regression coefficient of Z on X

a = ∂/∂xE[Z|X = x],

and, based on the chain structure:

R = τ = ∂/∂xE[Y |X = x] = a ∗ b.

Let us assume that we estimate a and b using Ordinary Least Square (OLS) on a
large number (N1) of cases from P . Now b changes to b∗, while a remains the same.
How are we to estimate τ in P ∗, if we can draw only a small number of samples (N2)
in the new environment?

We have two options:
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1. We ignore the estimates obtained in the training environment and estimate τ
from scratch, obtaining

τ̂ =

∑n
i=1 xiyi∑n
i=1 x

2
i

.

2. We estimate a and b separately, and multiply their estimates, with a receiving
samples from both environments and b from P ∗ only.

Let â, b̂, be respectively the OLS estimators of a, b. To measure the benefit of
borrowing the estimate â from the training environment, we need to compare the
efficiency of âb̂ to that of τ̂ , recalling that â is estimated using N1 training cases from
P , and τ̂ and b̂ are estimated using N2 training cases from P ∗.

The ratio of the asymptotic variances of these two estimators will measure the
merit of transferring knowledge from one environment to another, and will be called
here the Transfer Benefit Ratio (TBR).

This measure translates directly to improvement in the learning speed. When
TBR is high, a small number of cases (N2) in the novel environment would be sufficient
to achieve a given precision, whereas a low TBR would require a high number of cases
to achieve such precision.

Intuitively, the benefit of transfer would be more pronounced when the part shared
by the two environments is noisy and the novel part is noiseless. Under such condi-
tions, assessments of the target quantity τ are highly vulnerable to inaccuracies in
estimating the relation between X and Z, and it is here that the training conducted
in P can be most beneficial.

Exact analysis (see Appendix I) reveals that, for N2 � N1, the TBR is given by
the following formula

TBR
N2/N1→0

=
1− ρ2b ρ2a
ρ2a(1− ρ2b)

, (3)

where ρ2a and ρ2b are the squared correlation coefficients

ρ2a =
cov2(XZ)

var(X)var(Z)
ρ2b =

cov2(Y Z)

var(Y )var(Z)
. (4)

Equation (3) quantifies the intuition that transfer learning is more beneficial when
the novelty between the two environments is almost deterministic (ρb approaches 1) so
that the few observations conducted in the new environment would suffice to complete
the adaptation.

Appendix I generalizes this result to any N1/N2 ratio and presents 3-dimensional
charts of how the TBR varies with both the N1/N2 ratio and the statistics of X, Y,
and Z. Remarkably, it shows that TBR is greater than unity even for N1 = N2.
This means that there is benefit to the two-step estimation of τ (using the product
âb̂ over the single step estimator τ̂ , even when the environment does not change
and we are faced with the problem of estimating τ given the chain model of Fig. 1.
This phenomenon reflects a more general pattern in estimation: proper utilization of
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modeling assumptions can improve estimation efficiency, provided those assumptions
are valid (Cox, 1960; Pearl, 2012).

Clearly, this exercise is oversimplified in that it assumes just two linear relation-
ships X → Z and Z → Y one invariant and one novel. Yet, such rudimentary analysis
must be conducted to understand the speed-up provided by prior learning, the factors
that determine this speed-up, and how to optimize those factors.

In more realistic situations, it is not at all clear that a speedup would be achieved
regardless of the problem structure. In our example, we capitalized on the chain
structure, which rendered X and Y conditional independent given Z. Under such
conditions, the product estimator is superior to the one-shot estimator even when no
environmental change takes place (i.e., N1 = N2). On the other hand, when N1 �
N2, the benefit of transfer learning is realized even in the absence of independence
constraints.

We have so far not considered the possibility of minimizing the number of variables
needed to be measured in the new environment. Cases exist where, despite differences
between P and P ∗, R can be estimated entirely in the source environment, without
taking any measurements in P ∗. In other cases, some measurements in the new
environments are needed, but the number of variables involved can be minimized by
proper design (Pearl and Bareinboim, 2011).

3 Conclusions

We have demonstrated by simple examples that it is possible to quantify the benefit
of borrowing information from previous learning, and that this benefit depends on
the structure of the data generating model. This leaves open the general question
of deciding, for any given relation R, how can it best benefit from previous learning,
and how robust can it be to changes in the target environment? We conjecture that
the understanding of such theoretical questions is necessary for designing algorithms
that take maximum advantage of previous learning and spend minimum resources on
re-learning that which could be borrowed.
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Appendix I – Composition and Transfer in a Two-

Stage Process

In experiments involving a two-stage process as in Fig. 1, Cox (1960) has shown that
the estimated regression coefficient between treatment and response has a reduced
variance if computed as a product of two estimates, one for each stage of the pro-
cess. Below we summarize Cox’s analysis and adapt it to the problem of information
transfer across populations.

a b
X Z Y

ε
1

ε
2

Figure 2: A two-stage process with intermediate variable Z.

The linear model depicted in Fig. 1 can be representd by the following structural
equations:

z = ax+ ε1, y = bz + ε2 with cov(x, ε1) = cov(x, ε2) = cov(ε1, ε2) = 0. (5)

The process is depicted in Fig. 2. Our target of analysis is the regression coefficient
of Y on X, i.e., the coefficient of x in the equation

y = τx+ ε3 with cov(x, ε3) = 0. (6)

As before, let â, b̂, and τ̂ be respectively the OLS estimators of a, b, τ . Cox showed
that the asymptotic variance of τ̂ is greater than that of the product âb̂, or

var(τ̂)/var(âb̂) ≥ 1,

with equality holding only in pathological cases of perfect determinism. Specifically,
he computed the n-sample variances to be:

var(τ̂) = [var(ε2) + b2var(ε1)]/nvar(X) (7)

var(b̂) = var(ε2)/n[a2var(X) + var(ε1)] (8)

var(â) = var(ε1)/nvar(X) (9)

var(âb̂) = a2var(b̂) + b2var(â)

=
a2var(X)(var(ε2) + b2var(ε1)) + b2var2(ε1)

nvar(X)[a2var(X) + var(ε2)]
. (10)

Thus,

var(τ̂)

var(âb̂)
=

a2var(X) + var(ε1)

a2var(X) + var(ε1)b2var(ε1)/[var(ε2) + b2var(ε1]

=
a2var(X) + var(ε1)

a2var(X) + var(ε1)F
(11)
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which is greater than 1 because F = b2var(ε1)/[var(ε2) + b2var(ε1)] ≥ 1.
The relation to transfer learning surfaces when a and b are estimated from two

diverse populations, Π and Π∗. Let us assume that a is the same in the two popula-
tions, and is estimated by â using N1 samples, pooled from both. b is presumed to be
different, and is estimated by b̂ using N2 samples form Π∗ alone. We need to compare
the efficiency of estimating τ using the product (âb̂), to that of estimating τ directly,
using N2 samples from Π∗. The TBR, or the ratio of the asymptotic variances of
these two estimators, can now be calculated as follows:

Keeping track of the number of samples entering each estimator, we have

var(τ̂ ;N2) = var(ε2) + b2var(ε2)/N2var(X) (12)

var(b̂;N2) = var(ε2)/N2[a
2var(X) + var(ε1)] (13)

var(â;N1) = var(ε1)/N1var(X) (14)

var(âb̂;N1, N2) = a2var(b̂) + b2var(â)

=
N1a

2var(X)var(ε2) + b2var(ε1)[a
2N2var(x) +N2var

2(ε1)

N1N2var(X)[a2var(X) + var(ε2)]
. (15)

Taking the ratio, we have

TBR =
var(τ̂ ;N2)

var(âb̂;N1, N2)
(16)

=
N1[a

2var(X) + var(ε1)][var(ε2 + b2var(ε1)]

a2var(X)[N1var(ε2) +N2b2var(ε1)] +N2b2var(ε1)
(17)

=
a2var(X) + var(ε1)

a2var(X)F1 + var(ε1)F2

, (18)

where

F1 =
var(ε2) + b2var(ε1)N2/N1

var(ε2) + b2var(ε1)
(19)

and

F2 = N2b
2var(ε1)/N1[var(ε2) + b2var(ε1)]. (20)

Since both F1 and F2 are smaller than 1 for N2 < N1, we conclude that the TBR
is greater than one for N2 < N1, which means that it is beneficial to decompose the
estimation task into two stages and use a higher number of samples, N1, to estimate
the shared component: cov(X,Z).

Expression (17) can be simplified using correlation coefficients, as defined in
Eq. (4) and gives:

TBR =
1− ρ2bρ2a

ρ2a(1− ρ2b) + ρ2b(1− ρ2a)N1/N2

(21)
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Figure 3: Illustrating the behavior of the Transfer Benefit Ratio (Eq. (21)) for different
values of N2/N1 with X and Y axes representing ρa and ρb respectively. (a) N2/N1 = 1
(no transfer) TBR represents the benefit of decomposition alone. (c) N2/N1 = 0.5
represents data sharing between two equi-sampled studies. (d) N2/N1 = 0.1 showing
a more pronounced benefit near the ρb = 1 region, where the Z → Y process becomes
noiseless. (f) the limit case when N2/N1 → 0, sharing marked benefit throughout the
ρb = 1 and ρa = 0 regions, and no benefit near the ρb = 0, ρa = 1 corner.

The behavior of Eq. (21) for different values of N2/N1 is illustrated in Fig. 3(a, b,
cd).

For N2 = N1 we obtain Cox’s ratio (11) which quantifies the benefit of decompo-
sition alone, without transfer. The ratio greatly exceeds one when both ρ2a and ρ2b are
small, and approaches one when either or both of ρ2a and ρ2b are near one. This means
that the benefit of decomposition is substantial if and only if both processes are noisy,
whereas if either one of them comes close to being deterministic, decomposition has
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no benefit.
This is reasonable; there is no benefit to decomposition unless Z brings new in-

formation which is not already in X or Y .
For N2 < N1, however, the TBR ratio represents the benefit of both decomposition

and transfer. For the ratio to greatly exceed one we now need that both ρ2a and
ρ2b be small. However, the TBR becomes unity (useless transfer) only when ρa is
unity; ρb = 1 does not render it useless. It means that transfer is useless only
when the process in agreement (X → Z) is deterministic. Having disagreement on
a deterministic mechanism does not make the transfer useless, as long as the process
in agreement is corrupted by noise and can benefit from the extra samples from Π.

Indeed, taking the extreme case of deterministic Z → Y process (ρb = 1), there is
a definite advantage to borrowing N1 samples from the source population to estimate
a and multiply it by b, rather than estimating c directly with the N2 samples available
at the target population. Two such samples can determine b precisely, and can hardly
aid in the estimation of a.

The limit of TBR as N1/N2 increases indefinitely and represents transfer between
a highly explored environment (large N1) and one highly novel (low N2). The limit
of (21) reads:

TBR =
N2/N1→0

1− ρ2b ρ2a
ρ2a(1− ρ2b)

,

which establishes Eq. (3). It reveals that the Transfer Benefit Ratio will be most
significant when the populations share noisy components (e.g., low correlation be-
tween X and Z) and differ in noiseless components (high correlation between Y and
Z). Under such conditions, accurate assessment of the target quantity τ is highly
vulnerable to inaccuracies in estimating a, and it is here that the large sample taken
from Π can be most beneficial.

Appendix II – Extension to Saturated Models

ε
1

ε
2

a b

X Y

Z

c

ε

Figure 4: Saturated model in which Y depends on both X and Z.

In Appendix I, the benefit of transfer learning was demonstrated using an “over-
identified” model (Fig. 2) which embodied the conditional independence X⊥⊥Y |Z,
and for which the product estimator âb̂ was consistent. The question we analyze in
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this Appendix is whether benefit can be demonstrated in “saturated” models as well
(also called “just identified”), such as the one depicted in Fig. 4.

This model represents the following regression equations

Y = bz + cx+ ε1

Z = ax+ ε2

and the target quantity is again the total regression coefficient τ in the equation

y = τx+ ε with cov(x, ε) = 0,

which is given by τ = cov(X, Y )/var(X) = c+ ab.
Again, τ can be estimated in two ways:

1. A one-shot way: compute the OLS regression of Y on X, call this estimator τ̂ .

2. A two-shot way: compute the sum: θ̂ = ĉ + âb̂ where â, b̂, and ĉ are the OLS
estimators of a, b, c respectively.

We now ask whether the variance of the composite estimator θ̂ will be smaller than
the one-shot estimator τ̂ , as we have seen in the over-identified model of Fig. 1. We
further ask whether data sharing would be beneficial in case a is the same in both
population while b and c are different.

Using an analysis similar to that of Appendix I, one can show that the answer
to the first question is negative, while that of the second question is positive. In
other words, we lose the intrinsic advantage of decomposition, but we can still draw
advantage from data sharing if a is the same in the two populations. Formally, while
the efficiency of the composite estimator θ̂ = âb̂+ ĉ is identical to that of the one-shot
estimator τ̂ ,2 the variance of the former can be reduced if a is estimated using a larger
sample than would be available to the one-shot estimator. In particular, assuming
that â is estimated using N1 samples and b̂, ĉ, and τ̂ using N2 samples, the asymptotic
variances of θ̂ and τ̂ , can be obtained by the delta method, and read:

var(ĉ+ âb̂) = var(ε2)/N2var(X) + b2var(ε1)/N1var(X) (22)

var(τ̂) = b2var(ε1) + var(ε2)]/N2var(X) (23)

Consequently, the TBR is given by

TBR = var(τ̂)/var(ĉ+ âb̂)

= [1− (1−N2/N1)b
2var(ε1)/(b

2var(ε1) + var(ε2))]
−1. (24)

We see that for a single population and N1 = N2 decomposition in itself carries no
benefit, (TBR = 1); the one-shot estimator is as good as the two-shot estimator. This

2The equality τ̂ = âb̂+ ĉ is a mathematical identity, which holds for all sample sizes, not merely
for asymptotic variance. I am indebted to Prof. Jinyong Hahn for demonstrating this fact. (See
Hahn and Pearl, 2011.)

10



stands in contrast to the over-identified model of Fig. 1, for which the TBR was greater
than unity (Eq. (21)) except in pathological cases. Moreover, the loss of benefit is not
due to the disappearance of over-identification conditions from the model, but due to
the composite estimator’s failure to detect and utilize such conditions when they are
valid. This can be seen from the fact that Eq. (24) (as well as the equality τ̂ = ĉ+ âb̂)
remains unaltered even when c = 0. In other words, it is not the actual value of c
that counts but the structure of the estimator we postulate. If we are ignorant of the
fact that c = 0 in the actual model and go through the trouble of estimating τ by
the sum ĉ + âb̂, instead of âb̂, the variance will be greater than what we would have
gotten had we detected the model structure correctly and used the estimator τ̂ = âb̂
to reflect our knowledge.

For N2/N1 < 1 however, the picture changes dramatically; Eq. (24) demonstrates
a definite benefit to composite estimation (TBR > 1) which increases with var(ε2).
The intuition is similar to that given in Appendix I. When the Z → Y process
was almost deterministic. we obtained TBR > 1. Here too, if the Y equation is
deterministic, we can estimate it precisely with just a few samples (N2) from P ∗ and
use additional (N1 − N2) samples for estimating the noisy X → Z process which is
common to both populations. The one-shot estimator will suffer from this noise if
allowed only N2 sample from P ∗.
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