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Abstract

This title was chosen partly to echo Stigler’s “The Seven Pillars of Statistical
Wisdom” and partly to counter Angrist and Pischke’s advocacy of model-blind
economics. To Stigler it says: Statistics without Causality is at least one pillar
short on wisdom. To model-blind economists it says: You can’t do science
without a microscope.

As we enter an era of machine learning and “Big Data,” it is important to
realize that we are also entering an era of a Causal Revolution, which now casts a
sobering light on the theoretical limitations of data-centric methodologies, and,
hence, on the future direction of data science.

1 Introduction

How effective is a given treatment in preventing a disease? Was it the new tax break
that caused our sales to go up? What is the annual health-care costs attributed to
Obesity? Can hiring records prove an employer guilty of sex discrimination? I am
about to quit my job, but should I?

The peculiar nature of these questions is that they are constantly being asked, both
by researchers, policy makers and ordinary folks, yet, until very recently they could
not have been articulated, let alone answered, using the available scientific methods.
These questions all concern cause and effect relationships which, unlike geometry,
mechanics, optics or probabilities, have been denied the benefits of mathematical
analysis until very recently.

To appreciate the extent of this denial, readers would be stunned to know that
only a few decades ago scientists were unable to write down a mathematical equation
for the obvious fact that “mud does not cause rain.” Even today, only the top echelon
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of the scientific community can write such an equation and formally distinguish “mud
causes rain” from “ rain causes mud.” And you would probably be even more surprised
to discover that your favorite college professor is not among them. Try it!

Things have changed dramatically in the past three decades, A powerful and trans-
parent mathematical language has been developed for managing causes and effects,
accompanied by a set of tools that turn causal analysis into a mathematical game, not
unlike solving algebraic equations, or finding proofs in high-school geometry. These
tools permit us to express causal questions formally, codify our existing knowledge
in both diagrammatic and algebraeic forms, and then leverage our data to estimate
the answers. Moreover, the theory warns us when the state of existing knowledge or
the available data are insufficient to answer our questions; and suggests additional
sources of knowledge or data to make the questions answerable.

I call this transformation “The Causal Revolution,” and the mathematical frame-
work that led to it I call “Structural Causal Models (SCM).”

The SCM invokes three mathematical objects:

1. Graphical models,

2. Structural equations, and

3. Counterfactual and interventional logic.

Graphical models serve as a language for representing what we know about the world,
counterfactuals articulate what we want to know, while structural equations serve to
tie the two together in a solid semantics.

In this talk, I will provide a bird’s eye view of the eight most significant accom-
plishments of the SCM framework and discuss the unique contribution that each pillar
brings to the research community.

2 The Eight Pillars

2.1 Graphical models for prediction and diagnosis

I will describe how Bayesian Networks emerged in the late 1980s and how graphical
models became the standard method of handling uncertainty in expert systems and
machine learning. In particular, I will discuss how graphs and probabilities, two total
strangers, came together to create a reasoning machine for revising beliefs in light of
new evidence.

2.2 The control of confounding

I will describe how confounding, the major obstacle to drawing causal inference from
data, had been demystified and totally “deconfounded” using a graphical criterion
called “back-door.” In particular, how the task of selecting an appropriate set of
covariates for control of confounding has been reduced to a simple “roadblocks” puzzle
manageable by rank and file investigators.
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2.3 Do-calculus – An all-seeing oracle for predicting the ef-
fects of policies and interventions

I will describe the workings of a symbolic engine that determines, for any given model,
whether a randomized experiment can be replaced by an observational study and, if
so, how. Using this engine, called do-calculus, the effect of policy interventions can
be predicted by a simple mathematical exercise, resembling theorem proving in high-
school geometry. This oracle can be applied to time-varying policies and time varying
observations, including problems for which control of confounding is infeasible.

2.4 The algorithmization of counterfactuals

Counterfactual analysis deals with behavior of specific individuals, identified by a
distinct set of characteristics. For example, given that Joe’s salary is Y = y, and that
he attended X = x years of college, what would Joe’s salary be had he had one more
year of education.

One of the crown achievements of SCM was to formulate counterfactual reasoning
within the same graphical representation that researchers use to encode scientific
knowledge. Every structural equation model determines the truth value of every
counterfactual sentence. Therefore, we can determine analytically if the probability
that such a sentence is true is estimable from experimental or observational studies,
or combination thereof.

Of special interest to researchers are counterfactual questions concerning “causes
of effects,” as opposed to “effects of causes.” For example, how likely it is that Joe’s
swimming exercise was a necessary (or sufficient) cause of Joe’s death.

I will explain why the graphical nature of the models ensures the transparency
of modeling assumptions, how ordinary investigators can now judge the plausibility
of those assumptions, identify their testable implications, and submit them to the
scrutiny of data. I will also demonstrate how one can avoid the opacity of “ignora-
bility” assumptions and replace them with meaningful substantive knowledge.

2.5 Mediation analysis and the assessment of direct and in-
direct effects

Mediation analysis concerns the mechanisms that transmit changes from a cause to
its effects. I will explain why the detection of intermediate mechanism is essential in
many research problems and why counterfactual logic must be invoked to facilitate
this detection. In particular, I will demonstrate how the graphical representation of
counterfactuals enables us to define direct and indirect effects and to decide when
these effects are estimable from data, or experiments.

2.6 External validity and sample selection bias

The validity of every experimental study is challenged by disparities between the
experimental and implementational setups. Since participation in randomized trials
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cannot be mandated, we cannot guarantee that the study population would be the
same as the population intended for treatment. Fortunately, the do-calculus discussed
above now offers a complete methodology for overcoming this source of bias. This
non-parametric methodology goes way beyond the standard methods of meta-analysis
and recalibration. I will describe briefly the tools available for establishing external
validity and for controlling bias due to non-representative samples. (Elias Bareinboim
will elaborate on these issues in his lecture).

2.7 Missing data

Problems of missing data plague every branch of experimental science. Respondents
do not answer every item on a questionnaire, sensors fade as environmental conditions
change, and patients often drop from a clinical study for unknown reasons. The rich
literature on this problem is almost totally wedded to the statistical, model-blind
paradigm of Rubin and Little. Recently, the problem has been addressed from a to-
tally new perspective, using causal diagrams to model the process of data missingness.
With the help of these models we can now understand (and formalize) the conditions
under which causal and probabilistic relationships can be recovered from incomplete
data and, whenever the conditions are satisfied, we can construct an unbiased esti-
mate of the desired relationship. (Karthika Mohan will give a full lecture on these
exciting results.)

2.8 Causal discovery

The ability to detect and enumerate the testable implications of a given graphical
model, opens the possibility of inferring, with very mild assumptions, the set of models
that are compatible with the data. I will summarize the basic premises behind this
method of discovery, its promises and its weaknesses.

Summary

The SCM framework stole causal inference from Mt. Olympus and brought it down
for ordinary researchers to use.
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