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ABSTRACT OF THE DISSERTATION
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Unobserved confounders (UCs) are factors in a system that affect a treatment and its out-

come, but whose states are unknown. When left uncontrolled, UCs present a major obstacle

to inferring causal relations from statistical data, which can impede policy making and ma-

chine learning. Control of UCs has traditionally been accomplished by randomizing treat-

ments, thus severing any causal influence of the UCs to the treatment assignment, and aver-

aging their effects on the outcome in each randomized group. Although such interventional

data can be used to appropriately inform population-level decisions, unit-level decisions are

best informed by counterfactual quantities that provide information about the UCs relating

to each unit. That said, arbitrary counterfactual computation can be performed in only

certain scenarios, or in possession of a fully-specified causal model that requires knowledge

of the distribution over UC states.

This work describes how additional information from a deciding agent can be utilized to

empirically estimate certain counterfactuals, even in the presence of UCs and the absence of

a fully-specified model of reality. The resulting technique yields strictly more information

than standard randomization, and is specialized to personal decision-making. We first for-

malize this new strategy, called Intent-specific Decision-making (ISDM), in the context of the

tools provided by causal inference. We then demonstrate its utility in online, reinforcement

learning tasks with UCs, and support the efficacy of our technique in both human-subject

ii



and simulation experiments. We demonstrate how ISDM accommodates a fusion of ob-

servational, experimental, and counterfactual data, which can be used to accelerate policy

learning. Finally, we extend ISDM to the offline experimental design domain, detailing its

application toward improving the established randomized clinical trial.
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your love and devotion throughout our graduate careers has meant an immeasurable amount

to me, and I am happy that we have had the opportunity to attend UCLA together. I cannot

wait to build our lives together, especially with a teammate as brilliant as you.

xix



VITA

2012 B.S., Computer Science & Psychology (Maj.); Pure Mathematics (Min.).

Loyola Marymount University.

2012–2017 Teaching Assistant, Department of Computer Science.

University of California, Los Angeles.

2015 M.S., Computer Science.

University of California, Los Angeles.

2015–2017 Department of Computer Science, Head TA.

University of California, Los Angeles.

2016–2017 Research Assistant, Cognitive Systems Lab.

University of California, Los Angeles.

2017–Present Assistant Professor, Computer Science.

Loyola Marymount University.

PUBLICATIONS

*E., Bareinboim, *A., Forney, and J. Pearl (2015). Bandits with Unobserved Confounders: A

Causal Approach. UCLA Cognitive Systems Laboratory, Technical Report (R-460). In Pro-

ceedings of the 28th Annual Conference on Neural Information Processing Systems (NIPS).

A., Forney, J., Pearl, and E., Bareinboim (2017). “Counterfactual Data-Fusion for Online

Reinforcement Learners.” UCLA Cognitive Systems Laboratory, Technical Report (R-471).

* These authors contributed equally.

xx



In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference

on Machine Learning (ICML), volume 70 of Proceedings of Machine Learning Research.

A., Forney, Willey., C., Bareinboim, E., and J., Pearl (in-prep.). “Regret as a Counterfactual

Learning Mechanism in Human Decision-Making.”

A., Forney, Bareinboim, E., and J., Pearl (in-prep.). “Counterfactual Randomization for

Clinical Trials.”

xxi



CHAPTER 1

Introduction

“My colleagues, they study artificial intelligence; me, I study natural stupidity.”

—Amos Tversky

For better or for worse, humans remain the sole decision-makers in a variety of daily,

personalized, and important situations: doctors make prescriptions of drugs and treatments,

judges give rulings of bail and incarceration, and (perhaps with less gravity) shoppers decide

whether to purchase an expensive item or not. If humans were perfectly rational decision-

makers who could detail every contributing influence of their choices, then psychologists,

data-scientists, and a host of other professions would have little trouble predicting human

behavior; again, for better or for worse, this is not the case. The fact is that humans rely on

a number of simplifying heuristics to help them make expedient decisions, but as the word

implies, heuristics can be at times misleading and at others exploited. Cognitive scientists

have studied such cognitive biases at length, namely, factors that influence human decision-

makers but are unknown to the individual to be influential. Apropos, Kahneman and Tversky

describe a two-system model of human decision-making: (System 1) the primitive, impulsive,

and fast system that operates with almost no conscious effort, and (System 2) the effortful,

rational, and slower system that most people identify with [Kah11].

Despite how we may wish that System 2 is always in control of our decisions, the in-

fluences of System 1 have been repeatedly documented. Even cognitive biases as seemingly

innocuous as order effects1 have been implicated in influencing important decisions like

1The recency and primacy effects are well documented cognitive biases categorized as “order effects” in
which items in a serial presentation are remembered best, and are perceived most important, when they
appear first (primacy) or last (recency) [Ebb13].
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hiring practices, in which the order of presented candidates can matter more than their

qualifications [HG97, FY75, Far73]. Additionally, recent investigations into recidivism have

concluded that judges’ sentencing decisions are not always based on objective metrics of

likelihood that a criminal will re-offend; rather, judges may possess personal heuristics for

sentencing that relate to the type of crime committed (e.g., violent vs. non-violent), how

the defendant conducted themselves in the courtroom, or even desires to combat racial in-

equities [KLL17]. From the medical domain, physician diagnostics, triage, and treatment

have been shown to be influenced by implicit biases, such as perceptions of patient race and

socio-economic status, despite self-reported claims that these factors do not influence their

judgments [Els99, GCP07]. These biases and heuristics, conscious or otherwise, are gener-

ally not recorded, and so their influences on outcomes of interest could be either helpful or

detrimental and vary from actor to actor.

Consequently, the purpose of this dissertation is to provide a general-purpose approach

for controlling for the effects of personal cognitive biases in autonomous agent decision-

making (human or computerized) that is more precise than the traditional approach of

randomization. In general, we wish to not only control for factors that are influential to both

an individual’s actions (e.g., judge’s sentencing) and their outcomes (e.g., recidivism), but

also exploit them to benefit personalized decision-making. Towards this goal, we will draw

on tools from causal analysis, cognitive psychology, and machine learning. The remainder

of this introduction will provide a roadmap for the more technical aspects of this endeavor,

followed by an outline of the problems we address, and our approaches for addressing them.

We begin by formulating the problem of cognitive biases as confounding factors, and discuss

the modeling implications moving forward.

Cognitive Biases as Confounding

Scientific endeavor has fought a historically rich battle against the influence of confounders,

or factors that mutually influence a treatment and its measured outcome. Because, at its

core, the scientific method seeks to uncover relationships of cause and effect, confounders
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can contaminate causal claims when left uncontrolled. For instance, in one of a number

of legal trials debating the causal effect of smoking on lung cancer, the attorney for Philip

Morris proposed that genetic factors may be to blame for the interaction between smoking

and cancer. The attorney went on to claim that the lack of experimental evidence, in concert

with other explanations like such a genetic predilection to both smoking and cancer, could

create extenuating circumstances that leave cigarettes themselves to be only indirectly at

fault [MDD06]. The implication of this argument, and danger of confounding in the general

sense, is that in the presence of uncontrolled confounding (in this case, a genetic factor),

there exist multiple explanations that can be used to interpret the same data; we are thus

left with the question of what is to blame for the lung cancer in a smoker: their smoking,

or the genetic disposition that caused them to both smoke and attain the cancer? To settle

debates such as this, and in general, to determine true relationships of cause and effect, the

identification and control of confounding factors has been a significant focus of the empirical

sciences [Pea98].

In the present work, we focus on the challenges that arise due to unobserved confounders

(UCs), namely, unmeasured variables that influence the treatment (or action) as well as the

response (or reward) to that treatment. In the medical context, for example, variables such

as age and sex qualify as observed confounders – they affect doctors’ decisions to prescribe

certain drugs as well as each patients’ response to that treatment, but are also known to be

causal influences and are recorded. That said, such factors are particularly subtle when left

uncontrolled, especially when they are invisible to decision-makers and present the potential

to introduce confounding bias [Pea00, Ch. 6]. To reference the findings that order effects can

influence hiring, if recency and primacy biases are left uncontrolled, then a company may

hire a suboptimally qualified candidate simply because they happened to interview first or

last.

Controlling for confounding bias is not a new problem, and was presented to Fisher in the

context of agricultural experiments. Farmers needed to estimate the effect of soil fumigants

on oat crop yields, but UCs such as the populations of eel worms and birds systematically

affected the agricultural lots based on their locations, which were used by the farmers to base
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their decisions. This specific bias led Fisher to the idea of assigning treatment (fumigants)

to the agricultural lots at random, which controlled for the systematic bias introduced by

the farmers. This development is a central component in the theory of experimental design

(see [Fis51, Wai89, Pea00] for more detailed discussions).

Furthermore, advances in causal analysis have given detailed prescriptions for identifying

causal effects in both observational and experimental settings containing both observed and

unobserved confounders (a formal treatment of confounding will be detailed in Chapter 2)

[Pea00, Ch. 3]. However, the vast majority of these advances (not least, the treatment

of confounding) have taken place in the domain of offline data-analysis. In these settings,

it is assumed that the data of interest has been collected from many participants prior to

analysis; data sources scrutinized by these traditional causal analysis approaches include

surveys (an example of observationally collected data) and randomized clinical trials (an

example of experimentally collected data). The distinction between, and concrete examples

of, observational and experimental data will be crystallized in Chapters 2 & 3.

From these offline datasets, causal analysis provides tools for estimating the effects of

both population-level and individual-level interventions. Population-level decisions generally

consult causal interventional calculus; for these policy decisions, practitioners are interested

in determining the best treatment for the general population. For example, enactment

of an after school program may improve the average grade point average of high school

students, even though certain students in that population would better benefit from another

treatment like a personal tutor. To address the need to make optimized personal decisions,

in which “what is good for the goose may not be good for the gander,” individuals can

consult the calculus of counterfactuals. The benefit of reasoning counterfactually is that

individuals can make the best decision under their particular circumstance, rather than

consulting population-level data (which will only reveal the best decision on average). We

will explore the semantics of structural counterfactuals in Chapter 2 and demonstrate their

superiority for personalized decision-making throughout the rest of the work.

Structural counterfactuals are useful tools for reasoners who are in possession fully spec-
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ified causal models2 of their environment, but in many applications of interest, this require-

ment is neither available nor feasible. Importantly, in the absence of a fully specified model,

confounding factors can prevent estimation of counterfactual quantities that are important

for personalized decision-making. Although previous work has identified several scenarios

in which these counterfactual quantities can be estimated with minimal modeling assump-

tions, our framework provides a bias-free method for empirically estimating them in any

decision-making setting, confounded or otherwise.

Before detailing the background of technical concepts to be used throughout this work,

we will first describe the specific problems that it addresses and outline our approach to

solving them.

Questions Addressed in this Work

1. Can we estimate arbitrary counterfactual decision-making quantities in the absence of

a fully-specified model and in the presence of UCs?

2. In the presence of UCs, in which observational, experimental, and counterfactual data

are considered heterogeneous and incompatible, can an autonomous agent employ these

disparate datasets in pursuit of learning the efficacy of personalized decisions?

3. Does a strategy exist that can control for the influences of cognitive biases in human

decision-making? If so, can humans wield it to successfully improve their performance

in a decision-making task with cognitive biases?

4. Can autonomous agents who are differently affected by unobserved confounders (i.e.,

suffer from different cognitive biases in the same environment) coordinate to form a

more detailed model of their situation, and can this approach be applied in the offline

domain as well?

2Modelling assumptions are discussed in Chapter 2, but a fully-specified model implies that relationships
between variables in the system, observed or otherwise, are known.
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Summary of Chapters & Contributions

As we shall demonstrate, the answer to all of the above questions is “Yes.” The following

chapters will illustrate their answers in detail.

Chapter 2: Background, in which we describe the necessary technical tools from

causal analysis that will be employed in the remainder of the work. Specifically, this chapter

will introduce:

• Structural Causal Models (SCMs), their specification, and semantics.

• A formal definition of confounding and how it is modeled in a SCM.

• An overview of the calculus of interventions and structural counterfactuals, with ex-

amples.

Chapter 3: Intent-specific Decision-making, in which we introduce our approach

for empirically estimating counterfactual quantities in scenarios where a reasoning agent does

not possess the fully-specified model of reality, is subject to UCs, and must learn an optimal

choice policy. The specific contributions of this chapter are:

• The notion of an agent’s intent, which, briefly, is their natural action before execution.

Intent serves as a proxy for the state of any unobserved confounders, which allows an

agent to make unbiased, counterfactual, and “intent-specific” estimates of an action’s

outcome. Termed intent-specific decision-making (ISDM), this approach is the first to

estimate certain counterfactual quantities in the absence of a fully-specified model.

• The specification of an SCM used to model intents and learning in a decision-making

task, called Structural Decision Models (SDMs). Using SDMs, we prove that ISDM

represents an empirical means of estimating certain counterfactuals, which was previ-

ously not possible for the classes of models we discuss.

• Application of ISDM to new, more general, versions of classical reinforcement learning

problems: the Multi-Armed Bandit Problem with Unobserved Confounders (MABUC).
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We demonstrate that traditional approaches fail to converge to the optimal policy

in MABUC scenarios, define a new ISDM-based optimization metric called Regret

Decision Theory (RDT), and prove its superiority over the previous state-of-the-art

MAB algorithms.

• A demonstration of RDT used to retrofit a traditional state-of-the-art bandit-learning

algorithm, Thompson Sampling. Simulation results support the efficacy of ISDM in

MABUC problems.

Chapter 4: Human-subjects Intent-specific Decision-making, in which we deter-

mine if humans can employ ISDM to control for cognitive bias in a MABUC reinforcement

learning task. The results of this study assert that:

• Humans can indeed isolate the signal of their intent, and employ it to improve learning

and performance on a confounded decision-making task.

• Intent is reactive to environmental influences, not experiential history; this suggests

that intent does not respond differently to the same stimuli from learned experience.

• Although humans only rarely discover ISDM when left to their own devices, suggesting

that it is not a natural or common reasoning tool, those that were instructed to use it

saw significant improvements in performance compared to their peers who were not.

Chapter 5: Counterfactually Enabled Data-Fusion, in which we illustrate that

observational and experimental datasets, although not the counterfactual estimation objec-

tives of RDT, can accelerate learning of optimal policies in MABUC scenarios. Specifically,

we demonstrate that:

• Observational and experimental data is heterogeneous in scenarios with unobserved

confounders, but can be used to accelerate empirical learning of counterfactual quan-

tities of interest.
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• This data-fusion, which was previously thought only possible for binary treatments

and certain classes of restricted models, can be generalized to scenarios with arbitrary

action-choice dimension (i.e., non-binary action choices) when using ISDM.

• Simulation results in MABUC settings support the efficacy of the data-fusion approach,

and demonstrate that agents with access to observational and experimental data will

converge to an optimal policy more quickly than those without.

Chapter 6: Heterogeneous Intent-specific Decision-making, in which we gener-

alize our assumption that all agents in the reasoning environment possess the same intent

function. Specifically, we illustrate that:

• In certain confounded decision-making scenarios, a combination of different actors’

intents can be more informative than any one individually.

• We can create a new type of randomized clinical trial that is more informative about

confounders by grouping individual actors into intent equivalence classes. We then

discuss this approach in applications to drug trials and general experimental design.

• Simulation results in MABUC settings involving agents with heterogeneous intents

support this new approach.

Chapter 7: Discussion, in which we detail the implications of ISDM and its prospects

for future directions of study in the disciplines of artificial intelligence, cognitive science, and

experimental design.

Roadmap. In Figure 1.1, we give a brief pictorial roadmap of the dissertation by chapter,

category of relevant application, and means of empirically supporting the theories within. We

lay the groundwork for ISDM in Chapter 3 with motivating examples, theoretical underpin-

nings, the foundational algorithm for online, empirical, counterfactual learning, and support

its efficacy with simulation results. Chapter 4 corroborates the validity of this approach in

human subject samples, demonstrating its plausibility to work in real-world scenarios. Chap-

ter 5 demonstrates that data collected in offline settings can be used to improve the online
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Figure 1.1: Roadmap of dissertation topics by chapter, category of relevance, and empirical

support.

counterfactual learning applied in Chapters 3 and 4, supporting its findings with simulations.

Finally, Chapter 6 describes a means of applying ISDM to the offline experimental design

domain and demonstrates how agents with different intent functions can actually benefit

policy formation in a confounded decision-making scenario measured from both an online

and offline perspective, once again supporting its theories with simulations. In briefest sum-

mary, this dissertation connects the primary avenues of population-level scientific inquiry

(online, active experimentation / learning and offline randomized clinical trials) with unit-

level counterfactual reasoning under a traditionally difficult premise: that a decision and

that decision’s outcome are mutually affected by unknown factors.
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CHAPTER 2

Background

In this chapter, we will review the technical tools from causal analysis that will be used

throughout the remainder of the work. In particular, we will formalize: Structural Causal

Models, d-separation, confounding, control of confounding, structural counterfactuals, and

a particular counterfactual quantity known as the Effect of the Treatment on the Treated.

2.1 Structural Causal Models (SCM)

We will employ the logic of Structural Causal Models to model our agents’ decision-making,

which will allow us to articulate the notions of observational, experimental, and counterfac-

tual distributions as well as formalize the problem of confounding due to the influence of

unobserved confounders (UCs).

Definition 2.1.1. (Structural Causal Model) [Pea00, pp. 204] A Structural Causal

Model is a 4-tuple, M = 〈U, V, F, P (u)〉 where:

1. U is a set of background variables (also called exogenous), that are determined by

factors outside the model.

2. V is a set {V1, V2, ..., Vn} of endogenous variables that are determined by variables in

the model, viz. variables in U ∪ V .

3. F is a set of functions {f1, f2, ..., fn} such that each fi is a mapping from (the respective

domains of) ui ∪PAi to Vi where Ui ⊆ U and PAi ⊆ V \Vi and the entire set F forms

a mapping from U to V . In other words, each fi in vi = fi(pai, ui), i = 1, ..., n assigns

a value to Vi that depends on (the values of) a select set of variables.
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4. P (u) is a probability function defined over the domain of U .

The functional relationships between variables in a causal model can be graphically de-

picted in a causal diagram. Graphical models are useful for visualizing which variables

influence one another in the system, and formalize modeling assumptions of independence

that can be read directly from the structure of the graph (a procedure that we will detail

shortly).

Definition 2.1.2. (Causal Diagram) Each SCM M is associated with a causal diagram

G such that G encodes:

1. The set of endogenous variables V , represented as solid nodes (vertices).

2. The set of exogenous variables U , represented as hollow nodes.

3. The set of functional relationships F , represented as directed edges between nodes.

Specifically, for each function vi = fi(pai, ui), a directed edge will point from variables

on the function’s right-hand side (i.e., from pai and ui) to that on its left (i.e., to vi).

By convention, we will represent causal influences from endogenous variables as solid

arrows, and influences from exogenous variables as dashed arrows.

Example 2.1.1. Suppose we wish to model a medical setting in which physicians treat a

condition by administering one of two drugs X based on the patient’s sex Z. The patient’s

chances of recovery Y depend on both the treatment and sex of the patient. These causal

assumptions can be represented as the following system of structural equations in model

M1, with error terms εi that are generally assigned as parents to all endogenous variables to

model background factors that have been omitted (but are conventionally not represented

graphically due to their tendency to clutter the diagram):

Z = fZ(εZ)

X = fX(z, εX)

Y = fY (x, z, εY )

(2.1)
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Figure 2.1: Causal diagrams of SCMs with error terms omitted for clarity: (a) Causal

diagram G(M1) of observational study in Example 2.1.1 wherein X represents assigned

treatment, Z patient sex, and Y recovery. (b) Causal diagram G(M1x) of an experimental

study in Example 2.1.1, in which the Natural influences on drug assignment Z → X are

severed.

We can graphically depict the model expressed in Eqs. 2.1, M1, as in Figure 2.1(a).

Causal models, and the graphical diagrams that depict them, encode the modeller’s

causal assumptions about the system under scrutiny; namely, if a variable X appears in the

right-hand side of a equation for some other variable Y (e.g., in Eqs. 2.1, X and Z appear

in the equation for Y , y = fY (x, z, εY ), then X is assumed to be a direct causal influence

on Y , and is graphically referred to as its parent. It is important to distinguish the causal

assumptions implicit in the functional model from the statistical data that is assumed to

have been generated by that model, but collected empirically; as we shall soon exemplify,

many causal queries cannot be answered from data alone, and require the aid of a modeling

assumption to clarify. Note that structural causal models represent non-parametric versions

of structural equation models (see [Pea00, Ch. 5]), in which the functions relating variables

are known or estimated. Rather, SCMs admit that we rarely possess the true F and P (u)

(as in what is called fully-specified model), but can refer to the model to interpret data under

certain causal assumptions (as in what is called a partially-specified model when we do not

know the true F and P (u)).
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The modeling assumptions made in each SCM will vary their classification and the con-

clusions that we can draw from each model class. For instance, the most basic classes of

causal models, eliciting diagrams that are both acyclic (meaning no directed path in the

graph visits a variable more than once) and contain no dependent error terms (to be dis-

cussed in relation to confounding, shortly), are called Markovian. In Markovian models, we

see that for any given instantiation of exogenous variables U = u, there will be a unique

instantiation of endogenous variables V = v. This implies that the joint distribution P (v)

is uniquely determined by the distribution of error terms P (u), and is said to satisfy the

Causal Markov Condition.

Theorem 2.1.1. (Causal Markov Condition) [PV91] Every Markovian causal model

M induces a distribution over endogenous variables P (v) = P (x1, ..., xn) that satisfies the

parental Markov condition relative the causal diagram G associated with M ; that is, each

variable Xi is independent of all its non-descendants, given its parents PAi in G, and allows

for the Markovian factorization of the joint distribution:

P (x1, ..., xn) =
n∏
i

P (xi|pai) (2.2)

If the distribution P (v) follows the Causal Markov Condition relative to G(M), then P

is said to be Markov relative to G. Put differently, in Markovian models, if a variable W

does not appear on the right-hand side of the equation for Y , then it is assumed that Y is

unaffected by any perturbations of W as long as the parents of Y (i.e., its causal influences)

are held constant. Intuitively, the Causal Markov Condition stipulates that if we control for

all immediate causes of Y , then Y should be unaffected by changes in any non-descendants

in the system.

During model creation, investigators must determine which variables to model as parents

of which others. Models that are faithful representations of the data that they are used

to explain will follow two primary guidelines: (1) every variable that is a cause of two or

more other variables is explicitly modeled, and (2) Reichenbach’s [Rei56] common-cause

assumption, stating that if two variables are dependent, then either one causes the other or

there is another (sometimes unobserved) variable that causes both [Pea00, Ch. 1]. Broadly
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speaking, when both of these guidelines are followed, the resulting model is Markovian

(we will discuss exceptions shortly). In general, for any SCM, we have a procedure for

determining if two sets of variablesX and Y are independent given a third set Z ⊆ V \{X, Y }.

Moreover, these independence relationships can be read directly from the structure of the

graphical model, G(M), via the d-separation criterion.

Definition 2.1.3. (d-separation) [Pea00, Def. 1.2.3] A path p in G(M) is said to be

d -separated (or blocked) by a set of nodes Z if and only if:

1. p contains a chain i→ m→ j or a fork i← m→ j such that the middle node m is in

Z, or

2. p contains an inverted fork (or collider) i → m ← j such that the middle node m is

not in Z and such that no descendant of m is in Z.

A set Z is said to d -separate X from Y if and only if Z blocks every path from a node in X

to a node in Y .

The d -separation criterion also gives us a set of testable implications of the model such

that if X and Y are d -separated by a set of variables Z in G(M), then we should also

find that X ⊥⊥ Y |Z in P as well. Now that we have the semantics of SCMs specified, we

will examine the various causal queries that they can be used to answer as well as several

important mechanisms of data collection.

2.2 Causal Queries

Recalling Example 2.1.1, and assuming that P is Markov relative to G, there are a variety

of causal queries that an investigator could employ M to answer. For instance, physicians

may be interested in the average effect of one drug over the other across sexes. Traditionally,

scientists answer causal queries by conducting studies that attempt to measure their expo-

sure’s effect on some outcome, which can vary in their data collection procedures; in this

work, we will be contrasting two popular classes of study procedures, the models they entail,
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and the queries that they can answer. The first type we will examine are observational /

non-experimental studies.

Definition 2.2.1. (Observational Study) An observational study collects data over en-

dogenous variables V (eliciting a distribution over observables P (v)) in some model M ,

and attempts to measure the effect of some exposure X on some outcome Y without any

experimenter-exerted external intervention on the exposure assignment.

Suppose that Example 2.1.1 represents an observational study in which we are interested

in evaluating the effect of a drug (X) on patient recovery (Y ), but acknowledge that the

effect can be different within sub-populations of the different sexes (Z). Likewise, we also

acknowledge that doctors may modify their assigned treatment based on the patient’s sex.

In our model M1 depicted in Figure 2.1(a), we have encoded this assumption with edges

from Z → X and Z → Y , indicating that Z is what is known as a confounder.

Definition 2.2.2. (Confounder) When evaluating the causal effect of some factor X on

another factor Y in model M , a confounding factor (or confounder) Z is a common cause

of X and Y such that in G(M), X ← Z → Y .

Controlling for confounders is integral when attempting to assess the causal effect of

one factor X on another Y in observational studies.1. Intuitively, we are interested in the

effect of X on Y within homogeneous populations, even if we are averaging the effect across

multiple sub-populations. To see why this is important, consider that the data we have

collected in Example 2.1.1 is observational, such as a survey of medical records in which each

record contains the sex of the patient Z, the drug they were prescribed by their physician

X, and whether or not they recovered from the condition being treated Y . Note that

in observational studies such as this, the assignment of a drug to each participant is not

randomized but instead is a function of some other selection criteria – in this case, the

1Simpson’s Paradox is a demonstration that, from statistical data alone, the effect of some treatment X
on outcome Y can be reversed by sequential conditioning on covariates; causal inference solves this problem
by providing rules for which covariates should be conditioned upon in pursuit of causal queries (see [Pea14]
[Pea00, Ch. 6])
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patient’s sex (and any unmodeled disturbance terms). Thus, if we measure the recovery

rates of patients in the observational setting, ignoring that X is affected by Z (which also

influences the outcome), we do not strictly measure the influence of X on Y (as intended),

but contaminate this result with the physicians’ selection mechanisms. To use an extreme

example, consider that there is an even distribution of sexes in the observational sample (i.e.,

P (z) = P (z′) ∀ z, z′ ∈ Z), but, by physician selection, drug A is given almost exclusively to

men (i.e., P (x|z) 6= P (x|z′) forall z, z′ ∈ Z). If we wish to estimate the average effect of

drug A across sexes, the sample will not properly scale the sex-specific effect of drug A on

recovery by proportion of sexes2.

Thus, the goal in measuring the effect of X on Y is to measure the exposure’s influence

on the outcome independent from any selection mechanism. This is precisely the procedure

of our other study type of interest: an experimental / interventional study.

Definition 2.2.3. (Experimental Study) An experimental study collects data over en-

dogenous variables V by randomly assigning treatments X (independent of the treatment’s

natural causes, i.e., fX) and measures the outcome Y within each randomly assigned treat-

ment condition. We call this random assignment an intervention, given that external forces

(typically, the experimenter) have forced it to attain some value that it might normally not.

In experimental studies called Randomized Clinical Trials (RCTs), random assignment

fixes a treatment to its intervened value for each participant, regardless of what treatment

that individual would be assigned in the pre-intervention model. Interventions have an

elegant interpretation for SCMs, both in terms of their effect on the functional model as well

as the graphical representation.

Definition 2.2.4. (Intervention) An intervention represents an external force that fixes

a variable to a constant value, and is denoted do(X = x), meaning that X is fixed to the

value x with P (do(X = x)) = 1. This amounts to replacing the equation for the intervened

variable with its fixed constant such that, in the post-intervention model, fX = x, and all

2A numerical example of this confounding bias will be presented in the following chapter.
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mentions of X in other equations are likewise replaced with its fixed value, x. If the pre-

intervention model is M , then we annotate the post-intervention model as Mx. Graphically,

an intervention severs all inbound edges to X, indicating that all pre-interventional causal

influences are no longer so.

Example 2.2.1. Consider now that we have performed an experimental study investigating

the effects of the same two drugsX (from Example 2.1.1) on patient recovery Y , knowing that

recovery is a function of both the drug choice and patient sex. However, instead of observing

medical records containing physicians’ drug assignment policies, we randomly assign our

study’s participants to be given either drug A or drug B (as by a coin flip). The causal

assumptions implicit in M1 (Figure 2.1(a)) are now slightly amended, such that, for each

participant, the drug assigned is fixed by intervention do(X = x). This gives us new causal

assumptions as represented by the functions of the SCM M1x below, and are echoed in the

graphical representation, G(M1x), in which the pre-interventional influences on X are severed

(Figure 2.1(b)).

Z = fZ(εZ)

X = x

Y = fY (x, z, εY )

(2.3)

Let us now return to our causal query of interest, the effect of X on Y across genders.

We now possess the vocabulary to express this query notationally: we are interested in

measuring P (Y |do(X)). Given that our modeling assumption stipulates that recovery Y is

a function of sex Z (and drug assignment), if we wished to assess the average causal effect of

a drug across sexes in M1x, we simply examine the effect of the drug in each assigned drug

condition, given that the effects of sex on recovery will be distributed between conditions:

P (Y |do(X = x)) = PM1x(y) (2.4)

Given that our causal query P (Y |do(X)) is measurable within the experimental study

in Example 2.2.1, as represented by M1x, we should address whether this same effect can

be recovered from the observational study in Example 2.1.1. Recall that the distinguishing
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assumption between the two studies is that in the observational case, the drug assignment

mechanism is not randomized, but rather, is a function of sex – an influence that is indicated

by the arrow from Z → X in M1 that is severed by random assignment in M1x. In Markovian

models, causal queries like P (Y |do(X)) can always been identified, even from observational

studies that have confounding factors.

[Pea95] determined that causal effects can be measured from non-experimental data if

we are able to phrase all probabilistic expressions containing a do operator in terms of the

observational distribution’s parameters, P (v). Put differently, a causal effect is identifiable if

we are able to simulate an intervention in the scenario where no such intervention took place.

The mechanisms for performing this algebraically are expressed in the rules of do-calculus,

which use the graphical model G(M), in concert with the rules of d-separation, to determine

if a reduction from queries containing do operators to expressions that are do-free is possible.

The rules of do-calculus are expressed as follows:

Theorem 2.2.1. (Rules of do Calculus) [Pea00, Theorem 3.4.1] Let G be the directed

acyclic graph associated with a SCM M , let GX̄ be the subgraph in which all arrows into

X are severed, let G
¯
X be the subgraph in which all arrows emanating from X are severed,

let G ¯Z(W ) be the subgraph of all arrows severed into Z nodes that are not ancestors of any

W node in GX̄ , and let P stand for the probability distribution induced by that model. For

any disjoint subsets of variables X, Y, Z, and W , we have the following rules:

1. Rule 1 (insertion / deletion of observations):

P (y|do(x), do(z), w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )GX̄ (2.5)

2. Rule 2 (action / observation exchange):

P (y|do(x), do(z), w) = P (y|do(x), z, w) if (Y ⊥⊥ Z|X,W )GX̄
¯
Z

(2.6)

3. Rule 3 (insertion / deletion of actions):

P (y|do(x), do(z), w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )G
X̄Z(W )

(2.7)
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Using these rules, we can show that our query of P (Y |do(X)) is indeed identifiable from

the observational study, and is given by the expression:

P (y|do(x)) =
∑
z

P (y|do(x), z)P (z|do(x)) (2.8)

=
∑
z

P (y|x, z)P (z) (2.9)

Eq. 2.8 follows from conditioning on z, and the reduction of P (y|do(x), z) = P (y|x, z)

in Eq. 2.9 follows from Rule 2 of do-calculus, in which (Y ⊥⊥ X|Z)G
¯
X

. This derivation is

summarized by what is known as the back-door criterion, which details the conditions under

which confounders can be controlled in observational settings.

Definition 2.2.5. (Back-Door) [Pea00, Def. 3.3.1] A set of variables Z satisfies the back-

door criterion relative to an ordered pair of variables (X, Y ) in a directed, acyclic graph

(DAG) G if:

1. No node in Z is a descendant of X; and

2. Z blocks every path between X and Y that contains an arrow into X.

When a back-door admissible set Z is available in G (meaning, a set of variables that

satisfies Def. 2.2.5), then the causal effect P (Y |do(X)) can be computed using the back-door

adjustment formula:

Theorem 2.2.2. (Back-Door Adjustment) [Pea00, Theorem 3.3.2] If a set of variables

Z satisfies the back-door criterion relative to (X, Y ), then the causal effect of X on Y is

identifiable and is given by the formula

P (y|do(x)) =
∑
z

P (y|x, z)P (z) (2.10)

The back-door adjustment formula has an intuitive interpretation that removes the in-

fluences of a confounder’s effect on treatment selection:

[average effect of x on y] =
∑

z∈sub-populations

[effect of x on y for z]× [prevalence of z]
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Thus far, we have been considering only Markovian models wherein all common causes

of variables have been explicitly defined as endogenous variables. If, however, error terms

between two or more variables are found to be correlated, then it suggests that an unmodeled

(latent or unobserved) common cause is to blame. In these non-Markovian systems, the

influence of unobserved, exogenous variables can introduce confounding bias, which can

compromise causal claims from observationally collected data. In the next section, we will

look at how to formalize unobserved confounding influences and how to answer causal queries

in their presence.

2.3 Challenges of Unobserved Confounding

In Example 2.1.1, we modeled sex Z as an observed confounder of drug assignment X and

recovery Y . Adjusting for observed confounders is straightforward, as governed by the rules

of do-calculus and the back-door criterion, just as we did in Eq. 2.8. However, in other

scenarios, investigators may be unable to observe some confounding influences. This can be

the case when the confounders are discovered after data collection (in which their values were

not recorded during the study), when the confounders are known, but their values cannot be

collected for each datum, or more insidiously, when we find that the errors of two or more

variables are correlated (thus violating our “no correlation without causation” guideline for

model creation). In either case, we would be näıve to simply assume that these common

causes do not exist, lest we make our analysis susceptible to confounding bias.

Rather, we can explicitly model these latent or “unobserved” confounders by including

an exogenous variable to represent the confounding.

Definition 2.3.1. (Unobserved Confounder) An unobserved confounder (UC), C, is a

common cause of two sets of endogenous variables X and Y (meaning X ← C → Y ), but

C exists in the latent space of the model, such that C ∈ U . When there is at least one UC

present in the system, and all UCs are modeled explicitly as exogenous variables, we call

the model Semi-Markovian. Semi-Markovian models behave the same as Markovian models,

except that UCs cannot be conditioned upon nor be subject to external intervention (as by
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the do-operator).

The consequences of UCs for identifying causal effects from observational studies are

immediate. If, in a Semi-Markovian model, we attempt to estimate P (Y |do(X)) but cannot

find a back-door admissible set of variables that blocks all confounding paths between X

and Y , then we cannot obtain an unbiased estimate for this query. In general, a question

of whether or not a causal effect can be estimated from observational, or pre-interventional,

data is a question of identifiability.

Definition 2.3.2. (Identifiability) [Pea00, p. 77] A causal query Q(M) is identifiable,

given a set of assumptions A (e.g., those in the diagram G(M)), if for any two (fully specified)

models Mi and Mj that satisfy A, we have

P (Mi) = P (Mj)⇒ Q(Mi) = Q(Mj) (2.11)

In other words, if two models satisfy the same assumptions about the system, then the

equality of the probability distributions in those models implies the equality of the query

quantity, meaning that the query can be expressed in terms of the distributions alone (see

[Pea12] for discussions on identifiability for a variety of causal queries and models). Let us

revisit our example from the introduction to demonstrate a causal effect that is unidentifiable

from an observational study.

Example 2.3.1. Consider the case of a cigarette manufacturer arguing that their cigarettes

are not to blame for incidences of lung cancer, but rather, that there is an unobserved

confounder in the form of a genetic craving for nicotine that likewise increases susceptibility

to lung cancer. They propose a Semi-Markovian model to interpret observational data in

which each datum only records whether or not an individual smoked X and whether or not

they attained lung cancer Y . Conspicuously absent is any record of whether or not the

individual possesses the genetic appetite for nicotine, C, that also predisposes them to lung

cancer. Suppose now that we consider C an unobserved confounder of X and Y , we can
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Figure 2.2: Causal diagrams of SCMs with error terms omitted for clarity: (a) Causal

diagram G(M2) of observational study in Example 2.3.1 wherein X represents whether or

not the patient smokes, Y whether or not they attained lung cancer, and C an unobserved

genetic trait that causes a craving for nicotine and susceptibility to cancer. (b) Causal

diagram G(M2x) of an experimental version of 2.3.1, in which the Natural influences of the

genetic craving C → X are severed.

model the system as follows (see also graph G(M) in Figure 2.3(a)):

X = fX(c, εX)

Y = fY (x, c, εY )
(2.12)

Now, suppose we wish to answer the causal query of whether smoking causes lung can-

cer, as we would formalize by the query P (Y |do(X)). To compute an unbiased estimate of

this query in the observational setting, we would (by the back-door criterion, Def. 2.2.5)

need to adjust for C, which is not possible because C is unobserved. As such, the con-

founding arc introduced by C cannot be controlled, and so the causal query P (Y |do(X)) is

unidentifiable in M2. Intuitively, this effect is not identifiable in the observational setting

because any dependence of X on Y could instead be attributed to the UC. In litigation, the

effect of smoking on lung cancer being unidentifiable from observational data could provide

extenuating circumstances under which smoking is not at fault for incidences of lung cancer.

As mentioned earlier, to control for the influence of any UCs, the empirical sciences

traditionally run an experimental study like an RCT. Ideally, this would leave us with a
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post-interventional model like in Figure 2.3(b), whereby participants are randomly assigned

to “smoke” vs. “do not smoke” conditions, and so the effect of smoking on lung cancer

can be identified. Such a study would, of course, be ethically reprehensible, and is a prime

example of why causal analysis has strived to provide formalisms for identifying causal effects

in observational settings. Unfortunately, for many interesting and plausible models (like in

Example 2.3.1), UCs can contaminate the causal claims of observational results. We will

revisit a model similar to G(M2) in the following chapter, and demonstrate how UCs that

may haunt offline data analysis can be used to the benefit of reasoners in the online domain.

Thus far we have been considering population-level causal effects, in which we are in-

terested in the effect of some treatment averaged over sub-populations in which that effect

may vary. In Examples 2.1.1 and 2.2.1, we discussed how the query P (Y |do(X)) encodes

the average recovery rates Y of some drug X across sexes; after Example 2.3.1, we discussed

how an unethical experimental study could measure the query P (Y |do(X)), which would

average the effect of smoking on lung cancer across those with and those without the genetic

UC. While these queries are interesting from a policy-analysis perspective (e.g., “Should we

stock drug A or drug B for our pharmacy? Which will be the greatest good for the average

patient?”), they may not be useful for personal decision-making in which each individual’s

characteristics specify the efficacy of a treatment. For instance, if we accept the existence

of a genetic craving for nicotine that also causes a susceptibility to lung cancer, then it is

possible that there exist individuals without the trait who would be less likely to get cancer if

they started smoking. That said, if the trait was common, then both observational data (in

which the trait is an uncontrolled UC between smoking and lung cancer) and hypothetical

experimental data (in which the effect of smoking on cancer is averaged over those with the

trait and those without) could over-exaggerate the risk for someone without it.

In summary, the problem with using population-level data to inform individual-level deci-

sions is that the prior summarizes effects within heterogeneous populations (e.g., those with

and without the genetic trait), only some of which apply to the latter (e.g., an individual

without the trait). For individual decision-making, the best treatment or action (as mea-

sured by some response variable) is the one that is optimal for that individual’s particular
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characteristics and situation, U = u. However, in the offline domain, since an individual’s

situation is characterized by both endogenous and exogenous factors, the individual’s be-

haviors serve as the only evidence for the state of the exogenous variables. Thus, the goal

of attaining a desirable outcome (like not getting lung cancer) in a given situation (like not

having the genetic disposition for smoking) depends not only on the action one ultimately

takes (like smoking) but also any indicators of an individual’s situation (like their desire to

smoke).

An optimal individual-level decision can therefore be characterized by one in which, for

the same situation U = u, no other decision would lead (or be more likely to lead) to a more

desirable outcome. This sentiment is a known experience to most humans in the form of

regret, in which we envision a hypothetical world where, had we chosen differently than we

did, we would have attained a better outcome. An optimal decision, therefore, is one bereft

of regret, which can be considered a counterfactual quantity. If measuring causal effects

answers the population-level question of “What happens if I do x?” then counterfactuals

answer individual-specific questions of “What would have happened had I done x′ given

that I did some other x?” Causal analysis provides another tool for examining structural

counterfactuals in the context of SCMs, which we will review in the following section.

2.4 Structural Counterfactuals

Humans employ counterfactual reasoning effortlessly for a wide variety of applications, which

include providing explanations of outcomes in the past, modifying policies for future action,

and associating blame [Byr16]. Questions of “what if” or “if only” are laden with causal

implications because they betray a cognitive model whereby, had some cause been different,

a different outcome would have occurred. In general, counterfactuals are useful insofar as

they compare the outcomes of different treatments undertaken in the exact same situation.

However, counterfactuals have been traditionally difficult to quantify because we witness only

a single outcome to one action under a precise situation U = u, and cannot simultaneously

witness a parallel outcome to a different action in that same situation at the same time.
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For instance, when selecting routes to a destination while driving, we may at time t need

to decide between taking route A vs. route B. As soon as we decide to take route A, we

are not physically able to return to time t to compare the driving time to our destination

had we taken route B. We could of course return at time t + δ to the exact location we

were at at time t and compare the time to our destination taking route B, but differences

in driving conditions, traffic light states, road construction, and other perturbations in the

situation between time t and t+δ would contribute differences that do not allow for an exact

comparison of the outcomes from our choices at time t.

Yet, humans make these counterfactual comparisons regularly, regretting trips on the

freeway that we believe could have been sped by taking side-streets. As such, these mental

comparisons of hypothetical outcomes can be modelled by our conceptions of cause and effect

that are captured in structural causal models. We can thus formally define a counterfactual

in a SCM as:

Definition 2.4.1. (Counterfactual) [Pea00, pp. 204] In a SCM M , Let X and Y be

two subsets of endogenous variables such that {X, Y } ∈ V . The counterfactual sentence

“Y would be y (in situation U = u), had X been x” is interpreted as the equality with

Yx(u) = y, where Yx(u) encodes the solution for Y in a structural system where for every

Vi ∈ X, the equation fi is replaced with the constant x. Alternatively, we can write:

Yx(u) = YMx(u) (2.13)

At first look, a counterfactual appears similar to our definition of an intervention, Def.

2.2.4. However, whereas the do-operator expresses an intervention across all possible situ-

ations u ∈ U ∀ u, a counterfactual computes an intervention for a particular U = u. Just

as we had causal queries for population-level interventions, so do we have counterfactual

queries of the (probabilistic) format:

P (BA | e) = P (consequence antecedent | evidence) (2.14)

Intuitively, counterfactual queries assess the probability of some outcome (or conse-

quence) under the hypothetical intervention (or antecedent) given the evidence that was
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witnessed in reality. Importantly, counterfactuals allow for the antecedent and evidence to

contain contradictory claims. For instance, borrowing M2 from Example 2.3.1, the counter-

factual query of “What would be my chances of getting lung cancer had I smoked, given that

I had not” can be posed as (for X = 1 representing “smoking” and X = 0 representing “not

smoking”) P (YX=1|X = 0). Though it may appear odd to have evidence and hypothetical

antecedent in contrast to one another, the interpretation of this counterfactual quantity is

intuitive: we use the observed evidence to update our belief about the state of U at the time

of observation and then assess the outcome under the model in which the antecedent is fixed

to its hypothesized value. In other words, we adjust our belief about the pre-interventional

state of the world from the observed evidence, and then compute the effect of the antecedent

(fixed by intervention) on the outcome in this modified model of the world. Formally, this

procedure can be accomplished in a fully-specified model using the following steps:

Theorem 2.4.1. (Counterfactual computation) [Pea00, Theorem 7.1.7] Given a fully-

specified SCM M = 〈U, V, F, P (u)〉, the conditional probability P (BA|e) of a counterfactual

sentence “If it were A, then B,” given evidence e, can be evaluated using the following three

steps.

1. Abduction: Update P (u) by the evidence e to obtain P (u|e).

2. Action: Modify M by the action do(A), where A is the antecedent of the counterfac-

tual, to obtain the submodel MA.

3. Prediction: Use the modified model M ′
A = 〈U, V, {F \ fA} ∪ {fA = a}, P (u|e)〉 to

compute the probability of B, the consequence of the counterfactual.

However, as we mentioned earlier, investigators are rarely in possession of fully-specified

models. Yet, counterfactual quantities can still be useful for informed decision-making, and

so this work will focus on their estimation in scenarios where we have only a partially-

specified model. To this end, we will begin by reviewing a counterfactual quantity that has

been studied in model-free domains and demonstrate how it applies to our purpose: the

effect of treatment on the treated (ETT).
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While average causal effects measure the influence of some treatment applied uniformly

within a population (including sub-populations), the ETT considers the influence of a treat-

ment counter to the one that they have already been assigned; it has traditionally been

applied for policy makers interested in predicting, for example, the change in some outcome

should they cease a program or treatment that is already in effect [Hec92]. Formally, we

define the ETT as:

Definition 2.4.2. (Effect of the Treatment on the Treated (ETT)) [Pea00] The

counterfactual ETT of some treatment X = x on some outcome Y , written ETT (X → Y ),

is expressed as the difference between the outcome in the treated population and the outcome

in that same population (i.e., for characteristics U = u) had they not been treated x′.

ETT (X → Y ) = P (Yx|x)− P (Yx′ |x) (2.15)

=
∑
u

[P (Y |x, u)− P (Y |x′, u)]P (u|x) (2.16)

Consider that Y = 1 is a desired outcome like recovery, then intuitively, when P (Yx =

1|x) > P (Yx′ = 1|x), the treatment X = x is more desirable than a lack of treatment x′ –

in other words, those treated were better off than had they not been. We will revisit the

relevance of this facet of the ETT for personalized decision-making in the following chapter,

but must first analyze its component quantities and methods of computation. Firstly, note

that Eq. 2.16 expresses the difference in outcomes from each treatment x vs. x′ within each

homogeneous sub-population U = u as indicated by their treated status, and weighted by

likelihood of each unit belonging to u such that we scale by P (u|x). While this is indeed

the quantity sought after for the ETT, we again must note that in lieu of a fully-specified

model, we would be unable to perform the calculation in Eq. 2.16. Rather, we can attempt

to estimate the quantities on the right-hand side of Eq. 2.15.

To do so, consider the first term indicating the effect of the antecedent X = x in the

pre-intervention world in which X = x, denoted P (Yx|x). Note that here the evidence and

the antecedent are in agreement – the intervention we are considering assessing was in reality

the one administered to this population. As such, this term is reducible to an observational

quantity P (Y |x) by the consistency axiom:
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Definition 2.4.3. (Consistency) [Pea00, Corollary 7.3.2] As a corollary to the definition

of a null action, in which:

Y∅(u) , Y (u), (2.17)

the consistency axiom states that for any set of variables Y and X in a causal model, we

have:

X(u) = x⇒ Y (u) = Yx(u) (2.18)

As such, P (Yx|x) = P (Y |x), a quantity that can be measured from the pre-interventional

distribution, as from data one might gather from an observational study (Def. 2.2.1). To

compute the remaining quantity, P (Yx′ |x), we cannot use the consistency axiom as the

antecedent and evidence disagree. However, consider the following for binary X = x ∈

{x0, x1}:

P (Yx0) = P (Yx0|x0)P (x0) + P (Yx0|x1)P (x1)

= P (Y |x0)P (x0) + P (Yx0|x1)P (x1)

P (Yx0 |x1) =
P (Yx0)− P (Y |x0)P (x0)

P (x1)

(2.19)

Note that in Eq. 2.19, P (Yx0|x1) is thus expressible in terms of observational quantities

and interventional quantities, since P (Yx0) = P (Y |do(x0)). This allows us to compute the

counterfactual ETT for binary X when we are in possession of both observational and

experimental data measuring the effect of X on Y . Furthermore, we are able to do so

without a fully-specified model, and can instead measure the quantities of interest from

the probability distributions alone. However, as soon as the treatment options become

non-binary, (e.g., for X = x ∈ {x0, x1, x2}) this data-driven approach fails in the offline

domain. Without loss of generality, suppose we have a ternary X and wish to estimate the

counterfactual P (Yx0|x1):

P (Yx0) = P (Yx0|x0)P (x0) + P (Yx0|x1)P (x1) + P (Yx0|x2)P (x2)

= P (Y |x0)P (x0) + P (Yx0|x1)P (x1) + P (Yx0|x2)P (x2)

P (Yx0 |x1) =
P (Yx0)− P (Y |x0)P (x0)− P (Yx0|x2)P (x2)

P (x1)

(2.20)
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Note that to solve for the counterfactual quantity P (Yx0|x1), we would require observa-

tional data to estimate P (Y |x0), experimental data to estimate P (Yx0) = P (Y |do(x0)), and

the ability to compute a separate, unknown counterfactual quantity P (Yx0|x2). As such,

because we have 1 equation and 2 unknowns (P (Yx0 |x1) and P (Yx0|x2)), our query is not

identifiable in the absence of a fully-specified model, even when we are in possession of both

observational and experimental data. This impediment to counterfactual estimation has

been addressed for certain model formats (e.g., when we are licensed to use the front-door

adjustment, see [Pea00, Def. 3.3.3]), but has thus far remained unsolved for arbitrary Semi-

Markovian models. In the following chapter, we will demonstrate that the shortcomings of

counterfactual estimation in the offline domain (wherein treatments are observed or fixed

by intervention) are not inherited in the online domain (wherein extra information from an

agent that may dynamically choose a treatment can aid counterfactual estimation).

Naturally, from the previous paragraph, we might wonder if there is at least some pos-

sibility to estimate counterfactuals from empirical data with a partially-specified, Semi-

Markovian model. We can use a final tool from causal analysis to answer this in the affir-

mative, assuming that we possess a back-door admissible set of covariates Z which controls

for any confounding influences that might otherwise bias the relationship between X and Y

in a counterfactual query. This result is formalized in the following theorem:

Theorem 2.4.2. (Counterfactual Interpretation of Back-door) [PGJ16, Theorem

4.3.1] If a set Z of variables satisfies the back-door criterion relative to (X, Y ), then, for

all x, the counterfactual Yx is conditionally independent of X given Z such that

P (Yx|X,Z) = P (Yx|Z) (2.21)

Intuitively, Theorem 2.4.2 asserts that when we can control for all confounding influences

between our treatmentX and outcome Y , the pre-treatment observation ofX tells us nothing

more about the hypothetical Yx that we did not already know from having observed Z.

Of course, in some Semi-Markovian models like Figure 2.3(a), there exists no back-door

admissible set Z (in the offline domain) to satisfy this theorem. In such a scenario, we would

remain unable to compute counterfactual queries from empirical data in the absence of a
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fully-specified model.

That said, the following chapter will make use of the counterfactual interpretation of

the back-door by showing that, for online decision-making agents, there will always exist

some set Z that can control for confounding influences (observed or otherwise) of treatments

under the agent’s control. We will begin this effort by providing the causal underpinnings

of a decision-making task, formalize cognitive biases that may be present in such a task as

unobserved confounders, and detail a novel approach for estimating counterfactual quantities

empirically in a dynamic, online domain.
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CHAPTER 3

Intent-Specific Decision-Making

As we detailed in the previous chapter, traditional approaches to counterfactual esti-

mation take place in offline model and data analysis, wherein the investigator can identify

counterfactual quantities of interest from:

1. Fully-specified Structural Causal Models (Def. 2.1.1, Theorem 2.4.1)

2. Partially-specified models where the treatment is binary and the investigator possesses

observational and experimental data [Pea00, Ch. 9]

3. Partially-specified models wherein some set of covariates Z satisfy either the back-

door or front-door criteria relative to counterfactual antecedent X and consequence Y

[Pea00, Ch. 3]

However, given the rarity of possessing a fully-specified model in practice (which dis-

cards traditional approach #1), accounting for the prevalence of non-binary treatments of

interest (which discards traditional approach #2), and, in the domain of decision-making,

considering the pervasiveness of cognitive biases that introduce uncontrolled confounding

bias (which discards traditional approach #3), there remain scenarios and counterfactual

queries of interest that traditional, offline causal analysis cannot identify.

In this chapter we will detail a novel method for empirically estimating counterfactuals in

arbitrary, partially-specified models where the treatment(s) are decisions that an agent can

choose to enact online in real-time. However, in offline domains, data is generally collected

Chapter 3 is an extended version of [BFP15].
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by the same mechanism within a population, like through an observational study (Def.

2.2.1, where the treatments are observed) or an experimental study (Def. 2.2.3, where the

treatments are fixed, e.g. by random assignment). As we will see, the ability of individual

decision-makers to fuse elements of observational and experimental strategies will allow them

to estimate counterfactuals to create a more robust policy, even in the face of unobserved

confounders.

We will begin this chapter with a motivating example that provides a concrete demonstra-

tion of the influence of unobserved confounders (UCs) in decision-making tasks, illustrates

the difference between observational, experimental, and counterfactual quantities in such a

scenario, and emphasizes the superiority of counterfactual data for individualized decision-

making over the traditionally employed interventional data.

3.1 Motivating Example: The Greedy Casino

Example 3.1.1. Consider a scenario in which a greedy casino decides to demo two new

models of slot machines, say X = 0 and X = 1 for simplicity, and wishes to make them

as lucrative as possible. As such, they perform a battery of observational studies (using

random sampling) to compare various traits of the casino’s gamblers to their typical slot

machine choices. From these studies, the casino learns that two factors well predict the

gambling habits of players (unbeknownst to the players themselves): player inebriation and

machine conspicuousness (say, whether or not the machines are blinking). Coding both of

these traits as binary variables, we let B ∈ {0, 1} denote whether or not the new machines

are blinking, and D ∈ {0, 1} denote whether or not the gambler is drunk. As it turns out, a

gambler’s natural1 choice of machine, X ∈ {0, 1}, can be modelled by the structural equation

indicating the index of their chosen machine:

X ← fX(B,D) = (D ∧ ¬B) ∨ (¬D ∧B) = D ⊕B (3.1)

1By “natural” choice, we mean the choice that is reactive to environmental factors as a consequence of the
individual’s state, surroundings, and preferences; in cognitive science terms, these choices are those suggested
by System 1, which is implicated in impulsive, non-deliberative, and heuristic decision-making [KK09], and
in causal modeling terms, these are choices made in the unperturbed system without intervention.
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Moreover, the casino learns that every gambler has an equal chance of being intoxicated

and configure the machines to have an equal chance of blinking their lights at a given time,

namely, P (D = 0) = P (D = 1) = 0.5 and P (B = 0) = P (B = 1) = 0.5.

The casino’s executives decide to take advantage of their gamblers’ propensities by pro-

gramming the new slot machines to have reactive payouts that will tailor win rates to whether

or not each believes (via sensor input, assumed to be perfect for this problem) a gambler

is intoxicated, and predicated on whether or not its lights are presently blinking. The one

catch: a new gambling law requires that casinos maintain a minimum attainable payout

rate for slots of 30%. Cognizant of this new law, while still wanting to maximize profits by

exploiting gamblers’ natural arm choices, the casino executives modify their new slots with

the payout rates depicted in Table 3.1a.

(a) D = 0 D = 1

P (y|X,D,B) B = 0 B = 1 B = 0 B = 1

X = 0 i0.10 0.50 0.40 i0.20

X = 1 0.50 i0.10 i0.20 0.40

(b) P (y|X) P (y|do(X))

X = 0 0.15 0.30

X = 1 0.15 0.30

Table 3.1: Greedy Casino: (a) Payout rates decided by reactive slot machines as a function of

arm choice, sobriety, and machine conspicuousness. Players’ natural arm choices under D,B

are indicated by the superscript i, to indicate “intent” (to be formalized later). (b) Payout

rates according to the observational, P (Y = 1|X), and experimental P (Y = 1|do(X)),

distributions, where Y = 1 represents winning (shown in the table), and 0 otherwise.

The state, blind to the casino’s payout strategy, decides to perform a randomized study to

verify whether the win rates meet the 30% payout requisite. Wary that the casino might try

to inflate payout rates for the inspectors, the state recruits random players from the casino

floor, pays them to play a random slot, and then observes the outcome. Their randomized

experiment yields a favorable outcome for the casino, with payouts meeting precisely the

30% cutoff. The data from their investigation looks like Table 3.1b (third column), assuming

binary payout Y ∈ {0, 1}, where 0 represents losing, and 1 winning.

As students of causal inference who are suspicious of the casino’s ethical standards, we
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decide to go to the casino’s floor and observe the win rates of players based on their natural

arm choices (through random sampling). We encounter a distribution close to Table 3.1b

(second column), which shows that the casino is actually paying ordinary gamblers only 15%

of the time. From our perspective, which is blind to the casino’s reactive payout policies,

the fact that P (Y |X) 6= P (Y |do(X)) implies that UCs are present in the system, though we

do not know the states of these influencing factors ([Pea98]).

In summary, the casino is at the same time (1) exploiting the natural predilections of the

gamblers’ arm choices as a function of their intoxication and the machine’s blinking behavior

(based on Eq. 3.1), (2) paying, on average, less than the legally required (15% instead of

30%), and (3) fooling the state’s inspectors since the randomized trial payout meets the

30% legal requirement. Unknown to the gamblers in this casino, their natural choice of slot

machine represents a case of inevitable regret [Pea13] since, by examination of Table 3.1a, the

payouts associated with every naturally chosen machine (indicated by asterisks) are inferior

to the payout rates of the machine choice that is counter to it. We can express this as a

comparison of counterfactual quantities equivalent to the ETT (Def. 2.4.2):

P (Yx|x) < P (Yx′ |x) ∀ x, x′ ∈ X (3.2)

Note that this comparison corresponds to a common, counterfactual human experience

of regret : the choice that we did not make (x′) appears to lead to a better outcome (a higher

probability of payout) than the choice that we made (x). However, unlike the counterfactual

comparison from Eq. 3.2 wherein one machine appears conditionally better than the other,

the observational and experimental payouts from Table 3.1(b) give us no information about

which machine is the optimal choice; in fact, these results seem to suggest that there is no

optimal machine choice, and that a gambler will experience the same payouts regardless

of their choice. Regret plays an important role in policy modification, since actions under

a particular context that we regretted in the past should be chosen less often than their

alternatives in the future. However, regret is only useful for decision-making insofar as

it informs future decisions – in other words, regret is not simply a retrospective cognitive

act, but also a predictive one. To formalize and then employ regret as a counterfactual,
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personalized learning and reasoning tool, this chapter will accomplish the following:

1. Connects the existing machine learning literature to a new, more general, learning

problem in which the assumption of unconfounded decision-making is removed.

2. Formalizes personal learning and decision-making scenarios in the language of struc-

tural causal models (a variant of which we will define as structural decision models).

3. Demonstrates how the quantification of retrospective regret is captured by traditional

counterfactual computations from fully-specified structural causal models (and why

this quantity is to be sought-after for decision-making).

4. Details a new strategy relating how target quantities of retrospective regret can be

measured in absence of a fully-specified model, and then translated into active decision-

making criteria that reduce the agent’s regret.

5. Provides simulation results to support the efficacy of this new approach.

3.2 Regret as a Learning Problem

Throughout this work, we will treat regret not as a known quantity (as one could compute

as a counterfactual from a fully-specified structural causal model), but rather, as one that

must be learned. Indeed, many facets of intelligent decision-making are wrought from trial

and error (including evidence for a neuronal basis, see [HC02]). The goal of learning which

actions or treatments produce regret is to avoid those actions in the future, and so develop

a choice policy that optimizes some desired quantity (like monetary payouts in the Greedy

Casino example). Scenarios in which an agent must learn which action among a set of choices

is optimal (in terms of some reward function) have long been studied in the Multi-Armed

Bandit literature. We will thus consider a new variant of the MAB framework to model our

system, but will first provide some context for the existing literature.

The Multi-Armed Bandit (MAB) setting represents a canonical sequential decision-making

problem that spans many disciplines and applications from medicine to robotics, economics
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to online advertising [Rob52, LR85, EMM06, Sco10, BC12]. In a traditional bandit in-

stance, an agent is faced with K ∈ N, K ≥ 2 discrete action choices (often called “arms”),

each with its own, independent, and initially unknown reward2 distribution. The agent’s

task is to maximize cumulative rewards over a number of rounds T , which requires learning

(over independent trials) about the underlying reward distributions associated with each

arm. Though this goal may seem straightforward, its execution involves an “exploration vs.

exploitation” challenge – agents must explore arms sufficiently to determine which has the

best payout, but should be wary of exploring too much lest they delay exploiting the one they

suspect is best; if the agent explores too little, however, it risks settling for a sub-optimal

arm. It is usually understood that, if given enough time to sample arms and observe their

payouts, the agent will eventually (i.e., asymptotically) converge to the optimal arm.

Example 3.2.1. Personalized online advertisement selection is a popularly cited application

for MAB algorithms [LCL10]. Consider a simplified version of Google’s advertising engine

that, in an effort to maximize the number of times a user is interested in a shown advertise-

ment, must select one of several ads (say, for home-improvement, clothing, and video games)

to display to a website’s visitor. Without any knowledge about which ads tend to convert

the most “click-throughs” (i.e., times when a user clicks on an ad), the engine must first

randomly experiment (i.e., explore) to determine which ads tend to be the most attractive

to each type of user (based on any collected user information like demographics). Only after

sampling the merit of each ad (as measured in click-throughs) to each user group can the

system consistently display the most group-appropriate ad (i.e., exploit). The engine thus

operates user by user (MAB trial by trial) selecting an ad to display by some policy that

leverages exploration and exploitation.

The exploration-exploitation trade-off was studied extensively in the canonical setting

(e.g., [AMS09]) and has been extended to accommodate a wide range of scenarios that

appear in practice. For instance, the contextual bandit problem models the agent’s reward as

2The term reward is used in the MAB literature to denote the outcome of the agent’s chosen treatment
or action. Rewards might be patient recovery (in medical settings), click-throughs (in online advertisement
selection), or money (in examples like the Greedy Casino).
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a function of some observed, environmental factors, and so the best arm choice in one context

may not be the best in another [LZ08, DHK11, Sli14]. In the adversarial bandit problem, the

agent must contend with an omnipotent adversary that may manipulate reward distributions

to counter the agent’s strategy [BK10, ACF95, BS12]. We refer readers to [Sze10, BC12] for

a comprehensive overview.

The standard metric of success for bandit algorithms is a quantification of regret, repre-

senting the difference between the reward that the agent received using its choice policy and

the reward that the agent would have received choosing optimally. In simulations, which

generally test bandit algorithms across some finite T = t number of trials, the traditional

metric of comparison is by the cumulative regret experienced by each. In these traditional

MAB formalizations, unconfoundedness is assumed, and so regret is defined over experimen-

tal / interventional quantities. We will thus define, and refer to, the traditional definition of

MAB regret as “Experimental” Regret (or e-Regret for short), and will discuss this choice

shortly:

Definition 3.2.1. (Experimental Regret (e-Regret)) For a MAB problem with time

horizon T , action choice X ∈ {x1, ..., xk} (where K = |X| ∈ N, K ≥ 2 represents the number

of choices), and reward Y , the optimal experimental action x∗ is considered the one that

maximizes the interventional expected reward, defined as:

x∗ = argmax
x∈X

P (yx) (3.3)

The e-regret experienced by an agent using choice policy π at trial 0 < t < T is defined as:

rt = P (yx∗)− yxπt (3.4)

The cumulative e-regret experienced by an agent across all T trials is thus:

RT =
T∑
t=1

rt =
T∑
t=1

P (yx∗)− yxπt (3.5)

In early trials, learning agents in MAB settings will typically experience high amounts of

regret when little is known about each arm’s reward distributions, which later attenuates as
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learning occurs and π → π∗ where π∗ is the optimal policy. Thus, an agent that attempts

to maximize its reward will equivalently attempt to minimize its regret.

Importantly, note that Def. 3.2.1 defines regret in terms of the interventional distributions

P (Yx) = P (Y |do(x)). The traditional MAB literature thus makes the assumption that the

optimal arm is the one discovered by experimental methods, either assuming the inexistence

of UCs between X and Y or, that if they do exist, their influence will be disrupted by

randomized action exploration. In Example 3.2.1, the agent explores advertisement choices

(i.e., its choice of actions) for each user group before continuously exploiting the one with

the best click-through rate. As such, the agent in this example is minimizing the traditional

definition of regret, as given in Def. 3.4. While this definition may be appropriate for some

decision-making scenarios, the assumption of no-confounding between choice and reward is

certainly less general than definitions that account for the potential presence of UCs. This

begs the question of whether the standard definition of regret should be used in scenarios

with confounded decision-making.

Consider again the Greedy Casino Example 3.1.1, in which the decision-makers are gam-

blers on the casino-floor. We know from the example’s description that the unobservant

gambler’s slot-machine choice is confounded by the casino’s manipulative payout policy,

which is a function of the machines’ conspicuousness and the gamblers’ intoxication. These

gamblers are simply choosing machines “by whim,” as suggested by System 1 cognitive pro-

cesses that make heuristic decisions (as described in Chapter 1; see [TK75]). However, if

we, as observant gamblers, decide to take a more principled approach to maximizing our

winnings (as by the dictates of the more methodical System 2 cognitive processes), we might

consider applying MAB learning algorithms to find the optimal machine choice (if any).

Acting as rational agents, we may be tempted to surmise that, since we cannot know the

states of the system’s UCs, the standard definition of regret should apply, and thus, we

should experience no regret for any machine choice because P (Yx0) = P (Yx1) (see Table

3.1(b)). Yet, this stance ignores the difference between the observational and experimental

payout rates (P (Y |X) 6= P (Y |do(X)), implicating UCs that must mutually affect gamblers’

decisions and rewards; this inequality also implies that if we knew the state of the UCs at
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the time of decision-making, we could potentially experience regret for some of our choices

(see true payout distribution in Table 3.1(a)).

We will soon demonstrate that, in the presence of UCs, agents can indeed perform better

than simply maximizing the experimental distribution P (Yx); however, to discuss improve-

ments over experimental maximization, we require a new, more general definition of regret.

As such, to distinguish confounded decision-making scenarios like the Greedy Casino from

traditional MAB problems, we will refer to the former as a Multi-Armed Bandit problem

with Unobserved Confounders (MABUC). The new definition of regret in MABUCs consid-

ers the regret an agent would experience had they known the state of the UCs at the time

of their decision, which we define, and refer to, as “Unobserved Confounder” Regret (or

u-Regret for short):

Definition 3.2.2. (Unobserved Confounder Regret (u-Regret)) For a MABUC prob-

lem with time horizon T , action choice X ∈ {x1, ..., xk} (where K = |X| ∈ N, K ≥ 2

represents the number of choices), reward Y , and unobserved confounders U (where U is an

unobserved common cause of X and Y ), the optimal action x∗(u) is considered the one that

maximizes expected reward under confounder state U = u, defined as:

x∗(u) = argmax
x∈X

P (yx|u) (3.6)

The u-regret experienced by an agent using choice policy π at trial 0 < t < T is defined as:

rut = P (yx∗(ut)|ut)− yxπt (3.7)

The cumulative u-regret experienced by an agent across all T trials is thus:

Ru
T =

T∑
t=1

rut =
T∑
t=1

P (yx∗(ut)|ut)− yxπt (3.8)

Def. 3.2.2 is identical to Def. 3.2.1, except that the optimal action (and its associated

reward) are predicated on the state of the UCs Ut = ut at each round, noting that we make

no restriction that the state of the UCs need stay the same at every round (e.g., the Greedy

Casino’s machine lights may stop blinking between rounds, or the gamblers may sober up,

etc.). Plainly, to compute this version of regret, we would require a fully-specified model in
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which we know not only the UC states at each round, but also the rewards associated with

each action under each ut ∈ Ut. Still, for discussing theoretical algorithmic performance on

various MABUC instances, it will prove useful to have a metric that compares the “true”

regret of an agent’s chosen action (as by full knowledge of the system) despite the fact that

in realistic settings the agent will not possess the same knowledge.

Apropos, consider that we are not simply habitués of the Greedy Casino, but also ma-

chine learning researchers who decide to run a battery of experiments using standard bandit

algorithms to test the new slot machines on the casino floor, including: ε-greedy [SB98],

Thompson Sampling [Sco10], UCB1 [ACF02], and EXP3 [ACF03]. If we use the standard

definition of regret (i.e., e-regret from Def. 3.2.1) to assess our algorithms’ performances,

then (since there is no optimal experimental arm choice) we would experience no e-regret.

However, if the casino owners observed our experiments and instead used the more general

MABUC definition of regret (i.e., u-regret from Def. 3.2.2), they would observe that none

of our algorithms ever learn the optimal arm under each configuration of U . In general,

agents that never learn an optimal policy experience linear regret, in which limt→∞ rt 6= 0

and so Rt = O(t). In Figure 3.1, we depict the linear u-regret experienced by traditional

bandit algorithms in the Greedy Casino example by plotting the probability that the agent

chooses optimally at trial t and the cumulative u-regret (Ru
t ) experienced by trial t. We also

plot the u-regret of a bandit player who decides which machine to play by a coin flip [Exp.]

(akin to the investigator’s experimental study) and that of the typical gambler playing by

whim [Obs.] (i.e., the observational play strategy whereby gamblers playing by whim obey

fx = D ⊕B).

Figure 3.1 illustrates several important points about the traditional decision-making poli-

cies in our MABUC problem: (1) each experiences linear u-regret, (2) each performs no better

than randomly choosing a machine to play (as compared to the [Exp.] graph), (3) gamblers

playing by whim or heuristic [Obs.] (blue line) not only experience linear regret, but also

never choose the optimal arm. Our goal throughout the rest of the chapter will thus be

to devise a strategy that minimizes u-regret, and so maximizes reward in bandit learning

scenarios where the decision and reward are confounded by unobserved factors. We begin
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Figure 3.1: Plots of traditional MAB algorithm performance in Greedy Casino MABUC

scenario. (Left) The probability that an algorithm chooses the optimal arm as a function of

time. (Right) The cumulative u-regret experienced by each algorithm as a function of time.

this effort by formalizing bandit scenarios as causal inference problems, and use the tools

developed in Chapter 2 (along with several new insights afforded by active learning agents)

to create a novel MABUC algorithm.

3.3 Bandits as Causal Inference Problems

Towards developing a strategy for mitigating u-regret in scenarios with confounded decision-

making, we must first formalize bandit problems in a language akin to that of Structural

Causal Models (SCMs, Def. 2.1.1), which will allow us to model decision-making, con-

founding factors, and the means by which they distinguish observational, experimental, and

counterfactual reward quantities.

We will begin by modeling two important facets of the Greedy Casino Example 3.1.1,

which employs SCMs to relate the UCs B,D (whether or not the machines are blinking and

whether or not the gambler is drunk, respectively), the gambler’s machine choice X ∈ x0, x1,
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Figure 3.2: Graphical models of scenarios in the Greedy Casino Example 3.1.1. (a) Graph of

observational model G(M3) wherein unobserved confounders B,D influence both the agents’

decisions and their associated rewards. (b) Graph of the experimental / interventional model

G(M3x) wherein the decision-making influence of the UCs is severed by random assignment,

though their influence on the reward Y remains.

and the received reward Y ∈ 0, 1:

1. The observational setting, M3 in Figure 3.3(a), models the machine choices of gamblers

playing “by whim” such that fx = D ⊕ B (i.e., M3 is the intervention-free model of

the environment as described by Def. 2.2.1). The expected reward for agents in this

model, as indicated in Table 3.1(b), can be computed:

P (Y = 1|x) =
∑
b,d

P (y1|x, b, d)P (d, b|x)

=
∑
b,d

P (y1|x, b, d)
P (x|d, b)P (d)P (b)

P (x)

= 0.15

(3.9)

2. The experimental setting, M3x in Figure 3.3(b), models the machine choices of gamblers

that were randomly assigned to play at a machine, as by intervention do(X = x) (thus

severing the influence of the UCs on each gamblers’ decision) in the state investigator’s

experiment. The expected reward for agents in this model, as indicated in Table 3.1b,
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can be computed:

P (Y = 1|do(x)) =
∑
b,d

P (y1|do(x), b, d)P (b, d|do(x))

=
∑
b,d

P (y1|x, b, d)P (b)P (d)

= 0.30

(3.10)

Having detailed the observational and experimental models of the Greedy Casino exam-

ple, note that we have yet to consider any counterfactual quantities implied by M3. To see

why counterfactuals may be instrumental to our decision-making in the Greedy Casino, con-

sider what a gambler’s natural machine choice tells us about the state of the UCs influencing

their decision. In particular, with the fully-specified model, we know that fx = D ⊕ B,

P (x) = P (b) = P (d) = 0.5 ∀ x, b, d and P (d, b|x) = P (x|d,b)P (d)P (b)
P (x)

.

D = 0 D = 1

P (D,B|X) B = 0 B = 1 B = 0 B = 1

X = 0 0.50 0.00 0.00 0.50

X = 1 0.00 0.50 0.50 0.00

Table 3.2: Probability of each UC state {B = b,D = d} given the observationally chosen

arm X = x in the Greedy Casino example as modeled by SCM M3.

In words, if we observe a gambler choosing X = 0, we know that either {B = 0, D = 0}

or {B = 1, D = 1}, and that all other configurations of B,D are impossible (and vice

versa for the case when we observe X = 1). Plainly, Table 3.2 illustrates that observing a

gambler’s observationally chosen arm provides more information about the state of the UCs

than lacking such an observation (since P (b, d) = 0.25 6= P (b, d|x) ∀ b, d, x in absence of

observations about X). So, whether or not we know the states of the UCs, we can observe

the choices that they have influenced. We are thus left with an important, counterfactual

question: “Given that a gambler chose machine x′, what would their chances of winning

have been had they chosen some other x instead?” This query is precisely that captured by

the Effect of the Treatment on the Treated (ETT) as introduced in Chapter 2 (Def. 2.4.2),

in which we are interested in finding P (Yx|x′).
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To witness why this quantity is desirable, let us first assume that we have the fully-

specified model, M3, and know the reactive payout policy designed by the casino in Table

3.1. We can use the three-step counterfactual computation algorithm described in Theorem

2.4.1 to compute P (Yx|x′).

Example 3.3.1. Let us, without loss of generality, demonstrate how to compute P (Yx0 =

1|x1).

1. Abduction: Update P (b, d) by evidence x1 to obtain P (b, d|x1). Here, we would

update P (b, d|x1) to produce the corresponding row of Table 3.2: P (b0, d1|x1) =

P (b1, d0|x1) = 0.5 and P (b0, d0|x1) = P (b1, d1|x1) = 0.

2. Action: Modify M by the action do(x0) to obtain the submodel M3x; this amounts to

deleting the equation fx from M3, or removing the incumbent arrows to X in G(M3),

and forcing fx to the constant x0. Let M ′
3x be the intervened submodel having forced

fx = x0 and updated PM ′3x(b, d) = P (b, d|x1).

3. Prediction: With M ′
3x in hand (in concert with the casino’s payouts from Table 3.1),

we can now compute our target P (Yx0 = 1|x1):

P (Yx0 = 1|x1) = PM ′3x(Y = 1)

=
∑
b,d

PM ′3x(Y = 1|b, d)PM ′3x(b, d)

= PM ′3x(y1|b1, d0)PM ′3x(b1, d0) + PM ′3x(y1|b0, d1)PM ′3x(b0, d1)

= 0.5 ∗ 0.5 + 0.4 ∗ 0.5

= 0.45

Note that in the computation above, that PM ′3x(b0, d0) = PM ′3x(b1, d1) = 0 from our update

in step 1, which explains why these terms are missing from the summation (they’ve been

nullified). Repeating this process for all other combinations of x, x′ ∈ X, we would obtain

the following table:
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P (Yx = 1|x′) x′ = 0 x′ = 1

x = 0 0.15 0.45

x = 1 0.45 0.15

Table 3.3: Results of computing the counterfactual P (Yx = 1|x′) ∀ x, x′ ∈ X in the Greedy

Casino example using the fully-specified model M3 and its associated P (x, y, b, d).

The interpretation of these counterfactual computations is clear: in observational cir-

cumstances when an agent in the system chose arm x′, it was much better off (i.e., 3 times

more likely to receive a reward) choosing the opposite arm x instead; an intelligent agent

presented with this information would suffer the human experience of regret, knowing that

the action alternative to the one chosen would have had a more likely desirable outcome.

That said, as mentioned earlier in the text, the human notion of regret (as represented in

Table 3.3) is useful for learning insofar as it allows for changes in future behavior that avoids

the regretted actions under the same circumstance U = u in which it was experienced. As

such, if we reinterpret Table 3.3 as indication that the circumstances in which x′ was chosen

by one’s natural inclinations3 (i.e., X = fx(pax, ux)) were those in which x 6= x′ was a better

choice, then those natural inclinations can provide information about the state of the envi-

ronment that decided them (as evidenced by the information provided by the observed arm

choice X about the state of U in Table 3.2). This presents the ETT as a promising quantity

to consider optimizing in MABUC settings, given that in the present MABUC problem of

the Greedy Casino, there is no optimal arm from either the experimental or observational

perspective (Table 3.1b).

However, we must note that the computations in Example 3.3.1 are performed post-hoc,

meaning that the observed evidence is from actions taken in the past and with the aid of a

fully-specified model. In order for an active learning agent to be able to use the ETT as a

tool in a MABUC scenario, it must surmount two challenges: (1) it must be able to compute

the ETT in the absence of a fully-specified model (and thus, in the absence of knowledge

3Throughout the text, we will use terms like “natural,” “observational,” or “intended” choice to indicate
a decision that was made under intervention-free circumstances (i.e., a choice X made by X = fx(pax, ux)),
like in model M3 of the Greedy Casino example.
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about the state of any unobserved factors), and (2) it must be able to use the observational

arm choice as predictive evidence for a choice that is about to made rather than as reflective

evidence about choices that were made in the past.

To address these challenges, we will first define a new type of SCM that will be useful for

modeling a learning task like that in a MABUC problem, and which bridges an important

gap between SCMs used to model the offline domain. For our purposes, traditional models

of the observational and experimental facets of MABUCs like the Greedy Casino (M3 and

M3x, respectively) have a number of shortcomings:

1. They are models of offline aggregates. In other words, they represent offline

data collected from many subjects and so do not explicitly model agents as individuals

learning through active experimentation (in which experience gathered by trial t in

some learning task will affect decisions in future trials t+ δ).

2. They do not explicitly model changing decision policies or learning over

time. To illustrate, they do not give prescriptions for how an individual can at trial

ti act by whim (i.e., as a function of their observed and unobserved environments for

choice X = fx(pax, ux)), at trial tk act experimentally (e.g., by the outcome of a coin

flip that disrupts their natural predilections), or at another trial tm acknowledge their

whim and choose to act differently (for ti 6= tk 6= tm). In other words, active agents

must be able to discern which of their actions (and their associated outcomes) were

performed by whim, by experiment, or by a counterfactual impetus (to be formalized

shortly), the distinction between which will be useful for learning.

As such, we define a SCM for an individual, active learning agent as a Structural Decision

Model.

Definition 3.3.1. (Structural Decision Model (SDM)) A Structural Decision Model

(SDM) models a sequential decision scenario for a learning agent over some T trials, and is

a 2-tuple, MΠ = 〈M,Π〉 where:
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1. M is a Structural Causal Model (Def. 2.1.1) of the un-intervened system (i.e., the

observational model).

2. Π is a set {Π1,Π2, ...} of decision variables, which are endogenous variables in M such

that Π ⊆ V .

Definition 3.3.2. (Decision Variables) A decision variable Πi ∈ Π is an endogenous

variable in a SDM with the following attributes:

1. The learning agent has direct, manipulable control over variables in Π (i.e., all variables

in Π are amenable to external intervention).

2. All decision variables are functionally decided by a policy mapping any observed co-

variates, and the agent’s decision history Ht (to be defined) up to the present trial t

(where 0 < t < T ), to a decision: Πi,t = fπi(paΠi,t, uΠi,t, ht) .

In graphical representations of SDMs, there will be only one key difference from SCMs:

we will, by convention, model decision variables as closed squares, rather than circles, to

distinguish them from covariates over which the agent has no control. For instance, in

MABUC problems, arm selection X will qualify as a decision variable because the agent

has manipulable control over it (and can, importantly, choose to randomly select an arm

to mimic an experimental trial, a la do(X = x)). However, covariates like sex and age

will not qualify as decision variables, because the agent cannot actively select their values.

Decisions in learning environments are also functions of the agent’s past experience with

those decisions, which are modeled in the agent’s decision history, defined next:

Definition 3.3.3. (Decision History) A decision history Ht is a sequence of all co-

variates, decisions, and outcomes of past trials (up to trial t) in a sequential decision

task modeled by a SDM such that for covariates Z, decisions X, and outcomes Y , Ht =

{Z0, X0, Y0, ...Zt−1, Xt−1, Yt−1}. It is assumed that this data structure can distinguish deci-

sions that were made observationally (i.e., Xt = fxt(pax,t, ux,t)) versus those made experi-

mentally (i.e., via do-intervention like a coin flip, Xt = do(xt)).
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Figure 3.3: (a) Depiction of a confounded decision-making scenario for decision variable

X as modeled by a SCM, like the Greedy Casino MABUC model M3. (b) Depiction of the

same scenario using a SDM for a learning MABUC agent.

Put succinctly by analogy, SCMs are to population modeling as SDMs are to individual,

learning-over-time agent modeling – a distinction highlighted by a comparison between the

SCM in Figure 3.3(a) versus the same system modeled from the perspective of a learning

agent in the SDM in Figure 3.3(b). The distinction can be further expanded as SCMs

capturing a system bereft of learning nor attempts to maximize some reward (i.e., irrational

decision-making) and SDMs capturing a system with these objectives in place (i.e., rational

decision-making); modeling the influence of an agent’s experiential history plays a key role

in this distinction.

Armed with the new tool of modeling an agent’s learning process in a MABUC scenario

using a SDM, we now rejoin our original goal: to find a means of mitigating u-regret experi-

enced by agents in a MABUC scenario. In Example 3.3.1, we illustrated that computing the

ETT from a fully specified model of the Greedy Casino scenario allowed us to retrospectively

disambiguate4 the “best” arm choice in a given trial using the action that the agent chose

(observationally) in practice. As such, we identified this counterfactual quantity as one that,

were it computable prospectively, could guide our agent to an optimal decision-making policy

even when confounded by unobserved factors. In the following section, in concert with our

4Recall that from the observational (P (Y |X)) and experimental (P (Y |do(X))) reward distributions in
the Greedy Casino (Table 3.1(b)), neither arm appears to ever be a superior choice to the other. In other
words, e-regret is 0 for any arm choice, but the same cannot be said for u-regret.
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definition of SDMs, we demonstrate that this is indeed possible, and take our first steps in

attaining empirical estimations of counterfactual quantities.

3.4 Intent-specific Decision-making

To review the limitations faced by an agent in an arbitrary MABUC setting, we assume that

the learner (a) has no access to the fully-specified model of the system, and as a corollary,

(b) does not know the state of the unobserved confounders (UCs) at every trial. Yet, we

wish to be able to estimate the ETT P (Yx|x′) to gain evidence about the state of the UCs,

and so choose an arm that is superior for a given trial’s circumstance U = u. As such, if

our agent can neither know nor measure U , we turn instead to any observable factors that

might serve as proxies for its state.

A solution thus presents itself: an agent that is influenced by some UCs may not know

the state of these unobserved factors, but it will know the arm choice that is suggested by

the UCs. Consider an inebriated gambler (D = 1) approaching some blinking slot machines

(B = 1) in the Greedy Casino; the individual may not know why they desire to play at the

X = 0 model (i.e., they may not know that the blinking lights of X = 0 are palatable to

inebriates), but they do know that they want to play at the X = 0 model. In this capacity,

the agent’s observationally intended arm choice (i.e., the one suggested by environmental

factors via X = fx(pax, ux)) serves as evidence for the state of the environmental factors,

observed or otherwise, that suggested that choice. Moreover, the information about the

environment that is carried by the agent’s intended, but not necessarily yet enacted, arm

choice will be the same as that observed from an arm choice that was observationally enacted

in the past, like those used to compute the ETT from a fully-specified model in Example

3.3.1.

We can now begin to formulate a new decision strategy for agents in MABUC settings

that fuses the information about the environment curried by observational arm choices while

being able to choose an arm that is contrary to the one suggested by the agent’s predilections.

In practical terms, an agent’s intent serves as a proxy for the state of the environment, which
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the agent can use as a context in which to better inform their decisions. Informally, what

we will deem intent-specific decision-making (ISDM) considers decisions to be a two-step

process: (1) in which the agent assesses its predilections in the current circumstance, and

then (2) acts in a way that is a function of the outcomes of actions that were observed in the

same circumstance in the past, using their intended action as an indication of circumstantial

similarity. The steps of ISDM can be sketched as follows:

1. An agent about to make a decision observes its intended arm choice (i.e., its observa-

tional choice).

2. The agent then pauses, not necessarily enacting that intent.

3. The agent makes a final arm choice that is a function of its history and intended arm

choice.

We will soon demonstrate the benefits of ISDM, but first must formalize some of its

aspects, starting with the notion of an agent’s intent.

Definition 3.4.1. (Intent) For all decision variables (Def. 3.3.2) Πi ∈ Π in a SDM (Def.

3.3.1) MΠ, let the agent’s intended arm choice IΠi,t = iΠi,t ∈ Πi be the choice that the agent

would make observationally at unit/trial t for the present unit’s/trial’s configuration of UCs

Ut = ut. Formally, let IΠi,t = fΠi(paΠi,t, uΠi,t).

Definition 3.4.2. (Intent-specific Decision-making (ISDM)) For any decision variable

Πi ∈ Π in a SDM, an agent whose observational decision policy (i.e., its intent IΠi) is replaced

by another fΠi that is a function of IΠi is said to be practicing intent-specific decision-making,

because any decisions made will be considered (as well as their outcomes recorded) within the

strata of a particular intent condition.5 Formally, for each ISDM-agent’s decision variable

Πi ∈ Π, Πi = fΠi(paΠi , iΠi , ht)
6

5This also means that, as an observed context, intent is recorded in the agent’s SDM history, IΠi ⊆ Zt ∈
Ht.

6Note that choices made in observational settings, as captured by SCMs without interventions (Def.
2.2.1), are a special case of ISDM such that the agent’s intent is always followed, viz., Πi,t = IΠi,t = iΠi,t.
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Figure 3.4: Depiction of intent-specific decision-making (ISDM) in the prototypical MABUC

SDM with HistoryHt, decision variableXt, intent It, unobserved confounder Ut, and outcome

Yt.

We can depict the SDM of an agent practicing ISDM in the Greedy Casino MABUC in

Figure 3.4. Importantly, we note that what was once an unblocked back-door path via U

between the decision variable X and the reward Y is now blocked by the rules of d-separation

(Def. 2.1.3) given that the agent’s intent I is assumed to always be observed for each decision

node in the graph.7

3.4.1 ISDM for Reinforcement Learning

We now return to the reinforcement learning setting of the Multi-Armed Bandit Problem

with Unobserved Confounders (MABUC), in which our objective was to find a means of

achieving sub-linear u-regret (Def. 3.2.2). We will soon demonstrate that ISDM provides

such a means, but will first place it in the context of the decision theory literature, and

demonstrate how it provides a bridge between existing, and competing, theories.

Decision theory makes distinctions between two categories of decision-making tasks [ELH15]:

1. The dualistic category assumes that the deciding agent and the environment in which

it is making decisions as separate entities. The agent only affects the environment

7This is not a particularly strong assumption, given that, by virtue of each decision node in a SDM being
labeled as such, it is assumed that the agent already possesses some (possibly confounded) choice policy that
dictates its action for that particular decision, which can thus be used as its intent.
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through its actions, but the environment provides no information about the agent. A

typical example of a dualistic model is for an agent playing chess.

2. The physicalist category assumes that the agent is embedded in the environment that

it is also affecting with its actions, and so the environment may have a hidden state

that mutually affects the agent. A typical example of a physicalist model is in robotic

exploration.

Plainly, the MABUC setting, on which the present work focuses, belongs to the physi-

calist perspective, given that agents are assumed to be affected by UCs in the environment.

Through this perspective, agents still attempt to maximize reward (or, in the decision the-

ory vocabulary, agents attempt to maximize utility), but the target quantity that a policy

should optimize is an ongoing debate. The two established camps in this debate fall within

Evidential Decision Theory and Causal Decision Theory, defined and reviewed next:8

Definition 3.4.3. (Evidential Decision Theory (EDT)) [Bri17, Ahm14] Evidential De-

cision Theory states that an agent’s action X may both influence and be evidence of the

state of its environment, U . EDT agents thus maximize the reward Y from an observational

(Def. 2.2.1) perspective, such that the optimal action x∗ ∈ X is defined as:

x∗ = argmax
x∈X

P (Y |x) (3.11)

Of note, evidential decision theory is typically considered within scenarios in which the

agent possesses knowledge of the observational reward distribution prior to decision-making.

The optimal arm choice under this context is thus the one that maximizes the observational

distribution apart from any sort of empirical sampling technique to derive that distribution.

As such, though EDT is well defined in these traditional contexts (wherein the agent begins

with some amount of omniscience pertaining to the scenario at hand), its analogy to MABUC

8EDT and CDT are traditionally discussed under metrics of utility and expected utility, which we simplify
herein to be directly comparable to the MABUC problem (with Bernoulli reward) without loss of generality.
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problems is not clear since we define observational choices as those that are congruent with

intent, and therefore not amenable to experiential maximization. For this reason, we can-

not compare its performance as an optimization criteria in the MABUC, though we may

discuss observational rewards as those amounting from environmental influences. By con-

trast, causal decision theory provides an optimization metric that may involve an individual

agent’s experiential history, though one that ignores the effects of any UCs.

Definition 3.4.4. (Causal Decision Theory (CDT)) [Wei16, SS90] Causal Decision

Theory states that an agent’s action X is a rational choice that is not indicative of the

state of the environment; choices are made as by intervention do(X = x). CDT agents thus

maximize the reward Y from an experimental (Def. 2.2.3) perspective, such that the optimal

action x∗ ∈ X is defined as:

x∗ = argmax
x∈X

P (Y |do(x)) (3.12)

EDT and CDT boast a rich history of debate in which proponents advocate their strategy

across a variety of philosophical problems like Newcomb’s Paradox [Noz69]. However, as

we have earlier noted, neither EDT nor CDT provide sufficient maximization criteria for

MABUC instances, in which the goal is to minimize u-regret; in the Greedy Casino Example

3.1.1, recall that neither the observational (as would be maximized by EDT) nor experimental

(as would be maximized by CDT) reward distributions tout an optimal arm choice (Table

3.1(b)), nor does either distribution minimize the u-regret (Figure 3.1). However, a fusion

of these two theories can yield a means of approaching MABUC problems: treat the agent’s

intent (i.e., the X from EDT) as a context in which to then interventionally (i.e., the do(X)

from CDT) make a final decision. This is precisely the quantity encoded in the counterfactual

ETT (Def. 2.4.2) and a new target optimization quantity that we call Regret9 Decision

Theory, defined below.

9Herein, the term “Regret” is intended to highlight both the counterfactual nature of this decision theory
and bind it to the vocabulary of reinforcement learning problems.
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Definition 3.4.5. (Regret Decision Theory (RDT))10 [BFP15] Regret Decision Theory

states that an agent’s intended action I = i ∈ X serves as evidential context for the state

of its environment, in which it may then interventionally act. RDT agents thus maximize

the reward Y from a counterfactual (Def. 2.4.1) perspective, such that the optimal action

x∗ ∈ X, conditioned on the intended action x′, is defined as:

x∗ = argmax
x∈X

P (Yx|x′) (3.13)

Note that Eq. 3.13 simply makes the ETT (Def. 2.4.2) the new maximization target for

MABUC agents, as we intimated that it should be from Example 3.3.1. All that remains

is to find a means of estimating the ETT empirically (i.e., without needing to compute a

counterfactual quantity requiring a fully-specified model), which we will demonstrate can be

done using ISDM. The key contribution of this dissertation exploits the equivalence between

an agent’s observationally / naturally chosen action (Def. 2.2.1) and its intent (Def. 3.4.1),

and proves that intent facilitates an empirical measurement of the ETT.

Theorem 3.4.1 (Empirical Counterfactual Estimation). [FPB17] Let X be a decision vari-

able (Def. 3.3.2) in a SDM (Def. 3.3.1) with measured outcome Y , and let I be the agent’s

intent (Def. 3.4.1) for X. A counterfactual quantity P (Yx|x′) for evidence x′ and antecedent

x (where x, x′ ∈ X and x need not be equivalent to x′) can be estimated empirically us-

ing ISDM (Def. 3.4.2). Formally, we may write the counterfactual query in interventional

notation such that

P (Yx|x′) = P (Y |do(X = x), I = x′) (3.14)

Proof. See appendix for proof of Theorem 3.4.1.

Because the RDT is equivalently an interventional quantity using ISDM, we have also

shown that the ETT, a counterfactual expression of the same format, can be estimated

10We have interchangeably referred to RDT as the Regret Decision Criteria (RDC) in other work.
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Figure 3.5: Depiction of the intent-specific decision-making (ISDM) process during a single

trial of a MABUC sequential decision learning task.

empirically. Thus, we now possess a target maximization quantity with the means of reducing

u-regret in a MABUC problem.11

To visualize the process of an ISDM agent operating in a MABUC scenario, consider the

diagram in Figure 3.5, the steps of which are detailed below.

1. Unobserved confounders are realized in the environment, though their states are un-

known to the agent.

2. From these UCs and any other observed features in the environment, the agent’s heuris-

tics suggest an action to take, i.e., its intent.

3. Based on its intent and history of context-action-reward triplets (in which intent is

considered a member of context), the agent commits to a final action choice, “pulling”

a selected arm.

11It is understood that the ETT can be computed for binary decisions or when the backdoor criterion
holds [Pea00, Ch. 8], but it was not believed to be estimable for arbitrary decision-models nor dimensions
prior to the development of RDT.
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Figure 3.6: An ISDM agent’s counterfactual history in which rewards are recorded by inten-

t-context I (columns) and final-arm-choice X for an arbitrary K-armed MABUC instance.

4. The action’s response in the environment (i.e., its reward) is observed, and the collected

data point is added to the agent’s counterfactual history (as a consequence of Theorem

3.4.1).

Specifically, an ISDM agent’s counterfactual history will be recorded in a tabular data

structure akin to Figure 3.6.

Before we provide empirical support for ISDM in both simulations (Sec. 3.5) and human-

subject trials (Ch. 4), we will prove some of its theoretical guarantees in the following section.

3.4.2 ISDM Theoretical Guarantees

In the previous section, we intimated that intent (Def. 3.4.1) serves as an observable proxy

for the state of any unobserved confounders between an agent’s action and its associated

reward, thus giving the agent a means of reducing u-regret (Def. 3.7) in a MABUC problem.

However, the extent to which intent-specific decision-making (Def. 3.4.2) can mitigate u-

regret depends on the particular MABUC instance’s functional relationship between the UCs

and the decision X, i.e., U → X (and thus, for ISDM, U → I). Indeed, as demonstrated in

Table 3.2, the ability of intent to provide information about the state of U depends on both

the true reward Y parameterization, Y = fY (U,X), and the joint distribution over P (I, U).

This suggests that there are MABUC instances in which ISDM may fully mitigate u-regret

(as in the Greedy Casino Example 3.1.1, demonstrated in the simulations to follow), but
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other (arguably highly artificial) instances where it may not.12

To characterize the instances in which the version of ISDM presented in this chapter may

not fully reduce u-regret, we must first introduce a new metric of regret specific to ISDM

agents.

Definition 3.4.6. (Intent-specific Decision-maker Regret (i-Regret)) For a MABUC

problem with time horizon T , decision variable X ∈ {x1, ..., xk} (where K = |X| ∈ N, K ≥ 2

represents the number of choices), reward Y , and intent I ∈ {x1, ..., xk} (where I is the intent

experienced for decision X), the optimal action x∗(i) is considered the one that maximizes

expected reward under intent state I = i, defined as:

x∗(i) = argmax
x∈X

P (yx|i) (3.15)

The i-regret experienced by an agent using choice policy π at trial 0 < t < T is defined as:

rit = P (yx∗(it)|it)− yxπt (3.16)

The cumulative i-regret experienced by an agent across all T trials is thus:

Ri
T =

T∑
t=1

rit =
T∑
t=1

P (yx∗(it)|it)− yxπt (3.17)

Equipped with this definition, we demonstrate that ISDM is superior to traditional

decision-making strategies in MABUC problems.

Theorem 3.4.2 (RDT u-regret Reduction is Superior to CDT). Let Ru
t be the cumulative

u-regret (Def. 3.2.2) experienced by an agent in a MABUC problem by trial t. If Ru
t (CDT )

represents the u-regret experienced by a CDT agent and Ru
t (RDT ) represents the u-regret

experienced by an RDT agent, then as t → ∞, Ru
t (RDT ) ≤ Ru

t (CDT ) for all possible

MABUC parameterizations.

Proof. See appendix for proof of Theorem 3.4.2.

12This issue is addressed in Ch. 6.
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Figure 3.7: Graphical depictions of expected reward in intent-specific strata of Yx. Coun-

terfactual quantities are displayed in purple, experimental in orange, and observational in

blue. (a) Demonstrates a scenario wherein RDT provides a superior maximization target (as

in the Greedy Casino Example), and (b) depicts one in which RDT does no better, but no

worse, than CDT.

The result of Theorem 3.4.2 is that, in terms of converging to an optimal choice policy

and mitigating u-regret, RDT agents are always as good, if not better, than CDT agents (the

traditional approach in MAB problems). This result can be visualized in Figure 3.7, wherein

intent-specific reward quantities are always more or equivalently informative as experimental

ones (by virtue of the interventional reward distribution being a probability-weighted sum

over intent-specific arm rewards; see proof). The outcomes of employing a CDT vs. RDT

maximization target are illustrated in Table 3.4.

Strategy (↓) & Scenario (→) MAB MABUC

CDT Converge ¬ Converge

RDT Converge Converge

Table 3.4: Outcomes of employing a CDT vs. RDT maximization target in both MAB and

MABUC scenarios; “Converges” indicates that the strategy will converge to the optimal

choice policy.

58



Convergence may be slower for an RDT agent in a MAB setting than a CDT agent, but

as Theorem 3.4.2 demonstrates, RDT agents obtain strictly more information during play,

and could theoretically be equipped to distinguish a setting of no-confounding and then

switch to a CDT optimization.

Lastly, we consider conditions under which RDT can minimize u-regret.

Theorem 3.4.3 (Sufficiency of i-regret Minimization for u-regret Minimization). Let Ri
t be

the cumulative i-regret (Def. 3.4.6) and Ru
t be the cumulative u-regret (Def. 3.7) experienced

by an ISDM agent in a MABUC problem by trial t. As t→∞, if Ri
t = O(1) then Ru

t = O(1)

if the following equivalence holds:

x∗(ut) = argmax
x∈X

P (yx|ut) = argmax
x∈X

P (yx|it) = x∗(it) ∀ ut (3.18)

In words, sub-linear cumulative i-regret will imply sub-linear cumulative u-regret if the op-

timal action under known confounder state U = ut is the same as the optimal action under

experienced intent I = it for all trials t ∈ T .

Proof. See appendix for proof of Theorem 3.4.3.

In the Greedy Casino Example 3.1.1, observe that when the criteria in Theorem 3.4.3

holds, minimizing i-regret likewise minimizes u-regret due to agreement in optimal arm

choices.

P (yx|D,B);P (yx|I) D = 0 D = 1

B = 0 B = 1 B = 0 B = 1

I = 0 I = 1 I = 1 I = 0

X = 0 0.10; 0.15 0.50∗; 0.45∗ 0.40∗; 0.45∗ 0.20; 0.15

X = 1 0.50∗; 0.45∗ 0.10; 0.15 0.20; 0.15 0.40∗; 0.45∗

Table 3.5: Table illustrating the Greedy Casino MABUC parameterization under which

x∗(u) = x∗(i) ∀ u, implying that i-regret is equivalent to u-regret. Optimal arm choices,

based on maximal expected reward, are indicated by asterisks (*).
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3.5 MABUC Simulations

With Intent-specific Decision-making (ISDM) defined, and its applications to reinforcement

learning formalized through Regret Decision Theory (RDT), we now aim to verify that it

works in practice. Towards this goal, we will demonstrate that ISDM mitigates u-regret

in a variety of MABUC scenarios, firstly (in this section) through simulation support, and

then (in Chapter 4), in a human-subjects study. The first will establish the ground-truth,

illustrating the merit of ISDM in a model known to the experimenter, and the second will

showcase its merit in a real-world MABUC scenario.13

3.5.1 Simulation Interpretation

Before we detail the specifics of the MABUC simulation procedure, we will describe two

similarly modeled scenarios to which the simulations are expected to apply. We should

also note that the following scenarios are both modeled by the prototypical MABUC SDM

(Def. 3.3.1) displayed in Figure 3.4. These scenarios distinguish between what entities in

the environment are the learning agent (or simply, agent, for short) and those that are the

actors. An agent can be defined as the learning, rational decision-maker who is maintaining

a history of intents, actions, and payouts as well as a policy that maps each trial’s intent to

a finally-chosen action (including all of the balancing between exploration and exploitation

as might be assumed within a dynamic experiment or traditional MAB problem). An actor

can be defined as the entity who is experiencing the intent (and who is assumed to be under

the influence of confounding factors between the choice and feedback variables) and who is

making a final arm choice.

There are reasonable scenarios that are captured when the agent and the actor are the

same entity, as well as those in which they are separate. We will dissect these different

scenarios in reference to Figure 3.8.

13Following [BFP15], other studies have shown that ISDM successfully applies to reinforcement learning
tasks wherein trials are not independent in what are known as Markov Decision Processes with Unobserved
Confounders [ZB16].
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Figure 3.8: Interpretations of the MABUC simulations that employ the same SDM, but may

have separate agents and actors. Pictured: [top] the agent (blue) and the actor (also blue)

are the same entity; [bottom] the agent (blue) and actor(s) (purple) are distinct entities. In

both panels, the environment’s states and responses are drawn in orange.

Scenario 1: Agent is the Actor. This scenario presents ISDM as a means of self-

reflection or meta-cognition, in which the learner is the same entity as the one that is affected

by UCs but is also recording its own intent, action, reward histories. In the Greedy Casino

Example 3.1.1, this would be akin to a gambler on the casino floor practicing ISDM as a

rational decision-maker that is cognizant of their own intents being subject to confounding

influences. Other examples of this scenario might include: support for legacy autonomous

decision systems (in which certain policies may not scale to perturbations in the environment

since their inception) or for human decision-makers in MABUC scenarios like the Greedy
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Casino, or other reinforcement learning tasks that require reflection on one’s own decision-

making mechanisms (see Chapter 4 for an experiment that fits this scenario).

In Figure 3.8, Scenario 1 is depicted in the “Agent is Actor” panel with the following

steps:

1. Environmental state of background factors (including any UCs) is realized for a par-

ticular trial in the MABUC.

2. Based on the state of those factors, the agent develops an intended choice (which is

salient to it).

3. Based on its current intent, and history of recorded intents, actions, and rewards, the

agent commits to a final arm choice.

4. The environment provides feedback to the agent based on that choice, which is then

recorded in its history along with the intent and action that accompanied it.

Scenario 2: Agent is the Recommender. This scenario presents ISDM as a recom-

mender system, in which the rational agent is the learner attempting to maximize rewards

for (not necessarily rational) actors. In the Greedy Casino Example 3.1.1, this would be akin

to a recommender machine (which, itself, is not directly affected by any UCs) on the casino

floor, to which actors could divulge their intended arm choice, and the agent would provide

an arm recommendation for the actor to pull. The distinction is that actors may be sensitive

to confounding influences in the environment, resulting in irrational (or non-optimal) deci-

sions, but the agent is not, and can address the same exploration vs. exploitation trade-off in

its recommendations to actors to achieve an optimal intent-specific policy. Other examples

of this scenario might include a recommender system for doctors making treatment decisions

during an outbreak of an unknown ailment, under which a condition could present as a

separate one, but have harmful treatment consequences if the conditions were conflated.

Herein, there are several important assumptions that, if broken, could distinguish Sce-

nario 2 from Scenario 1: (1) We assume that every actor shares the same intent-function, fx

(not necessarily the same intent it at every trial), namely, that the SDM function deciding
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the observational arm choice is the same for all actors (though changes in the environment

between actors may vary the realized values of those functions, like one actor being drunk

and another being sober in the Greedy Casino). Formally, we refer to two actors having the

same intent-function as having homogeneous intent, defined as:

Definition 3.5.1. (Homogeneous Intent) Let A1 and A2 be two agents within a MABUC

instance, and MΠ
A1

be the SDM associated with the choice policies of A1 and likewise MΠ
A2

be

the SDM associated with the choice policies of A2. For any decision variable X ∈ ΠM and

its associated intent Ix = fx, the agents are said to have homogeneous intent if fA1
Ix
∈ FM1

and fA2
Ix
∈ FM2 are equivalent, viz., if fA1

Ix
= fA2

Ix
.

In Chapter 6, we relax this assumption, and demonstrate how heterogeneous intent can

be a boon rather than a restriction. (2) We assume perfect honesty and perfect compliance,

meaning that actors will always divulge their true intent, and will always carry out the

recommendation of the agent. (3) Trials do not represent repeated experiments with the

same actor, but rather, that a new actor has approached the agent with its intent (which, by

assumption (1), is licensed because actors are assumed to be exchangeable), and the agent

then provides its recommendation.

In Figure 3.8, Scenario 2 is depicted in the “Agent is Recommender” panel with the

following steps:

1. Environmental state of background factors (including any UCs) is realized for a par-

ticular trial in the MABUC.

2. Based on the state of those factors, the actor develops an intended choice (which is

salient to it), and divulges this intended choice to the agent.

3. Based on the actor’s expressed intent, and the agent’s history of recorded intents,

actions, and rewards, the agent recommends a final arm choice to the actor.

4. The actor complies with that recommendation (which was made via the agent’s choice

policy, which may be leveraging exploration and exploitation), and pulls the recom-

mended arm.
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5. The agent observes feedback from the environment based on that choice, which is then

recorded in its history along with the actor’s intent and action that accompanied it.

Agent is Actor Agent is Recommender

History is maintained by... Agent Agent

Intent is experienced by... Agent Actor

Arm being chosen according to... Agent Agent

Arm being pulled by... Agent Actor

Each trial involves... The same actor A separate actor

Table 3.6: Summary of two scenarios comparing the identities of the agent and actor in a

MABUC; simulation results can be interpreted as a consequence of either scenario.

In summary, Table 3.6 provides a comparison for differences in how we might interpret

facets of a MABUC problem between the “Agent is the Actor” vs. “Agent is the Recom-

mender” scenarios, but the SDM and simulation results will be the same for each. With these

interpretations in place, we describe the simulation procedure and results in the following

segment.

3.5.2 Simulation Procedure & Results

Intent-specific Decision-making is a decision-making framework that can be flexibly applied

to existing MAB learning algorithms. Note that it gives a prescription for how to reduce

u-regret in decision-making scenarios with unobserved confounders, but it does not provide

a separate algorithm for leveraging exploration and exploitation of arms within each intent

condition in the dynamic experiment sense; for this aspect of the learning problem, we may

consult the MAB literature for approaches on which ISDM can be layered atop. Towards

this end, we chose to use a Thompson Sampling (TS) bandit player (see [OB10, CL11, AG11]

for a review of TS and its results as a competitive MAB learning algorithm) as the basis for

the present simulations.14

14All simulation source code for Chapter 3 can be found at:
https://github.com/Forns/ucla-forns/tree/master/projects/dissertation/ch3.
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Apropos, we next detail two algorithms that will be useful for interpreting the results of

simulations: (1) the algorithm for the actual simulation procedure is described in Algorithm

1 and (2) the algorithm for the RDT-enhanced TS bandit player is described in Algorithm 2.

All choice policy algorithms (TSRDT included) are invoked for a decision in the MABUC-Sim

algorithm for every policy action selection step (Line 7 in Algorithm 1).

Algorithm 1 MABUC Simulation

1: procedure MABUC − Sim(T)

2: Ru ← 0 (initialize cum. u-regret)

3: H ← {} (initialize history)

4: for t = [1, ..., T ] do

5: ut ← fu(...) (realize environmental factors for trial)

6: it ← fx(ut) (intent is initialized for trial)

7: xt ← fΠ(it, ht)
15(policy selects final decision)

8: yt ← fy(xt, ut) (reward is observed from chosen arm)

9: H ← H ∪ {it, xt, yt} (history is updated)

10: rut ← P (Yx∗t |ut)− yt (u-regret is logged)

11: Ru ← Ru + rut (cum. u-regret is updated)

Algorithm 2 RDT Thompson Sampling

1: procedure TSRDT (it, ht)

2: st ← [#Yx0 = 1|it, ...,#Yxk = 1|it]ht (count number of successes for each intent-arm)

3: ft ← [#Yx0 = 0|it, ...,#Yxk = 0|it]ht (count number of failures for each intent-arm)

4: At ← [β(st[1], ft[1]), ..., β(st[k], ft[k])] (sample from beta-dists. of each intent-arm)

5: xt ← argmaxx∈[1,k] At (choose max)

6: return xt

Procedure. All reported simulations are partitioned into rounds of T = 1000 trials

averaged over N = 1000 Monte Carlo repetitions. In brief, at each trial in a single repetition,

(1) values for the unobserved confounders ut and resultant intent it are instantiated by their

15Agents maximizing via RDT will consider the intent, it, but others will not.
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respective structural equations (see Example 3.1.1), (2) the player chooses an arm based

on their given strategy to maximize reward (depending on whether each algorithm invokes

RDT, CDT, or EDT), and finally, (3) the player receives a Bernoulli reward Y ∈ {0, 1} and

(4) records the outcome in the history. In this section, we conducted experiments across

2 reward parameterizations (described below), but the findings generalize across choices of

payout parameters (as proven in the previous section).

Candidate algorithms. CDT Thompson Sampling (TSCDT ) attempts to maximize

rewards based on the CDT optimization criteria, ignoring intent; since other traditional CDT

algorithms will perform more or less equivalently to TSCDT in MABUC scenarios (see Figure

3.1), we omit their performance for clarity. RDT Thompson Sampling (TSRDT ) operates

according to Algorithm 2, maximizing the counterfactual ETT. For baseline comparison, we

also display the performance of an irrational, “observational” player (Obs.) who abides by

intent at every trial, and an irrational “experimental” player (Exp.) who chooses arms at

random.

Evaluation metrics. We assessed each algorithms’ performances with MABUC evalua-

tion metrics: (1) the probability of choosing the optimal arm under each round’s confounder

state Ut = ut, and (2) the cumulative u-regret. As in traditional bandit problems, these

measures are recorded as a function of the time step t averaged over all N round repetitions.

Note that this metric is available to us as the simulation designers, but would be rarely

available in reality without access to the fully-specified model (including knowledge of the

states of the UCs).

Experiment 1: “Greedy Casino.” The Greedy Casino parameterization (specified in

Table 3.1) illustrates the scenario where each arm’s payout appears to be equivalent under

the observational and experimental distributions alone. Only when we concert the two dis-

tributions and condition on a player’s intent can we obtain the optimal policy. Simulations

for Experiment 1 support the efficacy of ISDM (see Figure 3.9). Analyses revealed a signif-

icant difference in the u-regret experienced by TSRDT (M = 11.07, SD = 16.34) compared

to TSCDT (M = 149.22, SD = 14.37), t(1998) = 200.75, p < .001.
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Figure 3.9: Simulation results for Experiment 1, the Greedy Casino scenario.

Figure 3.10: Simulation results for Experiment 2, the Paradoxical Switching scenario.
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(a) D = 0 D = 1

P (y|X,D,B) B = 0 B = 1 B = 0 B = 1

X = 0 i0.40 0.30 0.30 i0.40

X = 1 0.60 i0.10 i0.20 0.60

(b) P (y|X) P (y|do(X))

X = 0 0.40 0.35

X = 1 0.15 0.375

Table 3.7: Paradoxical Switching: (a) Payout rates decided by reactive slot machines as a

function of arm choice, sobriety, and machine conspicuousness. Players’ natural arm choices

under D,B are indicated by the superscript i, to indicate intent. (b) Payout rates according

to the observational, P (Y = 1|X), and experimental P (Y = 1|do(X)), distributions, where

Y = 1 represents winning (shown in the table), and 0 otherwise.

Experiment 2: “Paradoxical Switching.” The Paradoxical Switching parameteriza-

tion (specified in Table 3.7) illustrates the scenario where one arm (X = 0) appears superior

in the observational distribution, but the other arm (X = 1) appears superior in the exper-

imental. Again, we must use RDT to resolve this ambiguity and obtain the optimal policy.

Simulations for Experiment 2 also support the efficacy of ISDM (see Figure 3.10). Analyses

revealed a significant difference in the regret experienced by TSRDT (M = 13.11, SD =

16.81) compared to TSCDT (M = 84.24, SD = 15.89), t(1998) = 97.25, p < .001.

3.6 Conclusion

In this chapter, we demonstrated the problems introduced by UCs in confounded decision-

making scenarios, as motivated by the Greedy Casino example. Moreover, this demonstration

showed that experimental measures of treatment efficacy average the influence of the UCs

over the outcome, and do not consider their state at any given trial to determine the best

unit-level intervention. Counterfactual quantities provide the desired unit-level granularity,

but can only be computed in certain scenarios or in possession of the fully-specified causal

model, including the distribution over UC states. When we do not possess such a model,

but can condition on a deciding agent’s observational arm choice before it is chosen (i.e.,

the agent’s intent), we can empirically estimate the ETT that uses intent as an observed
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proxy for the UC state. Using these new, empirically estimable counterfactual quantities,

intelligent agents can then maximize the efficacy of interventions under the context of intent

by the tenets of a new decision-making theory called Regret Decision Theory (RDT). We

then proved the superiority of RDT versus traditional agents that maximize experimental

rewards in confounded decision-making tasks, and corroborated our theoretical results in

simulated MABUC scenarios.
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CHAPTER 4

Human-Subjects Intent-Specific Decision-Making

The cognitive sciences have studied human counterfactual reasoning in application of

a variety of cognitive tasks (see [Byr16] for an overview). Included in this variety are

counterfactuals as rationalizations of past events, such as a student failing an exam and

regretting that they would have done better had they studied more, or gotten more sleep,

etc. [McC08, TMK12]. Others consider how counterfactuals help humans make causal

inferences; for example, that a drug associated with certain side effects would not have

hindered those that took it had they taken another drug without those effects [SEB05].

Still others have investigated applications tangential to the present work, but include coun-

terfactual reasoning as modulators of emotional experiences (as through survivor’s regret

[TKT11]) and moral judgments (for example, associating blame, sympathy, and punishment

[MMG93, MD05, SG14]).

The present work, however, focuses on application of counterfactual reasoning towards

forward thinking, planning, and decision-making. Previous efforts have studied human coun-

terfactual logic in pursuit of these goals, finding that people tend to leverage past regrets as

motivators for changes in future behavior such as wishing to study more for an upcoming

exam assuming that they would have performed better on past exams had they studied more

[FGS13]. Viewing counterfactual outcomes from past experiences also appears to be tied to a

priming for intentions about future instances of similar scenarios [SM12]. fMRI studies have

lent support for this claim, finding that brain regions associated with episodic memory recall

and planning were activated during exercises with counterfactual thought [SBD15, DSM15].

Chapter 4 is an extended version of [FWB].

70



This latter binding of counterfactual inference to experiential history may support the

model proposed by the tenets of intent-specific decision-making (ISDM) since they are based

on empirical counterfactual estimation with only a partially-specified causal model (i.e., with-

out knowing the precise functions that decide the value of a particular variable or knowledge

of the identities and states of any unobserved factors). The plausibility of the ISDM frame-

work as explanation for how humans learn through counterfactual reasoning is a chief query

in the present chapter, but other theories have also tried to explain the mechanisms of retro-

spect. Several suggest that humans focus on counterfactual “fault lines,” common additive

counterfactuals that add an extra proposition to the event in question, such as “If he had

only worn a seat-belt, he would not have been injured in the car crash” (where the fault line

is the addition of the seat belt to the past scenario) due to those additions being within the

agent’s locus of control [ER08]. Support for the effect of regret on learning is also found in

lesion studies, wherein participants with damage to the prefrontal cortex fail to learn from

past errors and do not contextualize these mistakes with admissions of what they could have

done differently – a common occurrence in healthy individuals [BGA05]. Moreover, stud-

ies examining the counterfactual reasoning capacities of participants with impaired memory

had difficulties with what-if scenarios depending upon spatial scenes in the participant’s past

[MM14].

Evidence like the above, surveyed from the existing literature, strongly suggests that

semantic episodic memories are integral components of human counterfactual reasoning.

However, as a recent survey of this literature states, there exist few computational theories or

models of human cognitive processes in which learning occurs from counterfactual reasoning,

as well as how the fusion of experience and hypothesis combine to produce behavioral change

[Byr16]. As such, the present work seeks to propose ISDM as a model for how humans may

experientially compute counterfactuals with the added difficulty of invisible counterfactual

“fault lines” (i.e., when unobserved confounders (UCs) exist between some action and some

outcome, and the agent’s intent serves as the only indication for what could have been done

differently in the past). To the best of our knowledge, it is the first work to propose a model

for computing empirical counterfactuals in the face of UCs, and explain how learning will
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result.

With the formalisms and models of ISDM in place from Chapter 3, we now seek to supply

some empirical support for the efficacy of ISDM in a real-world, human-agent, reinforcement-

learning task. In addition to addressing the questions posed above, there are a variety of

motivations for this study surrounding the formalizations of ISDM; in particular, our research

objectives are to determine that:

1. Intent is an isolable signal. A fundamental tenet of ISDM is that agents (either as

the actors themselves or as recommenders to those experiencing intent, as depicted in

Figure 3.8) are able to isolate their intended action choice and either employ it as a

contextual variable for decision-making or express it to a learning system that will.

If humans are able to isolate their intent, then we should consequently verify that

they are able to employ it in pursuit of optimizing the quality of their decisions. If

humans are not capable of determining which action corresponds with their intent,

then the application of ISDM to human confounded decision-making tasks is seriously

compromised.

2. Intent is reactive. In the formalization of ISDM from Chapter 3, a key modelling

assumption is that formation of intent is independent from the agent’s experiential

history. In other words, we assume that intent remains an “impulse” to environmental

conditions via System 1 cognitive processes, rather than deliberative ones implicit

in System 2. If intent is not independent from history, then at two trials t1, t2, we

may have P (U |It1) 6= P (U |It2) ⇒ P (Yx|It1) 6= P (Yx|It2), meaning that intent-specific

learning may not occur.

3. ISDM is a naturally employed human counterfactual reasoning mechanism. If humans

exhibit patterns of learning by regret (i.e., by counterfactual reasoning) that follows

the tenets of ISDM, then it is possible that the present work has modeled an important

aspect of cognition and learning. As such, we wish to determine if humans naturally

use their intent as a reasoning mechanism (i.e., without outside instruction to do so),

or if not, that they can improve the quality of their decisions when they are told to
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employ ISDM (as by the tenets of RDT in this reinforcement learning scenario).

Towards these ends, we sought to create a learning task for humans that could be mod-

eled as a MABUC problem, in which UCs affect both the participant’s intended action choice

and the resulting outcome. Furthermore, we wished to incorporate experiential history as

a key component of the learning task, but which would be independent of any participant’s

prior knowledge. Well suited to developing confounded intents in the MABUC specification

is a word association task, wherein, given a “cue” word, participants produce the first word

that comes to mind. Databases of these word associations, including the strengths of associ-

ations between a wide variety of cues and their responses, demonstrate that English speakers

produce predictable responses when presented with certain cue words [NMS04].

Leveraging this fact for the research question at hand, we presented participants with

a series of cue words and asked them to choose from a selection of two answer (or “tar-

get”) words, one with a strong association with the cue and one with a weak association

with the cue. The answer that was considered correct was always the target that was the

least associated with the cue, while the incorrect answer was the target with the strongest

association with the cue. In three separate experimental groups, participants were either,

1) directly told the intent-specific strategy they needed to implement to maximize correct

responses, 2) indirectly told the intent-specific strategy, or 3) given no information about the

intent specific strategy. Participants who successfully navigated the task would thus have to

acknowledge their intended choice, but then finally select the opposite.

4.1 Methods

The quiz was conducted using Amazon’s Mechanical Turk, a web service through which

workers can accept various jobs like surveys. Workers in the United States’ Mechanical Turk

population have been found to be relatively representative of the nation as a whole, with a

few demographic exceptions (workers tend to be predominantly female and with lower income

levels) [RZI09]. We restricted quiz participants to those residing in the United States, with

English as a first language, and over the age of 18. We recruited 180 participants to take
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the quiz, but 15 needed to be discarded after Mechanical Turk’s screening mechanism failed

to prevent non-US residents and non-first-language English speakers from taking it (which

were later caught after collecting participant demographics at the end of the quiz). Of the

remaining 165 participants, 69 were male, 96 were female, and were primarily middle-aged

(M = 37.87, SD = 11.76).

Participants were self-selected as workers on Amazon’s Mechanical Turk who chose to

take part in the study advertised as a “Psychological test investigating aspects of decision-

making.” Additionally, they were offered incentives of $0.10 for their participation, and a

bonus of $0.01 for every question that they answered correctly. We emphasize that this

compensation is what makes the task a reinforcement learning problem, and is important

for ensuring that participants are motivated to improve their choice policy over the course

of the quiz.

4.1.1 Materials

The MABUC task was constructed from 50 cue words, each with 2 accompanying associ-

ational answer (i.e., target) words from the University of South Florida Free Association

Norms database [NMS04]. Cue-target triplets were selected via the following guidelines: (1)

We attempted to avoid overlap of semantics between any two triplets such that priming

was generated within, but not between, any triplets. (2) We attempted to choose cues that

possessed a disparity in associational strength between the strongly and weakly associated

target of approximately 0.3; the average associational strength of the strong targets was 0.34

with a standard deviation of 0.03, and the average strength of the weak targets was 0.04

with a standard deviation of 0.02. (3) Lastly, we attempted to choose cues that spanned

the alphabet, choosing 2 cues beginning with each letter, except for X and W, which had

too few cue-target triplets matching our criteria (X had no matching cues, and W only 1),

and S, which had 1 extra to make up the deficit. In each question, the target word that was

strongly associated with the cue was always the “incorrect” choice, and the one that was

weakly associated with the cue was always “correct.” For example, when presented with the
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cue “dart,” the answer choices were “board,” the strongly associated target, and “throw,”

the weakly associated (correct) target. See Table B.1 in the appendix for a full list of the

cue-target triplets and their associational strengths.1

4.1.2 Procedure

Briefing. To begin the MABUC task, workers would click on the link, with participation

contingent upon them acknowledging that they were a native English speaker, over the age

of 18, and residing in the United States (the Mechanical Turk engine allowed us to confirm

these final two demographics through their system). Along with this briefing, participants

were given the contact information of the experimenters as well as the details for informed

consent: they were told that their participation was completely voluntary and that they

could withdraw from the study without penalty at any time. Having agreed to the terms

of the study, participants clicked a button to continue to the instructions for the quiz. See

Figure B.1 in the appendix for the exact briefing screen presented to participants.

Experimental Conditions. Upon volunteering participation in the previous section,

participants were then randomly assigned to one of three experimental conditions, designed

to test the capacity of humans to employ ISDM without instruction, as well as their capacity

to carry it out when instructed to. The intervention in each of the three conditions was merely

how strong of a suggestion for using ISDM the participant was given, and are detailed as

follows:

1. No hint. In the no hint condition, participants were left to determine their own reward

maximizing strategy on their own, with no indication that their intent would serve as

a useful decision-making mechanism.

2. Weak hint. In the weak hint condition, participants were told that “the hidden rule is

1The quiz itself was implemented as a web application whose mechanics were built upon the TurkSuite
Template Generator [Mor14]; for quiz source code, visit:
https://github.com/Forns/ucla-forns/tree/master/projects/dissertation/ch4

To take the quiz itself, visit:
https://rawgit.com/Forns/ucla-forns/master/projects/dissertation/ch4/index.html
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the same for each question in the quiz and is either that: the answer choice you feel

like choosing first will likely (1) always be correct OR (2) never be correct,” and that

they should take this into account before making their final choice.

3. Strong hint. In the strong hint condition, participants were explicitly told that “the

hidden rule is the same for each question in the quiz and is that the answer choice you

feel like choosing first will likely never be correct,” and that they should take this into

account before making their final choice.

Depending upon their assigned hint condition, participants would see the hint displayed in

the instructions and repeated after selecting an answer on each of the 50 questions that

followed.

Instructions. After the briefing, participants were presented with the instructions

screen, which provided the details of the quiz to follow. In particular, they were told:

1. At the top of each page, they would be shown a word and should consider the first thing

that comes to mind when they see that word. After this consideration, they will click

a button that will reveal two additional words that will be their answer choices, and

were informed that the cue and target words would be presented to them in random

order (to prevent them from trying to find order effects since there should be none).

2. They were then told that one of these two answer options would be considered the

“correct” one by some hidden rule, and the other will be considered “incorrect.” Once

they had made a decision, they should click the answer they believe to be correct, but

had to do so within a 30 second window in order to attain the bonus of $0.01 for a

correct answer.

3. They were then given their goal: to develop their own decision-making strategy to

answer as many questions correctly as possible.

4. Depending on their assigned experimental condition, they were then given their hint

as to what the hidden rule entailed (if provided with a hint at all).
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Figure 4.1: Sample pre-answer phase question in the quiz depicting the 11th cue word “mort-

gage” before the participant has revealed its answer choices. The pictorial representation

of the participant’s answer history is above the cue, with red blocks indicating incorrect

answers, and green correct ones. The time remaining is shown at the top-right next to the

small clock.

5. Finally, they were shown an example of a cue word with two sample answer choices,

asked to do the experiment in one sitting without taking any breaks, and then shown

a button for them to begin when ready.

Quiz. Each of the 50 quiz questions were presented with randomly ordered cues and their

accompanying target answer choices in randomly counterbalanced order. Each question also

had had a pre- and post-answer phase, at which point the participant was shown the following

information: In the pre-answer phase, a user would be presented with (1) the cue at the top

of the screen, (2) a button to reveal the two answer choices, (3) a pictorial representation

of their history of correct and incorrect answer choices, and (4) a timer that began at 30

seconds and counted down until the user provided an answer. If the participant ran out of

time on the question, they would still be able to answer and be told if they were correct

or incorrect, but would not receive the bonus $0.01 if correct. A sample pre-answer phase

question is depicted in Figure 4.1.

Having taken some time to consider the first thing that came to mind after seeing the

cue, participants would then (1) click the “Reveal Answers” button (a feature created with
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Figure 4.2: Sample post-answer phase question in the quiz after the participant correctly

chose the weakly associated target “bill” to the cue “mortgage.” Feedback is provided to

the user in the form of a large “Correct!” box, followed by the (in the present example, a

strong) hint to remind the participant of their objective. In the no hint condition, this box

is absent.

the purpose of making users develop an intended answer from the cue before revealing any

biasing choices), (2) make a final answer choice by clicking on one of the two revealed answers,

and (3) view the reward from their final choice (correct or incorrect). In this post-answer

phase, if participants belonged to either the weak or strong hint conditions, the hint would

be repeated below their feedback, and all participants would then be given a separate button

to continue to the next question. For each trial, we recorded the target chosen as well as

the reaction time between the presentation of the cue and selection of the target. A sample

post-answer phase question is depicted in Figure 4.2.

Rationale & Demographics. Following the 50 questions, we had two remaining sec-

tions for participants to complete: (1) they were asked to provide a brief description of their
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Figure 4.3: Modeling assumptions for human-subject confounded decision-making tasks.

(a) The canonical ISDM model for MABUC settings introduced in Chapter 3 in which

intent is observed and independent from experiential history. (b) SDM in which intent is an

unobserved influence on the decision. (c) SDM in which intent is a function of experiential

history Ht.

decision-making strategy, and (2) were asked to provide their basic demographic informa-

tion, including age, gender, country of residence, first language, and political leaning. Having

provided this information, participants were shown their total answered correctly (and the

accompanying bonus compensation that they earned), were thanked for their participation,

and clicked a final submission button to forward their answers.

4.1.3 Modeling Tests & Assumptions

Alongside the research questions posed in the introduction, this experiment is also designed to

test some of the modeling assumptions that we made in our canonical confounded decision-

making SDM from Chapter 3 (Figure 4.3(a)). By construction, the present experiment

attempts to create a system that pertains to this canonical SDM, which demands that we

examine its validity in practice with human decision-makers. We describe the two most

important properties for our model below, how they relate to our research questions, and

the tests that will support the model’s validity:

1. SDM of the canonical ISDM agent (Figure 4.3(a)), in which two fundamental assump-
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tions provide the theoretical performance guarantees introduced at the end of the

previous chapter: (1) Intent is an isolable signal for the agent, meaning that it is an

observable covariate. Plainly, in order for intent to serve as a reasoning tool, it must

not also be unobserved like the confounders affecting it. (2) Intent is strictly reactive

to the environment, and is not affected by the agent’s experiential history. If intent

is sensitive to one’s learning history, then the same intent experienced at two different

trials may be heterogeneous and incomparable.

2. SDM of intent as an unobserved influence (Figure 4.3(b)), in which intent is not a

signal that the agent can isolate and employ in the reinforcement learning task. In this

model, ISDM is not possible, and agents will either perform no better than chance or

simply always choose by intent. Should this model be fidelitous to reality, there will

see no significant difference in the performances of participants between experimental

conditions.

3. SDM of intent as a function of experiential history (Figure 4.3(a)), in which intent

is not strictly reactionary to environmental influences. This model would complicate

the theoretical guarantees of ISDM in sequential learning tasks due to the fact that

It 6⊥⊥ Ht ⇒ P (Ut, It) 6= P (Ut′ , It′)⇒ P (Yxt |It) 6= P (Yxt|It′) ∀ t, t′ ∈ T . In this case, we

would find evidence of non-convergence to an optimal intent-specific policy, or early

regret attenuation followed by a late resurgence.

4.1.4 Analysis

To answer our research and modeling questions described above, we begin our analysis

by formalizing the dependent measures of success in this human-subject MABUC. Based

upon the hidden associative rule that we employed, we first computed the cumulative regret

(R =
∑

t(1−Yt))2 for each participant as well as average reaction time across all t ∈ T = 50

trials in each of our three experimental conditions. We expected that if intent is an isolable

2Since we, the experimenters, do not possess the fully-specified SCM for this task, nor the intents of each
participant, we cannot analyze the u-regret (Def. 3.2.2) experienced at each round.
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signal, any or all of the experimental groups should have success in maximizing the correct

responses. However, if participants were extracting the counter-intent rule, we would expect

these participants to take longer to respond to the trial. We further expected that if intent

is reactive, then participants in this study would not change their strategy over time and

would continue to use the intent-specific strategy to their benefit. Lastly, if intent is naturally

employed by humans, we should expect that even in the no hint condition, participants would

be able to identify the intended response and respond with the counter-intent choice.

To verify that the experimental conditions translated to a strategy, we asked participants

to explain their strategy at the conclusion of the quiz, and codified each response into one

of four categories:

1. The guessing approach coded participants who clearly indicated that they had no

strategy or were simply picking answers at random; sample responses in this class

include “Random” and “Switched from top to bottom back and forth.”

2. The counter-intent approach (the correct one) coded participants who clearly indicated

that they were picking answers that were contrary to their first choice; sample responses

in this class include “I tried to go with the opposite of my gut reaction” and “tried to

pick the one that didnt [sic] feel right.”

3. The intent approach coded participants who clearly indicated that they were picking

answers that were aligned with their first choice; sample responses in this class include

“Picked the first that came to mind” and “I went by instinct.”

4. The other approach coded participants who gave incoherent responses, or detailed

strategies that were incorrect, but were not specifically related to their intent; sample

responses in this class include tangential strategies like “I had various rules that I

came up with throughout the study like synonyms, whether the word was a part of a

larger group, or whether they were similar but different in some way” and incoherent

responses like “Where I would find something.”

We will first discuss the cumulative regret and reaction time results across all participants
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Figure 4.4: Average reaction time by participants in each experimental condition. Error

bars represent standard errors about the mean.

in each experimental group, regardless of the strategy employed. We will then present the

results from the codification of the written responses that described their response strategy.

Lastly, we will focus on participants that explicitly responded that they were using intent or

counter-intent strategies, regardless of the hint that allowed them to develop their approach.

4.2 Results

Experimental Groups. After computing the average cumulative regret across all 50 trials,

we found that the experimental groups significantly differed in cumulative regret, F (2, 162) =

9.37, p < .001. The Strong Hint group had significantly lower final cumulative regret average

than the No Hint group, t(108) = 4.38, p = .077 and the Weak Hint group, t(108) = 2.44, p =

.016. However, the No Hint group did not significantly differ from the Weak Hint group

in cumulative regret, t(108) = 1.78, p = .077 (see Figure 4.5). There were no significant

differences between experimental groups in average per trial reaction time (see Figure 4.4).
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Figure 4.5: Timeseries of average cumulative regret experienced by participants in each

experimental condition.

Next, we tested the rate at which each experimental group accumulated regret. Using

a timeseries regression across the 50 trials, we found that cumulative regret accumulated

significantly more rapidly in the No Hint group compared with the Weak Hint and the Strong

Hint groups. Specifically, the slope of cumulative regret in the No Hint group (β = .50) was

significantly steeper than the slope in the Weak Hint group (β = .46), t(96) = 14.04, p < .001,

and the Strong Hint group (β = .39), t(96) = 35.64, p < .001. Additionally, the slope of

cumulative regret in the Weak Hint group was significantly steeper than the slope in the

Strong Hint group, t(96) = 28.50, p < .001 (see Figure 4.5).

Similarly, we calculated the probability of the correct response at each trial based upon

its trial number in the quiz. We averaged these in 10 trial increments to create a smoothed

time series of correct responses (see Figure 4.6).

Strategies. After codifying participants’ written responses on their decision-making

strategy, a chi-square test of independence determined that experimental group was not
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Figure 4.6: Probability of a correct response for each experimental condition within 10 trial

increments across all 50 trials.

independent from the strategy chosen. Unsurprisingly, participants in the Strong Hint group

were more likely to use the counter-intent strategy than the intent strategy (Table 4.1)

while those in the Weak and No Hint groups were less likely to use the counter-intent

strategy χ2(6) = 12.78, p = .047. This effect was more apparent in a separate chi-square

test that only included the counter-intent and intent strategies across the three groups,

χ2(2) = 11.90, p = .047. The Weak and No Hint were more likely to use their intended

response and less likely to use the counter-intent response than the Strong Hint group,

suggesting that our main experimental manipulation elicited identification of the intent-

specific strategy needed to obtain the correct answer.

Within the strategy types, there was a significant difference in the average final cumu-
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Strategy

Group Random Counter-intent Intent Other

No Hint 10(33%) 18(28%) 15(39%) 12(38%)

Weak Hint 11(37%) 17(26%) 18(47%) 9(28%)

Strong Hint 9(30%) 30(46%) 5(13%) 11(34%)

Table 4.1: Number of participants in each experimental group (n = 55 per group) that

utilized various decision-making strategies. Numbers in parentheses indicate column per-

centages.

lative regret, such that those who used the intent strategy had overall higher cumulative

regret than those who used the counter-intent strategy, t(101) = 7.47, p < .001. Further,

comparing the slopes of each strategy in cumulative regret across trials, those who used the

intent strategy accumulated regret at a significantly higher rate than those who used the

counter-intent strategy, t(96) = 48.96, p < .001 (see Figure 4.7). Figure 4.8 also depicts

the average cumulative regret experienced by those employing each of these two strategies

within each condition.

We also found a significant difference in reaction times between counter-intent and intent

strategies, t(101) = 3.06, p = .003, such that those who used counter-intent strategies took

significantly longer to respond to the cue than those who used the intent strategy. This

finding supports the idea that participants using the counter-intent strategy were suppressing

their intended response in order to respond counter to their intent. Importantly, when

comparing cumulative regret and reaction time for each strategy across groups, we find

similar patterns. Lastly, while we have outlined the main effects of the strategy and of the

experimental group in both cumulative regret and reaction time, we note that there was no

interaction effects between experimental groups and strategy (see Figure 4.9).
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Figure 4.7: Average cumulative regret by trial between those who explicitly stated that they

used the “counter-intent” (n = 65) vs. the “intent” (n = 38) strategy.

4.3 Discussion

Summarizing our results, we find that the experimental interventions were effective means

of influencing each participant’s policy formation and determining whether or not certain

policies were formed naturally or required the intervention. Across experimental groups,

those who adopted the RDT strategy experienced significantly less regret than those who

did not; moreover, the group that was given the strongest suggestion to adopt the RDT

approach (i.e., the Strong Hint condition) experienced significantly less regret than those

left to their own policy formation. Reaction time was shown to be inversely correlated with

regret; in other words, those who spent more time on each question tended to answer more

correctly. This delay can be explained by the RDT strategy that demands participants first

consider their intended choice, pause, and then make a final choice that is conditional upon

the intent. With these results in hand, we return to answer our research questions:
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Figure 4.8: Average cumulative regret by experimental group between those who explicitly

stated that they used the “counter-intent” (n = 65) vs. the “intent” (n = 38) strategy.

Is intent an isolable signal? Our results strongly suggest that intent is an isolable signal

from support that 98 participants between experimental conditions mentioned using their

intent (or vocabulary that would be considered equivalent to the present work’s notion

of intent) in some way to inform their decision strategy. Whether or not they employed

their intent correctly in the present reinforcement learning task is a separate question, but

because we also witnessed a significant difference in cumulative regret between strategies

that followed intent vs. those that disobeyed it, we assert that intent as a signal is indeed

salient to humans. We thus reject the SDM in which intent is an unobserved signal, depicted

in Figure 4.3(b).

Is intent reactive? Once again, our results suggest that intent, as an isolable signal,

is indeed reactive to environmental factors (observed or otherwise) and is unaffected by

experiential history. This point assuages the concern that, for trials ti 6= tj, UCs U , and

Intent I, P (Uti , Iti) 6= P (Utj , Itj); in other words, if the conditional distribution over U

given I changes between trials, then ISDM may not be an asymptotically optimal strategy.
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Figure 4.9: Average response times of participants employing opposite strategies of following

intent vs. disobeying intent.

That said, we find no evidence for this concern, because if intent was sensitive experiential

history, then later trials in intent- or counter-intent specific strategies should have exhibited

a rise and drop in accuracy, respectively. The statistics reveal no such behavior, and can be

verified graphically in Figures 4.6 and 4.7. Though it is possible that the quiz simply did

not continue long enough to expose such an effect, the evidence from the 50 trials suggests

that intent is reactive to the environment alone. Thus, we reject the SDM in which intent is

sensitive to an agent’s experiential history, depicted in Figure 4.3(c).

Is ISDM a naturally employed human counterfactual reasoning mechanism? The results

do not clearly answer this question, though it appears that ISDM is natural for some in-

dividuals but not others. In order for us to conclude that ISDM is a “naturally” employed

reasoning mechanism, we should have witnessed a large proportion of individuals in the No

Hint and Weak Hint conditions discover the counter-intent strategy to be the superior policy,

as would be discovered by the tenets of an RDT agent. Instead, only 33% participants in

the No Hint and 31% in the Weak Hint groups discovered the proper strategy, and a tepid
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55% from the Strong Hint condition, in which participants were essentially told to use RDT.

These results suggest that ISDM is not natural to most humans, but once equipped with its

rules as a reasoning strategy, they can become more resilient to cognitive bias.

Apropos, the non-trivial proportion of participants who followed their intents in the No

and Weak Hint conditions (27% and 33% respectively), despite it hindering their rewards,

illustrates the propensity of individuals to abide by their “gut” instinct and ignore alterna-

tives. This point not only emphasizes the prevalence of cognitive biases, but highlights their

danger (and the merit of ISDM) as well.

4.4 Conclusion

In this chapter, we verified several of the theoretical assumptions surrounding ISDM that

were made in Chapter 3 and tested the strategy’s efficacy in a human-subject MABUC

scenario. Our results corroborated the assumptions that intent is reactive to the environment,

unaffected by the agent’s experiential history, and that agents can isolate the signal of their

intent and employ it as a context for decision-making. Though a minority of participants

were capable of discovering the ISDM strategy on their own, it appears that it is not a

naturally occurring decision-making tactic in the majority of the population. That said,

when instructed to use ISDM, participants were capable of using their intent as a context

for their decisions, and were successfully able to improve their task performance as a result.
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CHAPTER 5

Counterfactually Enabled Data-Fusion

As active learning agents become increasingly integrated into real-world environments,

they gain new sources of information related to their tasks at hand. Not only do these agents

possess the ability to interact with their environments (choosing actions, receiving feedback

on the quality of their choices, and then modifying future actions accordingly), they may also

observe other agents doing the same. However, with opportunities to adjust policies from

sources other than personal experimentation come new challenges of “transfer” in learning.

In particular, agents should be wary of how observed behavior generalizes (i.e., transfers)

to them, how these observations should be combined with the agent’s own experience, and

how such a combination can be robustly maintained in the face of changing environmental

factors.

In this chapter, we consider how data collected by an online agent under various condi-

tions (e.g., experimental vs. non-experimental settings) can be combined to improve perfor-

mance in a reinforcement learning task. This challenge is not without precedent, as recent

studies have investigated dataset transportability, though in offline domains [BP16]. Oth-

ers have studied scenarios in which agents learn from expert teachers in what are known

as inverse reinforcement learning problems [AN04, HLM16]. These efforts can be broadly

categorized as those of data-fusion, or the ability to take data-sets with different causal as-

sumptions (i.e., different models of the data-generating process akin to the difference between

observational settings (e.g., M3 of Figure 2.1(a)) and experimental ones (e.g., M3x of Figure

2.1(b)), and interpret them in a unified manner. Data-fusion is thus desirable because, when

Chapter 5 is an extended version of [FPB17].
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possible, it allows for efficient use of existing data, thus reducing the need to collect more for

a given task (which can be expensive). in the context of reinforcement learning, data-fusion

can lead to an acceleration of the learning process, requiring fewer trials for an agent to

converge to the optimal choice policy.

Environments for which an agent (1) observes all state variables and (2) possesses a fully

specified model (in which all factors relating contexts, actions, and their associated rewards

are known) are trivial from a data-fusion perspective; in such scenarios, collected data is

homogeneous because all factors that may introduce bias between samples can be controlled.

Conversely, in this chapter, we rejoin the focus of Chapter 3 in which the challenges that

arise due to unobserved confounders (UCs), namely, unmeasured variables that influence

an agent’s natural action choice as well as the feedback from that action, can complicate

both rational decision-making (as illustrated in the Greedy Casino Example 3.1.1) as well as

data-fusion. Such factors are particularly subtle when left uncontrolled due to their invisible

nature and potential to introduce confounding bias [Pea00, Chs. 3,6].

Because our agent’s goal is to quickly learn an optimal policy by consolidating data

collected from observing other agents and data collected through its own experience, UCs

pose a fundamental challenge: the results from seeing another agent performing an action are

not necessarily interchangeable with those from doing the action itself. As such, throughout

this paper, we will differentiate three classes of data that may be employed by an autonomous

agent to inform its rational decision-making:

1. Observational data is gathered through (1) passive examination of the actions and

rewards of actors other than the agent (but for whom the agent is assumed to be

exchangeable, i.e., that acting and observed agents have homogeneous intent (Def.

3.5.1)) or (2) from the agent’s history in which arm choice abided by intent.

2. Experimental data is gathered through randomization, or from fixed policies that

are not reactive to the environmental state.

3. Counterfactual data represents the rewards associated with actions under a par-

ticular (or “personalized”) configuration of the UCs. Counterfactual data points are
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generated by Intent-specific Decision-making (ISDM, Def. 3.4.2).

In the remainder of this chapter, we demonstrate how these disparate data types can

be fused to facilitate learning in the Multi-Armed Bandit problem with Unobserved Con-

founders (MABUC), as introduced in Chapter 3. Note that the previous presentation of a

MABUC problem (the Greedy Casino Example) illustrated that neither observational nor

experimental reward quantities should be maximized in order to reduce u-regret (Def. 3.2.2),

the regret experienced by a MABUC agent under the knowledge of each trial’s UC state.

Note also that observational, experimental, and counterfactual data points cannot be naively

combined, treated as though they are sampled from the same distribution (see, e.g., Table

3.1(a) vs (b)). Consequently, given that we also desire to maximize the counterfactual reward

distribution in a MABUC (as by the tenets of RDT, (Def. 3.4.5)), we might be tempted

to discard any observational and experimental data given that they do not conform to our

optimization metric, but this chapter will detail the means by which they can aid an ISDM

agent nonetheless. Just as the development of ISDM in Chapter 3 allowed algorithms to

converge to the optimal u-regret reduction in MABUC settings, so will this one accelerate

that process through a counterfactually-enabled data-fusion technique.

Though the data-fusion problem is an ongoing exploration in the data sciences [BP16,

Men14, Cou13], this chapter presents the first to study online learning techniques in MABUC

settings that combine data sampled under disparate conditions. Specifically, its contributions

are as follows:

1. We demonstrate how observational, experimental, and counterfactual datasets can be

combined through a heuristic for MABUC agents.

2. We then develop a variant of the RDT Thompson Sampling algorithm that implements

this new heuristic.

3. We run extensive simulations illustrating its faster convergence rates compared to the

current state-of-the-art.
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Figure 5.1: Plots of CDT MAB algorithms’ performance vs. an RDT Thompson Sampling

agent in the Greedier Casino scenario. Note that all algorithms but TSRDT experience

linear u-regret, but convergence in this 4-arm scenario takes much longer than in the 2-arm

MABUC problem.

5.1 Motivating Example: The Greedier Casino

Example 5.1.1. In this section, we consider an expanded version of the Greedy Casino

Example 3.1.1 from Chapter 3. Now aware that certain observant gamblers had learned to

thwart their predatory payout policy (using ISDM), the executives for the Greedy Casino

met to discuss alternative means of preying upon the predilections of their gamblers. Given

that the vast majority of their patrons are not practicing ISDM, they wish to preserve the

reactive slot machine payouts while making it more difficult to obtain an optimal ISDM

policy. As such, they decide to expand the number of slot machine types from two to four

(thus increasing the number of intent-action combinations required to learn, which would take

more trials to converge to an optimal policy), and tune the payout policy to the predilections

of gamblers to these expanded choices.

Apropos, in its new floor’s configuration, the Greedier Casino has crafted four new

themed slot-machines (instead of the two used in the previous version) and wishes to make
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(a) D = 0 D = 1

P (y1|X,B,D) B = 0 B = 1 B = 0 B = 1

X = 0 i0.20 0.30 0.50 0.60

X = 1 0.60 i0.20 0.30 0.50

X = 2 0.50 0.60 i0.20 0.30

X = 3 0.30 0.50 0.60 i0.20

(b) P (y1|X) P (y1|do(X))

X = 0 0.20 0.40

X = 1 0.20 0.40

X = 2 0.20 0.40

X = 3 0.20 0.40

Table 5.1: (a) Payout rates decided by reactive slot machines as a function of arm choice X,

sobriety D, and machine conspicuousness B. Players’ natural arm choices (fx = B + 2D)

under D,B are indicated by superscript i. (b) Payout rates according to the observational,

P (y1|X), and experimental P (y1|do(X)), distributions, where Y = y1 represents winning

(shown in the table).

them as lucrative as possible. After running a battery of preliminary tests, the executives

once more discover that the two traits from their previous iteration well predict which of

the four machines that a gambler is likely to play: whether or not the machines are blinking

(denoted B ∈ {0, 1}), and whether or not the gambler is drunk (denoted D ∈ {0, 1}).

After consulting with their team of psychologists and statisticians, the casino learns that

any arbitrary gambler’s natural machine choice can be modeled by the structural equation:

X ← fx(B,D) = B + 2 ∗D if the four machines are indexed as X ∈ {0, 1, 2, 3}. The casino

also knows that its patrons have an equal chance of being drunk or not (i.e., P (D = 1) = 0.5)

and decide to program their new machines to blink half of the time (i.e., P (B = 1) = 0.5).

Recall that a gambling law stipulates that all slot machines in the state must maintain

a minimum 30% win rate. Wishing to leverage their gamblers’ machine choice predilec-

tions while conscious of this law, the casino implements a reactive payout strategy for their

machines, which are equipped with sensors to determine if their gambler is drunk or not

(assume that the sensors are perfect at making this determination). As such, the machines

are programmed with the payout distribution illustrated in Table 5.1.

After the launch of the new slot machines, some observant gamblers note that players

appear to be winning only 20% of the time, and report their suspicions to the state gambling
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commission. Once more, the investigator is sent to the casino to determine the merit of

these complaints, and begins recruiting random gamblers from the casino floor to play at

randomly selected machines, despite the players’ natural predilections. Surprisingly, he

finds that players in this experiment win 40% of the time, and declares that not only has

the casino committed no crime, but appears to be paying its patrons generously above

the law-mandated minimum. Meanwhile, the casino continues to exploit players’ gambling

predilections, paying them 10% less than the minimum. Still, most gamblers are unaware of

being manipulated by the UCs B,D, and of the predatory payout policy that the casino has

constructed around them. The collected data is summarized in Table 1b; the second column

(P (y1|X)) represents the observations drawn from random observations on the casino’s floor

while the third (P (y1|do(X))) represents the randomized experiment performed by the state

investigator (both assumed to boast large sample sizes).

In an attempt to find a better gambling strategy, a handful of players decides to run

a battery of experiments using standard MAB algorithms (e.g., ε-greedy, UCB, Thomson

Sampling), which, unsurprisingly, result in winnings that are no different from the state

inspector’s findings. However, one observant habitué, who has been recording the abysmal

winnings of those playing by intent and the only incrementally better winnings of those

following CDT (Def. 3.4.4) optimization algorithms, wonders if she might devise a superior

strategy. As she is well-versed in the interplay of causal inference and reinforcement learning,

she follows the ISDM implementation of TSRDT as described in Algorithm 2 from Chapter

3, and maximizes reward by Regret Decision Theory (RDT, Def. 3.4.5). The results of

her experiments, compared to those of her unenlightened peers, are depicted in Figure 5.1.

Noting the differences in the payout rates between the observational, experimental, and

counterfactual techniques, she realizes that the convergence of her approach is still somewhat

slow (with the addition of 2 arms) and ponders how the failings of her peers could have better

informed her superior strategy.
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5.2 Background & Existing Techniques

The Greedier Casino Example 5.1.1 illustrates a Multi-Armed Bandit problem with Unob-

served Confounders (MABUC), akin to that of the Greedy Casino Example 3.1.1. However,

in this new problem, our learning agent gains access to additional side-information before

beginning play (i.e., before beginning its first trial). In particular, our agent may possess het-

erogeneous (1) Observational Data Dobs, eliciting a reward distribution like P (y1|X) in Table

5.1(b), and (2) Experimental Data Dexp, eliciting a reward distribution like P (y1|do(X)) in

Table 5.1(b). Plainly, in a MABUC setting, these are heterogeneous quantities because

P (y1|X) 6= P (y1|do(X)) ∀ X (as exemplified in Table 5.1(b)), and so data from each of

these collection techniques (i.e., random sampling from the observational case and ran-

dom experimentation from the experimental) cannot be näıvely combined. Furthermore,

as demonstrated by the Greedy Casino example and successful application of RDT to reach

an optimal choice policy, neither observational nor experimental optimization quantities are

optimal in a MABUC setting.

As such, we might be tempted to ignore these datasets in pursuit of the counterfactual

optimization quantity demanded by RDT. Indeed, the goal of RDT to estimate intent-specific

rewards to each final arm choice will not be different in the present setting, but we should

avoid haste to discard observational and experimental data that might aid in that process.

To wit, [Pea00, Ch. 7] demonstrated that the counterfactual ETT can be estimated without

a fully-specified model from these two datasets, but only when the treatment / action choice

is binary. To be specific, estimating P (Yx|x′) for binary x, x′ ∈ X can be accomplished via

the decomposition:

P (Yx) = P (Yx|x)P (x) + P (Yx|x′)P (x′)

= P (Y |x)P (x) + P (Yx|x′)P (x′)

P (Yx|x′) =
P (Yx)− P (Y |x)P (x)

P (x′)

(5.1)

The above tactic exploits the fact that P (Yx|x) = P (Y |x) by the consistency axiom (Def.

2.4.3), which translates the counterfactual “P (Y ) had X been x, given that it was (in reality)
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x” to the observational equivalent, since the observed x and hypothesized antecedent x are

the same. Thus, it is possible to estimate the counterfactual P (Yx|x′) without a fully-specified

model from experimental P (Yx) and observational P (Y |x) quantities in the binary treatment

case because there is 1 unknown (P (Yx|x′)). However, as soon as the treatment choices

expand to 3 or more options, this technique does not scale; consider the same decomposition

for x0, x1, x2 ∈ X and a desire to estimate (without loss of generality) P (Yx0|x1) with only

observational and experimental data:

P (Yx0) = P (Yx0|x0)P (x0) + P (Yx0|x1)P (x1) + P (Yx0|x2)P (x2)

= P (Y |x0)P (x0) + P (Yx0|x1)P (x1) + P (Yx0|x2)P (x2)

P (Yx0|x1) =
P (Yx0)− P (Y |x0)P (x0)− P (Yx0|x2)P (x2)

P (x1)

(5.2)

Here, we have not 1 but 2 unknown counterfactual quantities, (1) the query P (Yx0|x1)

on the LHS and (2) P (Yx0|x2) on the RHS. While traditional, offline causal inference would

conclude that P (Yx0|x1) is thus unidentifiable (in the absence of a fully-specified model),

the ability to practice ISDM in the online decision-making domain allows us to empirically

sample counterfactual data-points (as a consequence of Theorem 3.4.1) and surmount this

problem for non-binary arm choices. That said, with the additional constraint that online

domains like reinforcement learning value not only convergence to an optimal choice policy

(which can be translated in the MABUC to estimating P (Yx|x′) ∀ x, x′ ∈ X), but also the

speed with which said convergence takes place, our strategies that attempt to leverage any

observational and experimental data must do so with regards to finite-sample concerns. In

the following section, we will develop such a strategy, but first, must model the scenario at

hand.

Apropos, we will extend the model associated with our prototypical MABUC from Chap-

ter 3 to accommodate side-information in the form of observational and experimental data.

In this updated Structural Decision Model (SDM, Def. 3.3.1), we explicitly indicate that

learning agents may possess, and treat as distinct samples, information regarding obs. and

exp. rewards. Figure 5.2 demonstrates this modified SDM, with the side-information con-

tributing to the agent’s experiential history. As a reminder, the remaining components of
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Figure 5.2: SDM of a prototypical MABUC instance with side-information in the form of

observational Dobs and experimental Dexp data. This information is incorporated into the

ISDM learning agent’s experiential history Ht and used to better inform its decision-making.

this SDM are:

1. Unobserved confounders: Ut represents the unobserved confounders instantiated to

Ut = ut at trial t.

2. Intent: It ∈ {x1, ..., xk} represents the agent’s intended arm choice at round t (prior

to its final choice, Xt) such that It = fi(paxt , ut).

3. Decision: Xt ∈ {x1, ..., xk} denotes a decision variable (Def. 3.3.2), which indicates a

rational choice made as a function of the agent’s history and current intent, fπ(ht, it).

4. History: Ht = {Z0, X0, Y0, ...Zt−1, Xt−1, Yt−1} denotes the agent’s recorded history of

contexts (including intent), final arm choices, and rewards at each trial up to t. In the

present setting, the History also contains qualitatively separate data points for those

originating from observations Dobs and experiments Dexp.

5. Reward: Yt ∈ {0, 1} represents the Bernoulli reward (0 for losing, 1 for winning) from

choosing arm xt under UC state ut as decided by yt = fy(xt, ut).

In the next section, we will formalize how the agent can leverage this extra data to

accelerate learning in a MABUC instance like the Greedier Casino.
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Figure 5.3: An ISDM agent’s counterfactual history in which rewards are recorded by inten-

t-context I (columns) and final-arm-choice X for an arbitrary K-armed MABUC instance

(replicated from Table 3.6) but with illustrations of data-fusion Strategies A (blue, along

diagonal), B (orange, across intents), and C (purple, across arms).

5.3 Counterfactual Data-fusion for Online Reinforcement Tasks

Suppose our agent assumes the role of the observant gambler in the Greedier Casino Example

5.1.1 and possesses (1) observations of arm choices and payouts from players gambling by

intent in the casino (with whom the agent is assumed to have homogeneous intent (Def.

3.5.1)), (2) the randomized experimental results from the state investigator or the CDT

gamblers, and (3) the knowledge to use ISDM for by optimizing the counterfactual reward

advocated by RDT. In other words, the agent begins the MABUC problem with large samples

of observations (P (Y |X)) and experimental results (P (Y |do(X))), and will maximize the

counterfactual RDT (P (YX=a = 1|X = i)) because it recognizes the presence of UCs (viz.

P (Y |X) 6= P (Y |do(X)). The agent now seeks to employ the obs. and exp. data to speed

this optimization process. In this section, we will detail several, separate approaches that

attempt this goal, and finally, how they may all be combined to form a complete data-fusion

algorithm.
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Strategy A: Observational-Counterfactual Consistency

In the previous section, we mentioned that the consistency axiom (Def. 2.4.3) can be used

to equate counterfactual quantities of the format P (Yx|x′) (where x = x′) with observational

quantities P (Y |x). In other words, the counterfactual expression measuring the “probability

of Y had X been x given that X was observed to be x in reality” is not a counterfactual at all

– the antecedent and the observation agree in this statement, and so the observed response

of Y to the observed X = x will not differ when we hypothesize about what X = x (the

same value) would have done to Y in that scenario. As such, for ISDM agents maximizing

by the RDT, we can immediately employ our observational data Dobs to provide information

about all intent-action payouts where the intent and action agree.

Recall the ISDM agent’s counterfactual reward history given in Chapter 3, and replicated

herein (Figure 5.3) with some additional highlights for the coming data-fusion techniques.

Note that the diagonal (i.e., cells shaded in blue, and tagged by the circled A) encodes all

intent-action payouts for which the intent and action are the same value. In the presence of

observational data, our agent may immediately populate this diagonal and obtain the true

values for P (Yx|x). From this simple incorporation, the agent reduces a MABUC problem

with K2 separate intent-specific arm reward parameters to learn down to (K − 1)2.

Strategy B: Cross-Intent (XInt) Information Leakage

With the remaining P (Yx|x′) x 6= x′ in Figure 5.3 to learn via ISDM, and because a MABUC

is an online learning problem in which each of these cells must be explored sufficiency, the

next two strategies exploit the obs. and exp. datasets’ relationship to the counterfactual

targets while managing the uncertainty implicit in a MAB learning scenario.

As such, consider Eq. 5.1 once again (which decomposes the experimental P (Yx) into con-

stituent observational and counterfactual terms) but for the general, non-binary treatment

case:

100



P (Yx) =
∑
x′∈X

P (Yx|x′)P (x′) (5.3)

Now, consider a single cell in our counterfactual experiential history Figure 5.3, say

P (Yxr |xw), which we can solve and rewrite as:

P (Yxr) = P (Yxr |x1)P (x1) + ...+ P (Yxr |xw)P (xw) + ...+ P (Yxr |xK)P (xK) (5.4)

P (Yxr |xw) =
P (Yxr)− P (Yxr |x1)P (x1)− ...− P (Yxr |xK)P (xK)

P (xw)
(5.5)

PXInt(Yxr |xw) =
P (Yxr)−

∑K
i 6=w P (Yxr |xi)P (xi)

P (xw)
(5.6)

Here, Eq. 5.6 provides a systematic way of learning about arm xr payouts across intent

conditions, which is desirable because an arm pulled under one intent condition now provides

knowledge about the payouts of that arm under other intent conditions. This can be depicted

graphically, as shown by the flow across an example row B in Figure 5.3 – information about

Yxr flows from intent conditions xi 6= xw to intent xw (what has been referred to as a

form of information leakage, wherein information about rewards associated with arms in one

condition inform those in another [SSD17]).

Strategy C: Cross-Arm (XArm) Information Leakage

Consider any three arms, xr, xs, xw such that r /∈ {s, w} and assume we are interested in

estimating the value of P (Yxr |xw) (our query, for short). Considering again the equations

induced by Eq. (5.3), we have,

P (Yxr) =
K∑
i

P (Yxr |xi)P (xi) (5.7)

P (Yxs) =
K∑
i

P (Yxs|xi)P (xi) (5.8)
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Note that each of Eqs. (5.7, 5.8) share the same intent priors on our query intent P (xw), so

we can solve for P (xw) in both equations using simple algebra, which yields,

P (xw) =
P (Yxr)−

∑K
i 6=w P (Yxr |xi)P (xi)

P (Yxr |xw)

=
P (Yxs)−

∑K
i 6=w P (Yxs|xi)P (xi)

P (Yxs|xw)

(5.9)

Using Eq. (5.9) and solving for the query in terms of our paired arm xs, ∀ r 6= s we have

P (Yxr |xw) =

[
P (Yxr)−

∑K
i 6=w P (Yxr |xi)P (xi)

]
P (Yxs|xw)

P (Yxs)−
∑K

i 6=w P (Yxs |xi)P (xi)
(5.10)

Eq. (5.10) illustrates that any non-diagonal cell from the table in Figure 5.3 can be estimated

through pairwise arm comparisons with the same intent. Put differently, Eq. (5.10) allows

our agent to estimate P (Yxr |xw) from samples in which any arm xs 6= xr was pulled under

the same intent xw.

In practice, the online nature of the MABUC learning problem can make some of these

pairwise computations noisy due to sampling variability when xr is an infrequently explored

arm. To obtain a more robust estimate of the target quantity, this pairwise comparison

can be repeated between the query arm and all other arms with the same intent, and then

pooled together. This can be seen as information about Yxr |xw flowing from arm xs 6= xr to

xr (under intent xw) – for example, column C in Figure 5.3.

One such pooling strategy is to take the inverse-variance-weighted average.1 Formally,

we can consider a function P (Yxr |xw) = hXArm(xr, xw, xs) such that hXArm performs the

empirical evaluation of the RHS of Eq. (5.10). Additionally, let σ2
x,i = V arsamp[Yx|i] indicate

the empirical payout variance for each arm-intent condition (as from the reward successes

and failures captured by the agent in Table 5.3). To estimate our query from all other arms

in the same intent through inverse-variance weighting, we have our now complete, third

strategy:

PXArm(Yxr |xw) =

∑K
i 6=r hXArm(xr, xw, xi)/σ

2
xi,xw∑K

i 6=r 1/σ2
xi,xw

(5.11)

1This strategy follows from the fact that we have Bernoulli rewards for each arm-intent condition, and
as the number of samples increases for these distributions, the variance diminishes, meaning that arm-intent
conditions with smaller variances are more reliable than those with larger ones.
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The Combined Approach

The payout estimates for an ISDM algorithm maximizing rewards via RDT can be estimated

from three different sources: (1) Psamp(Yxr |xw), the sample estimates collected by the agent

during the execution of the algorithm. (2) PXInt(Yxr |xw), the computed estimate using

cross-intent learning. (3) PXArm(Yxr |xw), the computed estimate using cross-arm learning.

Naturally, these three quantities can be combined to obtain a more robust and stable estimate

to the target query.

Once again, we employ an inverse-variance weighting scheme so as to leverage these

three estimators, and so we must formulate a metric for the payout variance associated

with each strategy’s computed estimate. To do so, we define an average variance for each

strategy, which is the average over each sample estimate’s variance (i.e., σ2
x,i) used in the

computation. Specifically, for the cross-arm approach (Eq. 5.11), we have two summations

over sample payout estimates P (Yxr |xi), P (Yxs|xi) ∀i 6= w which involve 2(K − 1) terms,

plus the numerator’s P (Yxs|xw), giving us a total of 2(K − 1) + 1 = 2K − 1 variances to

average. The same is true for the cross-intent apprach (Eq. 5.6), which involves K − 1

sample variances to average. When estimating P (Yxr |xw), we can write the corresponding

variances:

σ2
XArm =

1

2K − 1

[[ K∑
i 6=w

σ2
xr,xi

]
+
[ K∑
i 6=w

σ2
xs,xi

]
+ σ2

xs,xw

]
σ2
XInt =

1

K − 1

K∑
i 6=w

σ2
xr,xi

Finally, to estimate P (Yxr |xw) using our combined approach, we have:

α = Psamp [Yxr |xw]/σ2
xr,xw + PXInt [Yxr |xw]/σ2

XInt + PXArm [Yxr |xw]/σ2
XArm

β = 1/σ2
xr,xw + 1/σ2

XInt + 1/σ2
XArm

Pcombo[Yxr |xw] =
α

β
(5.12)

To visualize the data-fusion process discussed here, consider the diagram in Figure 5.4.
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Figure 5.4: Illustrated data-fusion process.

1. In this scenario, we consider that our agent has collected large samples of experimen-

tal and observational data from its environment (e.g., in the Greedier Casino, the

agent might observe other gamblers to comprise its observational data and incorporate

experimental findings from the state investigator’s report).

2. Unobserved confounders are realized in the environment, though their labels and values

are unknown to the agent.

3. From these UCs and any other observed features in the environment, the agent develops

its intent. With its intent known, the agent combines the data in its history (in this

work, by the prescription of the Combined Strategy above) to better inform its decision-

making.

4. Based on its intent and combined history, the agent commits to a final action choice.

5. The action’s response in the environment (i.e., its reward) is observed, and the collected

data point is added to the agent’s counterfactual dataset (as a consequence of Theorem

3.4.1).
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5.4 MABUC (with Side Information) Simulations & Results

In this section, we validate the efficacy of the strategies discussed in the previous section

through simulations. To make a fair comparison to previous ISDM bandit players (as demon-

strated in Chapter 3), we will follow the first implementation of an RDT reward maximizing

algorithm that used Thompson Sampling (TS) as its basis, embedding the strategies de-

scribed in the previous section within a TS player called (TSRDC∗).

5.4.1 Simulation Interpretation

The interpretation for the MABUC simulation with Side Information is identical to the one

presented in Chapter 3, with the same assumption of homogeneous intent (Def. 3.5.1) be-

tween observed actors; the sole difference is that, in the current scenario, the reasoning agent

may have access to observational and experimental data before play. The same distinctions

between agent and actor apply, and are depicted in Figure 5.5.

5.4.2 Simulation Procedure & Results

The algorithm for (1) the MABUC scenario with side-information and (2) the TSRDC∗ ISDM

data-fusion player are described in Algorithm 3 and 4, respectively.2

In brief, TSRDC∗ agents perform the following at each round: (1) Observe the intent it

from the current round’s realization of UCs, ut. (2) Sample P̂samp(Yxr |it) from each arm’s (xr)

corresponding intent-specific beta distribution β(sxr,it , fxr,it)
4 in which sxr,it is the number

of successes (wins) and fxr,it is the number of failures (losses). (3) Compute each arm’s

it-specific score using the combined datasets via the Combined Strategy (Eq. 5.12). (4)

2All simulation source code for Chapter 5 can be found at:
https://github.com/Forns/ucla-forns/tree/master/projects/dissertation/ch5.

3Different agents will employ the available datasets Dobs and Dexp according to their policies, with some
of the more näıve variants (like CDT TS) ignoring them entirely.

4The parameters for these distributions are decided by the agent’s history (see Figure 5.3), including
contributions from observational data for cells in which action and intent agree.
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Algorithm 3 MABUC Simulation (with Side Information)

1: procedure MABUC − Sim+(T, Dobs, Dexp)

2: Ru ← 0 (initialize cum. u-regret)

3: H ← {} (initialize history)

4: for t = [1, ..., T ] do

5: ut ← fu(...) (realize environmental factors for trial)

6: it ← fx(ut) (intent is initialized for trial)

7: xt ← fΠ(it, ht, Dobs, Dexp)
3(policy selects final decision)

8: yt ← fy(xt, ut) (reward is observed from chosen arm)

9: H ← H ∪ {it, xt, yt} (history is updated)

10: rut ← P (Yx∗t |ut)− yt (u-regret is logged)

11: Ru ← Ru + rut (cum. u-regret is updated)

Algorithm 4 RDT Thompson Sampling (with Side Information)

1: procedure TSRDT∗(it, ht, Dobs, Dexp)

2: st ← [#Yx0 = 1|it, ...,#Yxk = 1|it]ht (count number of successes for each intent-arm)

3: ft ← [#Yx0 = 0|it, ...,#Yxk = 0|it]ht (count number of failures for each intent-arm)

4: At ← [β(st[1], ft[1]), ..., β(st[k], ft[k])] (sample from beta-dists. of each intent-arm)

5: At∗ ← fcombo(At, PXInt, PXArm, PSamp) (data-fusion weighting)

6: xt ← argmaxx∈[1,k] At∗ (choose max)

7: return xt

106



Figure 5.5: Interpretations of the MABUC simulations that employ the same SDM, but may

have separate agents and actors. Pictured: [top] the agent (blue) and the actor (also blue)

are the same entity; [bottom] the agent (blue) and actor(s) (purple) are distinct entities. In

both panels, the environment’s states and actions are drawn in orange, and side information

available to the agent is drawn in green.

Choose the arm, xa, with the highest score computed in previous step. (5) Observe result

(win / loss) and update P̂samp(Yxa|it).

Procedure. Simulations were performed on the 4-arm MABUC problem, with results

averaged across N = 1000 Monte Carlo repetitions, each T = 3000 rounds in duration.

Compared Algorithms. Each simulation compares the performance of four variants

of Thompson Sampling, described below and with the data-sets employed by each indicated

in Table 5.2:
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Algorithm Cf. Data Obs. Data Exp. Data

TSRDT∗ X X X

TSRDT+ X X

TSRDT X

TS X

Table 5.2: Data-sets employed by the compared TS variants.

1. TS is the traditional Thompson Sampling bandit algorithm that attempts to maximize

the interventional quantity P (y|do(x)), and does not condition on intent.

2. TSRDT is the ISDM TS player that uses RDT, but employs no additional observational

or experimental data in its play.

3. TSRDT+ is TSRDT that also incorporates observational data via Strategy A, but does

not incorporate experimental data nor exploit the relationship between data types via

the combined approach.

4. TSRDT∗ follows Algorithm 4 and uses the data-fusion strategy described in the previous

section.

Evaluation. Each algorithm’s performance is evaluated using two standard metrics: (1)

the probability of optimal arm choice under the state of each round’s confounders Ut = ut

and (2) cumulative u-regret (Def. 3.2.2), both as a function of t averaged across all N Monte

Carlo simulations.

Experiment 1: “Greedier Casino.” The Greedier Casino parameterization, as de-

scribed in Table 5.1, exemplifies the scenario where all arms are both observationally equiv-

alent and experimentally equivalent (P (Y |x) = P (Y |x′), P (Y |do(x)) = P (Y |do(x′)),∀x, x′,

respectively), but distinguishable within intent conditions (P (Yx|x′)). In this reward pa-

rameterization, TSRDC∗ experienced significantly less regret (M = 42.23) than its chief

competitor, TSRDC+, (M = 65.04), t(1998) = 13.25, p < .001.

Experiment 2: “Paradoxical Switching.” The Paradoxical Switching parameteri-
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(a) D = 0 D = 1

P (y1|X,B,D) B = 0 B = 1 B = 0 B = 1

X = 0 i0.90 0.20 0.45 0.45

X = 1 0.30 i0.40 0.50 0.40

X = 2 0.10 0.35 i0.60 0.35

X = 3 0.10 0.10 0.30 i0.60

(b) P (y1|X) P (y1|do(X))

X = 0 0.90 0.50

X = 1 0.40 0.40

X = 2 0.60 0.35

X = 3 0.60 0.20

Table 5.3: (a) Payout rates decided by reactive slot machines as a function of arm choice X,

sobriety D, and machine conspicuousness B. Players’ natural arm choices under D,B are

indicated by superscript i. (b) Payout rates according to the observational, P (y1|X), and

experimental P (y1|do(X)), distributions, where Y = y1 represents winning (shown in the

table).

zation (see Table 5.3 for parameters) exemplifies a curious scenario wherein P (Yx1) = 0.5 >

P (Yx′),∀x′ 6= x1, but for which x1 is the optimal arm choice in only one intent condition

(I = x1). Agents unempowered by RDT will face a paradox in that the arm with the highest

experimental payout is not always optimal. Again, TSRDT∗ experienced significantly less re-

gret (M = 36.91) than its chief competitor, TSRDT+, (M = 64.70), t(1998) = 22.43, p < .001.

The accelerated learning enjoyed by RDT ∗ is not localized to these parameter choices

alone. See simulation code for additional parameterizations.

5.5 Conclusion

In this chapter, we examined the Greedier Casino scenario, a more difficult version of the

Greedy Casino MABUC scenario from Chapter 3 in which our agent was tasked with learn-

ing the optimal policy between four arms in the presence of UCs. Unlike in the previous

scenario, the agent also possessed side-information at the start of the “game” in the form

of observational and experimental arm-specific rewards. Due to the presence of UCs in the

system, these obs. and exp. datasets are not exchangeable, and (due to the tenets of RDT

established in Chapter 3) neither represent the proper counterfactual maximization target in
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the MABUC scenario. Although tempting to discard these datasets as useless for a MABUC

learning task, we developed a strategy that employs obs. and exp. data in pursuit of learn-

ing the counterfactual intent-specific rewards. Once again, we find that ISDM strategies

are not only superior to the traditional, experimental maximization approaches, but can be

accelerated by the incorporation of obs. and exp. side-information. In other words, while

the development of ISDM in Chapter 3 allowed our learning agents to experience sub-linear

u-regret in MABUC scenarios, the present chapter detailed a strategy that can accelerate

its convergence.
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Figure 5.6: Plots of TS variant performances in the Greedier Casino [Ex1] and Paradoxical

Switching [Ex2] scenarios. Optimal actions are considered those that minimize u-Regret.
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CHAPTER 6

Heterogeneous Intent-Specific Decision-Making

In the previous chapters, we have detailed the tools surrounding, and examples involving,

agents and actors practicing intent-specific decision-making (ISDM, Def. 3.4.2) under the

key assumption that all agents are exchangeable. We formalized this quality by definition of

homogeneous intent (Def. 3.5.1), which supposes that all intent-generating functions in the

environment are the same, though the realization of a given instance’s intent may change

due to changing factors in the environment. For instance, in the Greedy Casino Example

3.1.1, though confounded agents may experience different intents from trial to trial (due to

changes in the environment, such as when the machine lights stop blinking), the underlying

function that dictates the intended response to that environment is considered equivalent

between agents. This assumption was key to the different interpretations of the Multi-Armed

Bandit problems with Unobserved Confounders (MABUC) scenarios depicted in Chapters

3 and 5, and in particular, was required for the data-fusion incorporation of observational

data from actors other than the agent.

In this chapter, we relax this assumption and accept that agents within MABUC en-

vironments may experience heterogeneous intent (to be formalized shortly), meaning that

the functions deciding their observational arm choices (and thus their intents) may be dif-

ferent. While this loosened restriction re-opens issues of data-fusion (in that one agent’s

observational and intent-specific rewards are no longer exchangeable), we also demonstrate

that diversity of intent functions can be instrumental as a lens with higher sensitivity to

the state of any unobserved confounders (UC) in the environment. This goal is not without

Chapter 6 is an extended version of [FBP].

112



precedent; in the introduction, we mention a real-world case depicting decision-makers with

heterogeneous intents: in the recidivism example, comparisons in offenders’ propensities to

recommit crimes were measured between rulings of bail vs. incarceration from what were la-

beled as strict vs. lenient judges in the court system [KLL17]. We also noted studies finding

that implicit biases (related to a patient’s race or socio-economic status) influenced certain

physicians’ treatment decisions and patient interactions, but not others [Els99, GCP07].

Plainly, in the general case, different classes of decision-makers exist in the same population

of actors, and with diversity of intent functions come new challenges and opportunities for

ISDM.

We begin this endeavor with a motivating example that demonstrates both potential

and pitfall with regards to managing agents with heterogeneous intents. We first use this

example to motivate applications of heterogeneous ISDM in a dynamic experiment for online

learners. Later, we discuss an offline data collection approach whereby heterogeneous intents

may give rise to a new, more informative, experimental design that improves upon the age-

old Randomized Clinical Trial (RCT); herein, we combine the offline data collected in an

RCT with the online intents of agents in the target environment of the RCT. Finally, we

formalize heterogeneous intent, relate it to the theories developed in Chapter 3, and provide

simulation support for all of the above.

6.1 Motivating Example: The Confounded Physicians

Example 6.1.1. We begin by considering a motivating example depicting UCs in medical

decision-making. In this scenario, physicians regularly prescribe one of two FDA-approved

drugs to treat a certain condition. Each of the drugs, denoted X ∈ {0, 1}, have been

shown to be equally effective at treating the condition in a randomized clinical trial (RCT);

specifically, for patient recovery Y ∈ {0, 1} where Y = 1 = y1 indicates recovery, the study

found a 70% recovery rate for each drug, i.e., P (y1|do(x)) = 0.7 ∀ x ∈ X. In reviewing her

own patient records, one physician confirms this recovery rate, noting that the recovery rates

of each patient she has treated are also recovering at the experimentally reported rates, i.e.
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P (y1|x) = 0.7 ∀ x ∈ X. However, upon attending a conference with other physicians from a

variety of backgrounds, she learns that some of her colleagues are not witnessing the same

recovery rates at their practices.

Supposing that patient populations between physicians (at least on metrics relevant to the

current condition) are exchangeable, it is plausible that the differences in witnessed recovery

rates could be explained by treatment assignments that are confounded with patient recovery.

This possibility is not without precedent, as recent studies that have investigated the complex

mechanisms of treatment selection have implicated a rich tapestry of interactions between

patient, physician, and healthcare system that, either through direct or indirect pathways,

ultimately confound treatment with recovery [BSG10]. From the physician’s side, treatment

decisions may not only be based on their subjective perception of the patient’s prognosis,

but also of their opinions of (or experiences with) the available treatments, their assessments

of the patient’s ability, willingness, or financial capacity to comply with the treatment, and

a variety of other factors. From the patient’s side, in what is known as adherence bias,

compliance to treatment could covary with other healthy lifestyle choices, which ultimately

account for recovery (either by these choices alone or their undocumented interaction with

the treatment) [Whi05]. Furthermore, direct-to-consumer advertising (DTCA) is a practice

that allows pharmaceutical companies to advertise their drugs directly to patients; though a

prescription should, in theory, be based solely on objective metrics of per-patient applicabil-

ity, advertising has been shown to increase the sale of drugs, indicating a patient-requested

effect on their selection. Such requests may not be recorded in patient histories (or if they

are, may not be considered a diagnostically relevant factor), and so any influences on the

final treatment assignment that amount from these requests are not available for analysis

[Lyl02, Ven11].

In the present example, we will, for simplicity, consider only two such possible unobserved

confounding factors. The first is the patient’s socio-economic status (SES) that we will

encode as either low-SES (S = 0) or high-SES (S = 1). A patient’s SES may be heuristically

assessed by the physician (for example, through anecdotal indicators or appearance of the

patient) and influence their treatment based on differences between the short- or long-term
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expenses of different therapies. Consider also that SES may covary with certain nutritional

quality, such that higher SES patients may have access to better or more diverse meals that

interact with the given treatments in different ways. The second UC will be the patient’s

treatment request, which can be influenced by DTCA. In particular, a patient may request

one treatment (R = 0) over another (R = 1), which may influence a physician’s decision if

they decide to accommodate such requests. Consider also that an indirect pathway may link

the medication requested to certain recovery covariates; for instance, it is possible that a drug

advertised on a sports station will be observed by patients who tend to get better exercise, and

thus have better cardiovascular health (which then may interact with assigned treatment).

Plainly, there are many such influencing factors that may act as UCs in treatment assignment,

but we will demonstrate the procedures herein using R and S for illustrative purposes.

Returning to our physicians’ conference at which they are comparing recovery rates for

drugs X = 0 and X = 1, suppose that different physicians have different assignment poli-

cies. In particular, consider that more accommodating physicians will attempt to honor their

patients’ requests for one medication over the other, but are also influenced by their per-

ception of each patient’s SES. Physicians of this “type” assign treatment by the structural

equation, X ← fP1
X (S,R) = XOR(S,R). Now, suppose another type of physician is aware

of the influences of DTCA, and consciously refuses to let patient requests influence their

decisions; as such, these physicians’ treatments can be modeled by the structural equation

X ← fP2
X (S) = S.

Modeling the reality of this scenario from an omniscient viewpoint, we note that there

is an even patient distribution over SES and requesters for each drug i.e., P (r) = P (s) =

0.5 ∀ r ∈ R, s ∈ S. As such, the true probabilities of recovery from the condition under each

confounder state are listed in Table 6.1(a). Also of note, the recovery rates (derived from this

“true” distribution) witnessed in the FDA’s experimental study are shown in Table 6.1(b)

along with the observational recovery rates of the accommodating physicians of type P1 and

those of the stringent physicians P2 (where fP1
X (S,R) = XOR(S,R) and fP2

X (S) = S).

Scrutinizing this data, we see that the observational treatment policy of physician P1

represents a case of invisible confounding ; namely, P (Y |do(X)) = P P1(Y |X) ∀ x ∈ X, yet
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(a) S = 0 S = 1

P (y1|X,S,R) R = 0 R = 1 R = 0 R = 1

X = 0 P1,P20.70 P2∗0.80 0.60 P1∗0.70

X = 1 ∗0.90 P10.70 P1,P2∗0.70 P20.50

(b) P (y1|do(X)) P P1(y1|X) P P2(y1|X)

X = 0 0.70 0.70 0.75

X = 1 0.70 0.70 0.60

Table 6.1: (a) Recovery rates as a function of drug choice X, patient SES status S, and

patient treatment request R. The observational treatment assigned by physicians of type 1

are indicated by P1, and those by type 2 are indicated by P2 (where fP1
X (S,R) = XOR(S,R)

and fP2
X (S) = S). The optimal treatment under each configuration of S,R are indicated by

asterisks. (b) Recovery rates according to the FDA experiment, P (y1|do(X)), the observa-

tions of physician 1 P P1(y1|X), and the observations of physician 2 P P2(y1|X), where Y = y1

represents recovery (shown in the table).

there are indeed confounding factors present in the system that the statistical distribution

over recovery does not reveal alone. The plight of physician 2 is not entirely better; while

the recovery rates associated with the ostensibly optimal drug X = 0 are superior in two

configurations of S,R, and it appears as though P2 receives more discriminant information

about the UCs compared to P1 (since P (Y |do(X)) 6= P P2(Y |X) ∀ x ∈ X) we can see

from Table 6.1(a) that there exist conditions under which X = 1 is actually the optimal

assignment choice.

Having now compared their notes and observed recovery rates using each of the drugs,

physicians P1 and P2 consider how they might repair for the influence of confounding factors.

After some research, they discover that dynamic experiments using intent-specific decision-

making (ISDM, Def. 3.4.2) may be appropriate. Each returns to their respective practices

and collects data on the intent-specific recovery rates of each drug. The results of their

experiments are displayed in Table 6.2. Perhaps surprisingly, the intent-specific recovery

rates of P1 appear to be no different than the observational and experimental recovery rates
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for each drug. Using the Regret Decision Theory (RDT, Def. 3.4.5) as a maximization

criteria, the expected recovery rates of any arbitrary patient of P1 will be 70% – no different

than the results of a Causal Decision Theory (CDT, Def. 3.4.4) maximization. Even the

results of the ISDM experiment from P2 make marginal improvements over the CDT average

such that the recovery rates of an arbitrary patient of P2 under RDT maximization will be

72.5%.

P P1(Yx = 1|x′) x′ = 0 x′ = 1

x = 0 0.70 0.70

x = 1 0.70 0.70

P P2(Yx = 1|x′) x′ = 0 x′ = 1

x = 0 0.75 0.65

x = 1 0.80 0.60

Table 6.2: Results of ISDM dynamic experiments conducted by physicians P1 (left) and

P2 (right). The intent-specific recovery rates witnessed by P1 are illustrative of invisible

confounding.

With these latest results in hand, the two physicians once again compare notes. They face

a perplexing situation in which the results of physician P1’s ISDM experiment suggest that

no confounding exists, yet P2’s seems to suggest that there does. Even so, the improvement

in recovery rates witnessed by P2 in the ISDM experiment appear to be only marginal

improvements over the experimental average of 70%. The two physicians ponder whether to

conclude that confounding is present or not, and more importantly, whether they might still

be able to improve the recovery rates of their patients.

6.2 Formalizing Heterogeneous Intent

The Confounded Physicians Example 6.1.1 demonstrates a decision-making scenario with

several noteworthy characteristics:

1. Although under the influence of confounding, physician P1’s intent-specific recovery

rates show no indications of any unobserved factors that might distinguish observa-

tional, experimental, or counterfactual recovery distributions (see Tables 6.1(b), 6.2).
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2. Yet, physician P2 does exhibit some traditional, statistical indications of confounding,

such that recovery differences are manifest between observational, experimental, and

counterfactual distributions (see Tables 6.1(b), 6.2).

In the present section, we will first formalize the distinguishing features of this scenario

from past examples in the Greedy Casino, then demonstrate how our new way to model the

scenario can be used in not only an online, dynamic experiment, but can also improve the

traditional offline Randomized Clinical Trial (RCT).

We begin by explaining the statistical phenomena experienced by physician P1 such that

confounding exists despite equivalence between observational, experimental, and counterfac-

tual quantities. We refer to this type of scenario as one with “invisible confounding.”

Definition 6.2.1. (Invisible Confounding) For some decision variable X (Def. 3.3.2) and

some measured outcome of that decision Y , we say that X and Y are subject to invisible

confounding whenever

P (Y |X) = P (Y |do(X)) = P (Yx|x′) 6= P (Yx|U) ∀ x, x′ ∈ X, u ∈ U (6.1)

Invisible confounding is possible in any setting with unobserved confounders, though

requires a careful tuning of outcome parameters to be manifest.1 Invisible confounding

is particularly subtle in settings wherein all reasoning agents are of homogeneous intent

(Def. 3.5.1). Were all physicians to possess the same observational choice policy as P1, all

agents would (from an omniscient perspective) experience linear u-regret (Def. 3.2.2), never

converging to an optimal policy. Mercifully, in the present setting, different agents possess

different observational decision-making functions, which we call heterogeneous intents.

Definition 6.2.2. (Heterogeneous Intents) Let A1 and A2 be two agents within a

MABUC instance, and MΠ
A1

be the SDM (Def. 3.3.1) associated with the choice policies

1For this reason, we concede that invisible confounding is a strongly artificial phenomena, but one that
the present technique will help us address nonetheless.
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of A1 and likewise MΠ
A2

be the SDM associated with the choice policies of A2. For any

decision variable X ∈ ΠM and its associated intent I = fx, the agents are said to have

heterogeneous intent if fA1
I ∈ FMΠ

A1
and fA2

I ∈ FMΠ
A2

are distinct, viz., if fA1
I 6= fA2

I .

In the Confounded Physicians Example 6.1.1, physicians P1 and P2 are said to have

heterogeneous intents, since a data point from one of the physician’s observational / intent-

specific recovery distributions are not exchangeable (i.e., are not necessarily sampled from

the same configuration of background variables U) with the other’s. This is because fP1
I =

XOR(S,R) 6= S = fP2
I , and so an intent to treat with, say, drug X = 0 provides different in-

dications of S,R depending on whether it was P1 or P2 who experienced it. As a consequence,

P P1(Y |X) 6= P P2(Y |X) and P P1(Yx|x′) 6= P P2(Yx|x′) (as demonstrated in Tables 6.1, 6.2).

Though this relationship may appear to be a modeling complication, we will demonstrate

that it can be exploited to yield a choice policy that is more successful than either agent

individually.

6.2.1 Online Heterogeneous Intent-specific Decision-making

We can structure the learning problem of the Confounded Physicians as a dynamic experi-

ment in which the disparate predilections of each physician are concerted to yield a superior

choice policy. As such, suppose our confounded physicians attempt to determine whether or

not they are subject to confounding by conjoining their practices for some period of time,

and begin hosting joint diagnostic sessions. By doing so, not only do they ensure homogeny

of patient populations, but also that any confounding factors that might be to blame for

differences in treatment affects can be controlled through ISDM by affecting both of them

in the same way at the same time for every data point. The procedure that they agree to is

as follows:

1. A patient visits the clinic suffering from the condition in question, at which point both

physicians will be jointly present for the consult.2

2Plainly, this is not a feasible requirement for the average physician; for the present example, however,
we will demonstrate its utility and later, how it can be applied in a more realistic scenario.
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2. Having heard the patient’s complaints, run any preliminary tests, and asked any di-

agnostic questions (per each physicians’ usual routine), each physician develops an

intended treatment for the patient. Note that the key assumption here is that each

physician is exposed to the same configuration of the UCs, but, due to their heteroge-

neous intents, may react differently to them.

3. Each physician then submits their intended treatment to a learning system, which then

decides the final treatment choice for the patient.

4. The resulting recovery (or lack thereof) for the patient is recorded alongside the treat-

ment choice and the intended treatment of each physician.

With this procedure in mind, the physicians decide to model the dynamic experiment

as a MABUC problem. They note that the original formalization of a Structural Decision

Model (Def. 3.3.1) would be appropriate for this task, but while SDMs are capable of

accommodating scenarios with heterogeneous intents, it will be useful to explicitly denote

that the scenario at hand may contain disparate intent functions for the treatment decision.

Thus, they formalize the notion of a Heterogeneous Intent Structural Decision Model.

Definition 6.2.3. (Heterogeneous Intent Structural Decision Model) A Heteroge-

neous Intent Structural Decision Model (HI-SDM) represents a composite of individual Struc-

tural Decision Models (SDMs, Def. 3.3.1) wherein Decision Variables (Def. 3.3.2) can be

a function of distinct intent functions. HI-SDMs are denoted MΠA where A is the set of

heterogeneous agents in the system. Formally, we consider that A = {A1, A2, ..., Aa} denotes

the heterogeneous intent equivalence classes of actors in the model, such that for at least

one decision variable X ∈ Π, Ai 6= Aj ⇔ fAiI 6= f
Aj
I ∀ Ai, Aj ∈ A. An HI-SDM connects

the agent-specific SDMs (i.e., MΠA1 , ...,MΠAa ) such that the decision variables, outcome

variables, and UCs in each SDM all correspond to the same unit, t.

Definition 6.2.4. (Intent Equivalence Class (IEC)) In an HI-SDM MΠA , we say that

any two actors Ai 6= Aj belong to separate equivalence classes of intent functions fI for

a particular decision variable X and outcome variable Y if P (Yx|IAi) 6= P (Yx|IAj) 6=

P (Yx|IAi , IAj) ∀ x, iAi , iAj , thus fAiI 6= f
Aj
I .
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Figure 6.1: Graphical model of prototypical HI-SDM MΠA as a composite of individual IEC

SDMs MΠA1 , ...,MΠAa . Variables shared between each model that correspond to a particular

unit t are highlighted in orange (viz., Ut, Xt, Yt).

Figure 6.1 depicts the interpretation for the prototypical HI-SDM, MΠA , which repre-

sents a composite of SDMs for each agent IEC A = {A1, A2, ..., Aa} such that MΠAi is

a homogeneous-intent SDM for a single agent. This decomposition allows us to preserve

intra-agent observational outcomes of the format P (Y |X) = P (Y |I) and counterfactuals of

the ISDM format P (Yx|X = x′) = P (Yx|I = x′) while also capturing inter-agent treatment

outcomes, discussed shortly. Importantly, what allows us to holistically discuss the HI-SDM

and its constituent SDMs is the idea that, although each agent IEC’s response represents

a different functional relationship with the confounder state Ut = ut, finally assigned treat-

ment Xt = xt, and outcome Yt correspond to the same unit t in each model. For instance, if

we consider a “unit” to be a particular patient in the Confounded Physicians example, then
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Figure 6.2: Juxtaposition of graphical models for online vs. offline HI-SDMs. (Left) Graph-

ical model of a prototypical HI-SDM MΠA for an online MABUC instance with decision

variable Xt, outcome Yt, unobserved confounders Ut, and agent history Ht. (Right) Graph-

ical model of a prototypical HI-RCT (MΠA
x ) wherein treatment is assigned at random, but

results can be enriched by conditioning on distinct IECs.

it is assumed that Ut corresponds to that particular patient’s features, Xt corresponds to

that particular patient’s final treatment assignment, and Yt corresponds to that particular

patient’s recovery.

Note that the prototypical SDM employed in previous chapters is merely a special case

of the heterogeneous intent SDM such that a homogeneous intent SDM is a model MΠA1

for a single actor intent class A1. Additionally, we see that a particular trial’s configuration

of UCs is linked to each actor’s intent for that unit; in this way, each heterogeneous intent

function can provide a more complete picture of the UC state (when considered in concert)

than any individual intent function in isolation. This fact provides the impetus for our

modeling decision to design approaches that consider a final decision Xt that is conditional

upon all IECs, as demonstrated in the HI-SDM itself.

Because each actor’s intent provides a potentially separate piece of the UC’s “puzzle,”

the way our learning agent should record each trial changes only slightly from the method de-

scribed in Figure 3.6. In particular, the agent will be able to record intent-specific rewards for

not only each actor individually (i.e., for each agent’s SDM yielding P (Yx|IA1), ..., P (Yx|IAa),
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Figure 6.3: Tabular reward histories of (top) individual actor intent-specific rewards and

(bottom) combined actor intent-specific reward distributions.

Figure 6.3 (top)) but also a Combined table, containing the rewards of each arm sampled

under all combinations of all actors’ intents, i.e., ∀ IAi ∈ IA (i.e., P (Yx|IA1 , ..., IAa), Figure

6.3 (bottom)).

To visualize the merit of this organization of reward distributions, we return to the

individual treatment success rates of the physicians in the Confounded Physicians Example

6.1.1. Recall that the chief benefit of conditioning upon intent is the information that it

yields about the state of the UCs (as demonstrated from the Greedy Casino Example in

Table 3.2). In the Confounded Physicians Example, by comparison, the information about

S,R provided by IP1 , IP2 is via the distributions P (S,R|IP1), P (S,R|IP2), respectively. The

conditional distribution over each individual actors’ intent is shown in Tables 6.3(a, b). Note

that the precise configuration of UCs indicated by either actors’ individual intents is split

between a possibility of 2 states; this ambiguity is the source of the invisible confounding (Def.

6.2.1) manifest in the example. However, when each actors’ intents are considered together,

this ambiguity is resolved, and each combination of the heterogeneous intents points to a

precise configuration of UCs (see Table 6.3(c)).

Although the distributions detailed in Table 6.3 would be unavailable to any reasoning
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(a) S = 0 S = 1

P (S,R|IP1) R = 0 R = 1 R = 0 R = 1

IP1 = 0 0.50 0.00 0.00 0.50

IP1 = 1 0.00 0.50 0.50 0.00

(b) S = 0 S = 1

P (S,R|IP2) R = 0 R = 1 R = 0 R = 1

IP2 = 0 0.50 0.50 0.00 0.00

IP2 = 1 0.00 0.00 0.50 0.50

(c) S = 0 S = 1

P (S,R|IP1 , IP2) R = 0 R = 1 R = 0 R = 1

IP1 = 0
IP2 = 0 1.00 0.00 0.00 0.00

IP2 = 1 0.00 0.00 1.00 0.00

IP1 = 1
IP2 = 0 0.00 1.00 0.00 0.00

IP2 = 1 0.00 0.00 0.00 1.00

Table 6.3: Probability of each UC state {S = s, R = r} given the intent of each actor

(physician). (a) depicts the probability of each UC state for P1 individually, and (b) for P2

individually. (c) Probability of each UC state for concerted intents.

agent (because their derivation depends on knowledge of the fully-specified model), the em-

pirical benefit of concerting heterogeneous intents is tangible. In particular, we can consider

the heterogeneous intent-specific recovery rates of each drug in Table 6.4. Viewing Table

6.4, we can make several key remarks: (1) though an extreme case, we see that conditioning

on heterogeneous intents has reproduced the parameters in the “true” recovery distribution

(Table 6.1(a)) without ever having to know the states of S,R; (2) as a consequence (and

what will be formalized briefly), agents that condition on the heterogeneous intents of P1

and P2 in the present example will reach the optimal choice policy, and minimize u-regret;

and (3) the optimal policy from combining heterogeneous intents will experience a higher

recovery rate (77.5%) than either actor’s ISDM recovery rates individually (70% for P1 and

72.5% for P2; see Table 6.2).
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IP1 = 0 IP1 = 1

P (Yx = 1|IP1 , IP2) IP2 = 0 IP2 = 1 IP2 = 0 IP2 = 1

X = 0 0.70 0.60 0.80 0.70

X = 1 0.90 0.70 0.70 0.50

Table 6.4: Recovery rates for each drug given the intents of both physicians P1 and P2.

These results provide us with an extension to the Regret Decision Theory (RDT, Def.

3.4.5) in which the intents of actors in the environment are heterogeneous. We describe this

extension as Heterogeneous Intent Regret Decision Theory, which follows from considering

actors (and their corresponding intent functions) as members of certain IECs.

In words, if two actors possess the same intent function for a particular decision variable

(i.e., their observational action choice predilection), then we would expect that both (1) their

intents and (2) their counterfactual reward quantities (at any given time in a confounded

decision-making task) will coincide. However, we should note that, while this definition is

true in one direction (i.e., that if two actors belong to the same IEC, that their intents

and counterfactual rewards will agree), the opposite is true only to a degree of observational

equivalence. Because a fundamental assumption of the confounded decision-making scenarios

is that the reasoning agent does not possess the fully-specified SCM of the environment, it

is possible to observe two actors eliciting the same intents and the same counterfactual

rewards, but still possess two separate intent functions. For our purposes in the present

task, however, observational equivalence of actor intents will be sufficient, given that we

merely wish to obtain some information about the state of the UCs through the proxies of

intent (a la Table 6.3). If the final condition for two actors’ intents to be considered entities

of the same equivalence class holds (i.e., P (Yx|IAi) = P (Yx|IAj) = P (Yx|IAi , IAj)), then we

gain nothing from conditioning on both agents’ intents separately.

As such, we can now specify our new optimization criteria for agents to maximize in

a heterogeneous intent confounded decision task, which applies to environments in which

actors belong to distinct IECs.

Definition 6.2.5. (Heterogeneous Intent Regret Decision Theory (HI-RDT)) Het-
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erogeneous Intent Regret Decision Theory (HI-RDT) states that, for all distinct IECs (Def.

6.2.4) A = {A1, A2, ..., Aa} of actors in a Heterogeneous Intent Structural Decision Model

MΠA (Def. 6.2.3), conditioning on the intents of all actors provides evidential context for the

state of the environment that is richer than the context of any individual intent. HI-RDT

agents thus maximize the reward Y from a distribution over the action space X given the

intents of actors in each equivalence class. The optimal action x∗ ∈ X is thus defined as:

x∗ = argmax
x∈X

P (Yx|IA1 , IA2 , ..., IAa) (6.2)

In words, HI-RDT prescribes that agents should maximize reward within the context of

actors’ intents of heterogeneous IECs to learn as much about the U -specific reward distribu-

tion using each IA as a proxy for the state of the UCs. We can now depict the workflow of

a HI-RDT agent in a Heterogeneous Intent MABUC scenario, as shown in Figure 6.4.

1. We begin by considering the utility of any observational and experimental data from the

environment that may aid in the heterogeneous intent MABUC learning process, as by

tenets of counterfactually-enabled data-fusion presented in Chapter 5. Observational

data could exist for each actor’s past experience with each action (or drug choice, in the

case of the Confounded Physicians Example), though under the effects of their personal

IEC. As such, any observational data points can be used to populate each individual

IEC’s intent-specific rewards, and does not provide information about the combined-

intent reward. Experimental data, on the other hand, may provide information about

the average treatment effect of each action in both individual IEC and combined IEC

reward tables (e.g., as by the results of the FDA study). Though the possibility of

employing such side information to speed learning in a heterogeneous intent MABUC

exists (for the same reasons it helped in Chapter 5), we will not consider it in the

present work.

2. From the current configuration of UCs (in the Confounded Physicians Example: S,

each physician’s perception of the patient’s socio-economic status, and R, the specific

drug request of the patient), each actor develops an intent IAi .
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Figure 6.4: Depiction of an online heterogeneous intent MABUC scenario.

3. Using the HI-RDT learning agent’s history of IEC-specific rewards, a data combina-

tion is accomplished whereby each actor’s submitted intent is classified into a set of

heterogeneous IECs A = {A1, A2, ..., Aa} (i.e., actors believed to be in a homogeneous

IEC are summarized in a single intent condition), which serve as the context in which

to make a final decision.

4. Based on this data combination, the HI-RDT agent makes a final action decision, and

pulls the chosen arm.

5. The environment provides a reward to the agent, which then remembers the outcome

as a data-point, populating its distribution over both the combined, HI-IEC space,

P (Yx|IA1 , IA2 , ..., IAa), and the individual, counterfactual IEC space P (Yx|IA1), ..., P (Yx|IAa).

While the theory behind online HI-RDT is sound, considering its feasibility in practice
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begs an important question for the empirical sciences: by the time that HI-RDT could be

useful as a dynamic experiment, it means that offline experimental results have failed to

expose confounding factors that can be either helpful or detrimental in the relevant actors’

decision-making. In the medical context, in which we have found ample precedent for the

influence of confounding factors on treatment assignment, this implies that an FDA’s RCT

would be insufficient for detecting confounded drug prescriptions before their influence is

felt in practice. In the next section, we take the tenets of HI-RDT and apply them to the

offline domain in pursuit of improving traditional RCTs to not only detect confounding, but

to measure counterfactual outcomes for practitioners as well.

6.2.2 Offline Heterogeneous Intent-specific Decision-making

In the traditional randomized clinical trial (RCT) experiment, control of confounding factors

is done through random assignment of participants to experimental conditions with the

expectation that any influence of unmodeled factors is averaged in each condition. For

instance, in a Food and Drug Administration (FDA) experiment to test the efficacy and safety

of new prescriptions, participants are typically randomly assigned to either an experimental

condition in which the drug is administered, or a placebo group where it is not. The rates

of recovery between these groups is compared after the duration of the study, and a drug’s

case for approval will be loosely rooted in its improved treatment efficacy over the placebo,

as well as considerations for side-effects incurred and a variety of other factors.

However, while an RCT may appear to be an effective, offline strategy to nullify any un-

modeled influences between drug assignment and recovery, it also suffers a central weakness:

any unmodeled confounding factors that would be manifest during real-world treatment as-

signment (such as S,R in the Confounded Physicians Example) are not discovered until after

the drug is in the hands of physicians prescribing it. Worse yet is that these factors may re-

main undetected if the confounding effects exhibit cases of invisible confounding (Def. 6.2.1)

like they did for physician P1 in the Confounded Physicians Example. In the best case, these

confounding factors lead to an improvement in efficacy over the experimental results; in the
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worst, they actually may impede treatment effectiveness. Ideally, we would like to discover

the identities and states of any confounding factors for drug assignment, but before that, we

should be wary to determine whether or not there are any such UCs in the system to begin

with.

Since RCTs will not reveal the presence of any confounders alone, and even observational

follow-ups with physicians may obscure the presence of confounders (e.g., through invisible

confounding), suppose instead that we collect data by sampling the intended treatments for

each patient from a representative sample of physicians, and determine (by sampling the HI-

RDT reward distribution) if confounders exist for certain physician IECs, and if so, to then

isolate and identify these unmodeled influences. That said, HI-RDT is a reward maximization

criteria for an online learning agent in a dynamic experiment like a MABUC; the analogy

between a MABUC scenario and an RCT study breaks down on several levels: (1) a MABUC

agent attempts to determine the optimal arm choice as soon as possible, and then continues

to exploit that arm after reaching a degree of confidence about its optimality, whereas an

RCT attempts to ascertain some treatment efficacy between groups to a certain degree of

confidence; (2) there may be ethical ramifications surrounding treatment assignment that

is a function of any actor’s input that are manifest in MABUC scenarios (by virtue of

intent-specific decision-making) but should not be in an RCT; (3) data may be expensive

or prohibitive to collect in some RCT, whereas MABUC scenarios do not always consider a

cost associated with treatment at every trial. As it is, FDA RCTs undergo several phases

of experimental drug testing before the drug ever appears at market; to require yet another

round of HI-RDT experiments atop the existing requirements would impede an already

saturated timeline for drug approval.

Instead, let us consider how we might marry the application of HI-RDT agents in the

online heterogeneous decision-making domain towards improving traditional RCTs in the

offline experimental design domain. The contribution we will make here is a consequence of

the measure of Heterogeneous Intent Empirical Counterfactual Estimation, Theorem 6.2.1;

viz., that counterfactual outcomes of a particular treatment can be measured empirically by

conditioning on the treaters’ intents. In confounded decision-making scenarios with hetero-
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geneous actor intent, the same empirical estimability applies (see Eq. 6.3). We refer to the

application of HI-SDM in the offline, experimental design domain as a Heterogeneous Intent

Randomized Clinical Trial.

Definition 6.2.6. (Heterogeneous Intent Randomized Clinical Trial (HI-RCT))

Let X be the treatment of a Randomized Clinical Trial (RCT) in which all participants are

randomly assigned to some experimental condition via do(X = x) with measured outcome

Y . Furthermore, let A = {A1, A2, ..., Aa} be the set of all IECs for administrators of X in

the un-intervened HI-SDM MΠA for which the RCT is meant to apply. A Heterogeneous

Intent RCT (HI-RCT) is an RCT wherein treatments are still randomly assigned to each

participant, but in addition, the HIs of sampled administrator IECs are collected for each

participant. In an RCT, data is collected over the distribution P (Yx); in a HI-RCT, data

is collected over P (Yx|iA1 , ..., iAa). The graphical model of a HI-RCT is the mutilated sub-

graph of its associated SDM such that all inbound edges to the randomized decision variable

X are severed, producing MΠA
x . A depiction of the prototypical HI-RCT is displayed in

Figure 6.4 (right).

One of the more subtle results of a HI-RCT model is that, in the context of an RCT, the

collection of each actor’s intent can be done before the treatment is assigned and outcome

recorded, or after, so long as the outcome is not an input to an intent function. To visualize

this detail, consider the prototypical heterogeneous intent MABUC model depicted in Figure

6.2 (right). In a traditional RCT model, all incumbent edges to the treatment X are severed

because random assignment represents a forced assignment (as by the interventional do-

operator in the sub-model MΠA
x ). Though the treatment is no longer a function of each

intent IAi , this does not mean that actors exposed to the same environment U that would

typically decide each IAi cannot still reproduce the desired heterogeneous intent specific

rewards. In other words, when treatment is randomized, the information about the outcome

Y provided by pre-treatment intents will be the same as that provided by post-treatment

intents, assuming each actor is exposed to the same U in both cases (an assumption that is

encoded in the SDM, via the edges between U and I in both the online and offline models,

Figure 6.2 left and right, respectively). We show this formally in Theorem 6.2.1.1.
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Figure 6.5: Depiction of a HI-RCT in the medical RCT domain.

An example HI-RCT procedure is depicted in Figure 6.5. For each participant t in some

RCT with discrete experimental conditions X (in the figure, demonstrated as two separate

treatment assignments), the typical RCT procedure is followed (Figure 6.5 (bottom)): (1)

each participant’s descriptive information is collected (demographics, medical records, and

other data that is deemed relevant to the measured treatment outcome Y ). (2) Participants

are randomly assigned to a particular treatment condition, as by the operator do(Xt = xt),

indicating that the influences of any causal mechanisms that would otherwise confound

treatment with outcome (in the unintervened system) are severed. (3) An outcome for the

randomly assigned treatment is recorded for participant t, generating an experimental data

point in the space of Yx for assigned treatment do(Xt = xt).

However, suppose we now model the HIs of actors who would normally be responsible for

treatment assignment, e.g., physicians who would be tasked with prescribing the treatments

in their practices. For each participant in the original RCT, a selected set of HI physicians
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will be tasked with the following (Figure 6.5 (top)): each physician is provided with all of

the relevant treatment data for participant t such as volunteered medical records, including

(as the experiment may see fit) the ability to conduct diagnostic interviews or any other

procedural aspects of each doctor’s usual pre-treatment routine. Note that each physician

is blind to the participant’s randomly assigned treatment condition, and is equally blind to

their treatment outcome (e.g., recovery or no recovery). (2) From these patient features, each

physician makes a recommended treatment (i.e., submits his or her intended treatment) such

that for each physician IEC A = {A1, ..., Aa}, we possess a corresponding intent IA1
t , ..., IAat

for unit t. Note also that these intents will be evidence for both observed and unobserved

outcome covariates per each physician’s subjective diagnostic criteria, but will either agree

or disagree with the ultimately randomly assigned (and administered) treatment.

By pairing each physician’s intended treatment with the randomly assigned one (and its

resulting outcome), we obtain several more informative data points atop the experimental

results:

1. Yxt|I
Aj
t = xt for each actor Aj represents an observational data point for Aj, since the

outcome corresponding to the treatment that was randomly assigned to participant t,

xt, coincides with the intended treatment I
Aj
t = xt. These data are equivalently over

the space of Y |xt, and are useful for: (a) comparing with the experimental results to

detect confounding (lest it be invisible), and (b) if confounding does exist, can be used

to identify high / low actor performance and address its causes.

2. Yxt|I
Aj
t = x′t for each actor Aj representing a single IEC’s counterfactual data point

for Aj, since the outcome corresponding to the treatment that was randomly assigned

to participant t, xt, contrasts with the intended treatment I
Aj
t = x′t. These data are

useful for: (a) comparing with the experimental and observational results to detect

confounding, and (b) identifying intents that lead to superior / inferior outcome rates

compared to the experimental average.

3. Yxt|IA1
t = xA1

t , ..., IAat = xAat for all IECs provides a HI data point, wherein each in-

dividual IEC’s intent is free to agree or contrast with the administered treatment xt.
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These data are useful for: (a) detecting confounding across actor IECs providing the

strongest chance to find invisible confounding, (b) identifying superior treatment poli-

cies in the case where some combination of HI conditions may lead to better outcomes

than observational, experimental, or single actor IECs alone.

Note that because the above procedure collects actor intents atop an existing RCT, it is

not necessary to perform any additional experimental trials than are already involved in the

traditional approach; the only added component is that actor intents be paired with each

participant’s randomized treatment and resulting outcome. Thus, an HI-RCT marries obser-

vational and experimental studies, with the added piece of providing not only counterfactual

data for individual IECs, but of the HIs as well; this procedure may lead to more robust

treatment policies in which previously unforeseen confounding factors can be controled.

6.2.3 Theoretical Results

Just as we provided theoretical proof that ISDM delivers upon its promise to empirically

evaluate counterfactual quantities of interest in SDMs, and that doing so will always yield

as much or more information than experimental quantities (Chapter 3), so too will we echo

these theoretical guarantees for the case of heterogeneous intents. In scenarios involving

agents with homogeneous intents, Theorem 3.4.1 demonstrated that counterfactuals of the

ETT format P (Yx|x′) could be empirically estimated using intent such that P (Yx|x′) =

P (Y |do(x), I = x′). We begin with a theorem that is analogous to that of homogeneous

intent-specific decision-making such that the counterfactual query of the format P (Yx′ |XAj =

iAj , ..., IAa = iAa) is empirically estimable through use of an HI-SDM.

Theorem 6.2.1 (Heterogeneous Intent Empirical Counterfactual Estimation). Let X be a

decision variable in a heterogeneous intent SDM MΠA (Def. 6.2.3) with measured outcome Y ,

and let IA1 , ..., IAa be the heterogeneous intents for X of actors in the IECs A = {A1, ..., Aa}

in MΠA . A HI-specific outcome quantity P (Yx′ |IAj = iAj , ..., IAa = iAa) is equivalent to

a counterfactual for a single IEC Aj ∈ A, P (Yx′ |XAj = iAj , ..., IAa = iAa), and can be

estimated empirically for observed intents iA1 , ..., iAa , and antecedent X = x′ (where X = x′
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indicates the antecedent for any of the individual IEC SDMs as well as the HI-SDM since,

by assumption, do(XAj) = do(XAi) for any two IECs Ai 6= Aj). Formally, we may write the

counterfactual query in interventional notation such that

P (YX=x′|XAj = iAj , ..., IAa = iAa) = P (YX=x′|IAj = iAj , ..., IAa = iAa) (6.3)

= P (Y |do(X = x′), IAj = iAj , ..., IAa = iAa) (6.4)

Proof. See appendix for proof of Theorem 6.2.1.

The significance of Theorem 6.2.1 is twofold: (1) the collection of heterogeneous IEC

intents does not impede the empirical counterfactual estimation for any individual IEC

SDM and (2) collecting the HI-SDM outcomes provides counterfactual outcomes for each

IEC SDM individually; for example, for 2 IECs, the following equivalence holds as a result:

P (Yx|iA1 , iA2) = P (Yx|xA1 , iA2) = P (Yx|iA1 , xA2) (6.5)

A consequence of Theorem 6.2.1 is the following corollary, which asserts that in an HI-

RCT, pre-treatment intent sampling holds the same information about the treatment-specific

outcome as does post-treatment intent sampling.

Corollary 6.2.1.1 (Equivalence of Pre- and Post-Assignment Intent Sampling). In an HI-

RCT (Def. 6.2.6) with randomly assigned treatment X, measured outcome Y , IECs A =

{A1, ..., An}, and intended treatments of actors in each IEC IA = {IA1 , ..., IAa}, empirical

estimation of IEC-specific treatment outcomes can be accomplished by the tenets of the

Heterogeneous Intent Empirical Counterfactual Estimation, Theorem 6.2.1. Because HI-

RCTs randomize treatment assignment, IECs that are sampled before treatment assignment

yield equivalent information about the assigned treatment’s outcome Yx as do those that are

sampled after, or formally:

P (Yx|iA1 , ..., iAa) = P (Yx|iA1
x , ..., iAax ) (6.6)

Proof. See appendix for proof of Corollary 6.2.1.1.
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The significance of Theorem 6.2.1.1 is that, assuming the preservation of any data relevant

to each unit in the RCT, IEC intents can be collected either before or after the RCT has

been conducted in order to obtain HI-RCT data (i.e., Figure 6.3).3 This finding may lead to

a proliferation of new studies and more informative results from existing RCTs, with only

modest additional requirements of labor.

In the online setting, we must also be careful to distinguish the u-regret that would be

experienced by an HI-RDT agent (which is knowable only to the omniscient modeller, in pos-

session of the fully-specified model) and the regret that would be experienced under context

of each heterogeneous intent. We call this latter, observable regret the Heterogeneous-Intent-

Specific Decision-Maker Regret (hi-regret).

Definition 6.2.7. (Heterogeneous-Intent-Specific Decision-Maker Regret (hi-Regret))

For a MABUC problem with time horizon T , decision variable X ∈ {x1, ..., xk} (where

K = |X| ∈ N, K ≥ 2 represents the number of choices), reward Y , and heterogeneous IECs

IA = {IA1 , ..., IAa} (Def. 6.2.4) (where IAj is the intent experienced by an actor of the IEC

Aj for decision X), the optimal action x∗(IA) is considered the one that maximizes expected

reward under HI state IA = {IA1 = iA1 , ..., IAa = iAa}, defined as:

x∗(IA) = argmax
x∈X

P (yx|IA) (6.7)

The hi-regret experienced by an agent using choice policy π at trial 0 < t < T is defined as:

ri
A

t = P (yx∗(iAt )|iAt )− yxπt (6.8)

The cumulative hi-regret experienced by an agent across all T trials is thus:

RiA

T =
T∑
t=1

ri
A

t =
T∑
t=1

P (yx∗(iAt )|iAt )− yxπt (6.9)

Equipped with this definition, we demonstrate that HI-RDT is superior to RDT decision-

making strategies in MABUC problems.

3Note that this claim assumes that the unit-specific UC state Ut = ut is invariant to treatment assignment
(i.e., Ut,x = Ut), as is the case in the canonical HI-RCT depicted in Figure 6.2 (right).
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Theorem 6.2.2 (HI-RDT u-regret Reduction is Superior to RDT). LetRu
t be the cumulative

u-regret (Def. 3.2.2) experienced by an agent in a MABUC problem by trial t. If Ru
t (RDT )

represents the u-regret experienced by an RDT agent and Ru
t (HIRDT ) represents the u-

regret experienced by an HI-RDT agent, then as t → ∞, Ru
t (HIRDT ) ≤ Ru

t (RDT ) for all

possible MABUC parameterizations.

Proof. See appendix for proof of Theorem 6.2.2.

Given that Theorem 6.2.2 establishes HI-RDT as a strategy that reduces at least as much

u-regret as RDT (and usually more in HI-MABUC scenarios), we next consider the sufficient

conditions under which HI-RDT does indeed minimize u-regret.

Theorem 6.2.3 (Sufficiency of hi-regret Minimization for u-regret Minimization). Let RiA

t

be the cumulative hi-regret (Def. 6.2.7) and Ru
t be the cumulative u-regret (Def. 3.2.2)

experienced by an HI-SDM agent in a HI-MABUC problem by trial t. As t → ∞, if

RiA

t = O(1) then Ru
t = O(1) if the following equivalence holds:

x∗(ut) = argmax
x∈X

P (yx|ut) = argmax
x∈X

P (yx|iAt ) = x∗(iAt ) ∀ ut (6.10)

In words, sub-linear cumulative hi-regret will imply sub-linear cumulative u-regret if the

optimal action under known confounder state Ut = ut is the same as the optimal action

under experienced HIs IA = iAt for all trials t ∈ T .

Proof. See appendix for proof of Theorem 6.2.3.

With these theoretical results in place, we now see that the simulation results that follow

support both the offline and online formulations, and corroborate the theoretical premises

laid out above.
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Figure 6.6: Simulation results for the 2-arm Confounded Physicians MABUC scenario.

6.3 Heterogeneous Intent MABUC Simulations

We now demonstrate the efficacy of HI-RDT in the online MABUC domain, though the

results herein can be interpreted to mutually support the procedure of an HI-RCT.4

Candidate Algorithms. To make a fair comparison to the RDT agents presented in

Chapter 3, we examined variants of Thompson Sampling (TS) bandit players in the Con-

founded Physicians MABUC reward parameterization. Following the motivating example,

we present the TSRDT agents of P1 and P2 individually and compare their cumulative u-

regret to a TSHIRDT agent that conditions on both actors’ (i.e., physicians’) HIs; we refer

readers to Algorithms 1 and 2 for information on the simulation and TSRDT .

Procedure. The simulation was composed of N = 1000 Monte Carlo repetitions of

T = 2000 trials per repetition. At each trial, t, the state of the UCs Ut = ut was instantiated,

the intents of each actor IAt = iAt was then instantiated, the agent made its arm choice

Xt = xt, and then received a reward Yt = yt.

4All simulation source code for Chapter 6 can be found at:
https://github.com/Forns/ucla-forns/tree/master/projects/dissertation/ch6.
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Results. The results of the experiment are depicted in Figure 6.6. Notably, neither RDT

approach alone converges to the optimal policy that experiences sub-linear u-regret, but the

HI-RDT agent does. These results do not undercut the value of RDT; note that the RDT P1

agent experienced equivalent rewards as a traditional, experimental bandit player would,

with the highest u-regret of the three (M = 150.86, SD = 20.10), but the next best RDT P2

experienced significantly less (M = 122.60, SD = 23.59), t(1998) = 28.82, p < .001. The

HI-RDT approach, as hypothesized, performed significantly better than either individual

RDT agent, experiencing significantly less u-regret than its chief competitor RDT P2 (M =

26.51, SD = 22.78), t(1998) = 129.42, p < .001.

6.4 Conclusion

In this chapter, we examined a more general version of a confounded decision-making sce-

nario wherein actors possess heterogeneous intent (HI) functions, i.e., different reactionary

criteria to environmental factors. We motivated this scenario by discussing physicians that

may possess subjective diagnostic criteria that are different between distinct actor intent

equivalence classes (IECs). Prior to this chapter, we assumed the less general case of all

actors belonging to the same IEC, but demonstrated that heterogeneous IECs may actually

lead to a higher sensitivity version of ISDM. We then defined the HI analog of the Regret

Decision Theory (RDT) deemed the HI-RDT, demonstrated that it represents a composite

of individual IEC counterfactual expressions, and proved that it yields strictly more informa-

tion than a single IEC ISDM alone (with simulations to support these theoretical results).

Finally, we demonstrated how conditioning on heterogeneous IECs can add a layer to a tra-

ditional randomized clinical trial (RCT) in what we deemed an HI-RCT. Compared to a

standard RCT, which generates only experimental data, we demonstrated that collecting ac-

tors’ intended treatments alongside each randomly assigned treatment yields observational,

experimental, and counterfactual results, with no added experimental cost. The added layer

of discrimination afforded by the comparisons of these datasets can better inform policy

making and individualized treatment like personalized medicine.
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CHAPTER 7

Concluding Remarks

At the onset of this work, we sought to demonstrate the merit of counterfactual reasoning in

three disciplines: artificial intelligence, cognitive science, and experimental design. Broadly

speaking, the thread that connects these subjects and the present thesis is a study of how

intelligent agents learn about their environments through the lens of how their own heuristics

and biases interact with it. Although past work has shown that exploration a key component

of rational learning, the present study examines the ability to learn from mistakes and correct

for a maladaptive policy. Through the formalizations of empirically estimable counterfactuals

detailed in the previous chapters, we have shown the mechanisms by which agents can

accomplish intent-specific decision-making (ISDM) and the benefits of doing so, but have

yet to discuss the implications and significance of this strategy in each of our focal disciplines.

In this chapter, we will discuss the higher-order impacts of the theories presented in the

rest of the work. We begin by discussing the significance of our findings to the broader

fields of artificial intelligence, cognitive science, and experimental design. We then make

an honest assessment of the limitations of ISDM in application to these fields, and discuss

possible remedies to some of its shortcomings. Finally, we conclude with a synopsis of future

directions for counterfactual reasoning to contribute to these important fields of scientific

inquiry.

7.1 Broader Significance

Significance to Artificial Intelligence. The significance of ISDM to the field of artificial

intelligence must be examined from two perspectives, as highlighted in Chapter 3: (1) the
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capacity of ISDM to behoove an AI agent that is itself confounded in some decision-making

task, and (2) the capacity of ISDM to behoove an AI recommender system, that is capable

of better informing the decisions of confounded humans in a consultatory nature.

Given the centrality of self-reflection to human learning, it stands to reason that equipping

artificial agents with similar reflective capacities may be an important step in the evolution

of artificial, general intelligence (AGI). Self-regulating agents have been studied in the AI

community for some time, though none have approached the problem from a counterfactual

perspective [Doy88]; indeed, the benefit of self-reflection is to better inform future behavior,

which implies a change from an existing policy to another. This change is well encapsulated

by the counterfactual nature of regret: agents examine their actions in the past that, had

they chosen differently, would have resulted in a superior outcome. We posit that ISDM

represents an advance on this front, such that an agent’s intended action (derived from an

existing policy) serves as a self-reflection mechanism should an action counter to intent be

discovered as a superior choice. In the preceding chapters, we have already seen evidence for

how ISDM informs superior policy formation, and assert that it may feature prominently in

future self-regulating systems.

Correcting for human cognitive biases is an ongoing investigation at the national scale:

the Office of the Director of National Intelligence’s IARPA project (Intelligence Advanced

Research Projects Activity) lists a variety of human-centric data science investigations to be

used in improvement of policy making and defense. One sponsored competition, the “Hybrid

Forecasting Competition,” suggests that “Human-generated forecasts may be subject to

cognitive biases and/or scalability limits,” and that AI systems will be necessary to correct for

these biases using more data-driven approaches. The previous chapters have demonstrated

ISDM’s capacity to control for biases in data when intents are collected alongside other

relevant covariates. We foresee ISDM providing an important tool for disentangling the

subjective human biases that are manifest in data-sets meant to objectively inform policy

making.

Lastly, we highlight the benefit of ISDM to the causal inference community. As presented

in the previous chapters, counterfactual quantities are often desirable components of scientific
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inquiry in many model-based systems. However, the requirement of a fully-specified struc-

tural causal model (SCM) for their traditional means of computation may not be feasible in

some settings. ISDM provides a means of computing these counterfactual quantities with

only modest modeling assumptions, and takes a data-driven perspective for their empirical

estimation.

Significance to Cognitive Science. In the domain of cognitive science, we have, in

Chapter 4, seen further support for the idea that humans perform some experientially-based

counterfactual reasoning. ISDM may serve as a lens through which cognitive scientists can

understand the underpinnings of human bias formation. We have also observed that ISDM

does not appear to be a naturally employed human decision-making tactic, though once

learned, can lead to superior choice policies even in the presence of unobserved confounders.

Apropos, ISDM may serve as a launchpad for understanding mindfulness-based approaches

to cognitive-behavioral therapy and bias repair. Mindfulness-based approaches to therapy,

which saw a surge in proliferation in the early 2000s, have been shown to improve a variety

of mental and physical ailments by improving the salience of, and reactions to, certain bodily

and mental signals [AA06] – of which, intent may add an important signal to consider for

patients with maladaptive instincts (e.g., addiction). Other efforts from cognitive science

have attempted to gamify bias correction, to which intent-specific counterfactual quantities

may provide a new metric of success [SBQ14].

Significance to Experimental Design. Randomization has long been the established

means of controlling for the influence of UCs in experimental design. As the present work

has demonstrated throughout, randomizing treatments is a coarser solution than computing

counterfactuals formatted as the Effect of Treatment on the Treated (ETT) – the latter of

which is strictly more informative, but requires additional tools to compute; prior to this

work, arbitrary ETT computation required a fully-specified causal model. ISDM provides

unit-level (e.g., for a particular trial or patient) causal effects without requiring a fully-

specified model or even knowledge of the state of any UCs. This quality provides a unifying

perspective between observational data (i.e., treatments in accordance with intent) and ex-

perimental data (i.e., treatments that are forced assignments like randomization, which are
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merely a summation across all intent conditions), while adding an additional empirically

estimable counterfactual layer (i.e., treatments forcibly assigned within intent conditions)

that can better inform policy making. The prescriptions for HI-RCTs in Chapter 6 may

prove instrumental in combatting confounding bias in medicinal contexts. Other approaches

have attempted to unify observational and experimental data, like propensity scoring, which

attempts to obtain causal effects from observational data by examining covariates thought to

predict treatment assignment [RR83]. However, these methods do not provide the unit-level

accuracy of the intent-specific counterfactual quantities endorsed herein, and are susceptible

to the influences of UCs [Pea09]. Whenever the intents of deciders can be collected, we assert

that HI-RCTs should be used in favor of RCTs, ushering in new analytic opportunities for

the empirical sciences.

7.2 Limitations

Although ISDM is backed by many of the established guarantees of tools from causal inference

and the reinforcement learning domains, we would be remiss in our duty as scientists if we

did not examine some of its limitations. We will discuss several global limitations of ISDM

and several discipline-specific ones that may even represent avenues for future exploration.

Global limitations. The most obvious limitation of ISDM, as defined herein, is the

size of the sample space for large action spaces. Due to the tabular intent-specific histories

endorsed throughout the work, the number of action × intent outcomes that need to be

sampled grows quickly without stronger, simplifying assumptions. For each action x ∈ X

such that |X| = K, there exists a full compliment of intent-specific results such that |I| = K,

meaning that there are K2 intent-specific outcome quantities that must be sampled. In fi-

nite sample scenarios where the goal is to obtain every intent-specific action outcome, this

can be further complicated by intents with a low probability (which are beyond the experi-

menter’s control). Even more fundamental is the assumption that an agent’s intent can be

reliably captured at all, an issue which is somewhat ameliorated when the collection of intent

would behoove the reasoning agent; for instance, the cash bonuses offered to participants
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in the MABUC task from Chapter 4 can incentivize intent collection, or if physicians were

persuaded that their honest intents might better treat a patient like in Chapter 6. Note

that none of these issues compromise the asymptotic guarantees of ISDM, but can represent

challenges in real-world application.

Furthermore, from the broader consideration of causal inference, ISDM gives prescriptions

for empirical estimation of counterfactuals over decision variables (Def. 3.3.2) on which

intent may be collected, but computations of arbitrary counterfactuals P (Yz|z′), where Z

is not a decision variable, may not be estimable (and require modeling assumptions to

measure). That said, ISDM’s prescription for the measurement of ETT-like counterfactuals

are of widespread utility in the empirical sciences, and span a wide variety of important

applications detailed throughout this work.

Domain-specific limitations. Interpreting ISDM as a useful means of self-reflection

for an artificial agent can be challenging, given that we generally suppose that the agent’s

inputs have been curated by a programmer and the notion of an “unobserved” input that

mutually affects the action-choice and outcome might seem impossible. That said, with the

proliferation of deep-learning approaches in many facets of AI, it is conceivable that agents

trained on observational data may exhibit the same confounded decision-making that humans

would by influence of spurious correlations contaminating causal effects. Moreover, humans

(still the gold-standard of general intelligence) are known to be influenced by UCs, so it stands

to reason that our artificial agents (if or when comparable) may need to likewise navigate

the same challenges to decision-making that cognitive biases pose to humans. Our brief

examination of ISDM in human decision-making via Chapter 4 speaks to a similar concern:

although humans do not appear to naturally employ ISDM in confounded decision-making

tasks, it is both a theoretically and empirically superior policy. That said, questions remain

regarding how humans, at a finer-granularity, form their intents and can often transform UCs

to observed covariates that are attended to in future decisions. Although ISDM provides

a high-level explanation for how humans employ regret as a learning tool, this work opens

other questions of how humans compute counterfactuals, which are out of scope in this thesis

but present opportunities for further exploration in the cognitive sciences.
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7.3 Future Directions

Counterfactual reasoning is one of the cornerstones of the human intellectual advantage,

and should represent a focal investigation for AI practitioners. Although the present work

provides a full treatment for empirically estimable intent-specific counterfactuals in a variety

of domains, there exist several immediate opportunities to use ISDM as a springboard into

other important problems. In an adjacent-possible exploration, which would likely involve

a collaborative effort with fields of feature detection, reinforcement learning, and causal

inference, the algorithmization of UC discovery would represent a large step toward AGI.

Just as humans seek to learn the identities of UCs and treat them as observed contexts

(whether it be through active learning or scientific inquiry), so too is it important that

artificial agents become autonomous scientists. Important counterfactual statements such as

“it would not happen but for X” are central to scientific inquiry and personalized decision-

making, and so equipping agents with the capacity to not only answer, but ask, these types

of questions will be important for developing the next generation of AIs.

Concretely, future explorations from this work might begin by taking a similar approach

to policy iteration, whereby confounded policies can be incrementally deconfounded by ISDM

and be used to expose the identities and states of the UCs; for example, if background

variables tend to covary with intent, but were previously thought to be independent of the

decision or outcome, they may be employed in future iterations of the agent’s policy. In the

HI-RDT domain, addressing the sample space size problem mentioned in the previous section,

a worthwhile investigation may address how slightly different heterogeneous intent functions

can be smoothed to attain approximations of HI-SDMs in noisier, real-world systems. As a

related effort, in the offline experimental design domain, confirmation of the tenets proposed

for HI-RCTs would be a worthwhile investigation should a setting arise where the intents of

practitioners can be collected alongside a traditional RCT.

144



7.4 Conclusion

In present work, we demonstrated that unobserved confounders (UCs) present a significant

obstacle to causal inference from statistical data, which can complicate policy making and

machine learning. We showed that the traditional approach to control of UCs, viz. ran-

domization, operates by averaging the influence of UCs between treatment groups, thus

providing population-level outcomes of each treatment. However, population data does not

always best inform personalized decisions, in which the optimal solution in the population

on average may not be optimal for a particular unit of that population (i.e., a particular

trial or patient). To determine the optimal unit-level treatments under the influence of UCs,

counterfactual quantities must be compared. These counterfactuals, though strictly more

informative than experimental data, required a fully-specified model (including a probability

distribution of the confounder states) to compute. However, with the invent of intent-specific

decision-making (ISDM), we have demonstrated that counterfactual quantities for some de-

cision variable can be empirically estimated when the agent’s intent (i.e., its observational

decision) is given.

Having formalized the theoretical requirements and results of ISDM, we demonstrated its

applicability in a variety of real-world and synthetic problems. In the online reinforcement

learning domain, we showed that ISDM leads to superior choice policies in Multi-Armed

Bandit problems with Unobserved Confounders (MABUCs), outperforming traditional ap-

proaches that maximize experimental, rather than counterfactual, reward targets. We cor-

roborated these findings in a human-subject experiment, wherein we determined that, al-

though humans do not appear to use ISDM naturally, the quality of their decisions can be

improved by its employment. We then discussed how ISDM can be applied in domains in

which agents’ intents are not exchangeable (as previously assumed), and how the solution

in these domains can be used to empower offline, traditional, randomized clinical trial ex-

periments. Finally, we discussed the broader implications of ISDM to artificial intelligence,

cognitive science, and the empirical sciences, and suggested avenues for future exploration.

Counterfactuals understandably top the causal hierarchy as some of the most expressive
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quantities, but also some of the most difficult to compute. Prior to this work, this diffi-

culty was in large part due to modeling requirements and the property of counterfactuals

as unfalsifiable. The hope is that this thesis demonstrates not only the mechanics by which

counterfactuals can be estimated in tangible, real-world settings, but also their power and

significance as mechanisms for self-reflection. What we have provided herein is a recipe for

determining not only when one’s current decision-making policy is behooving or betraying

them, but also by how much. Intelligent agents are not thralls to their whims, but rather,

learn from them when better alternatives are found; this work quantifies such a process, and

will hopefully serve as a foundation for a new perspective on adaptive learning.
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APPENDIX A

Supplementary Material for Chapter 3

Theorems and Proofs in Chapter 3

Theorem 3.4.1 (Empirical Counterfactual Estimation). [FPB17] Let X be a decision

variable (Def. 3.3.2) in a SDM (Def. 3.3.1) with measured outcome Y , and let I be the agent’s

intent (Def. 3.4.1) for X. A counterfactual quantity P (Yx|x′) for evidence x′ and antecedent

x (where x, x′ ∈ X and x need not be equivalent to x′) can be estimated empirically using

ISDM (Def. 3.4.2). Formally, we may write the counterfactual query in interventional

notation such that

P (Yx|x′) = P (Y |do(X = x), I = x′) (3.14)

Proof. Recall that the values of x ∈ X and i ∈ I are equivalent, and so let a, i ∈ X, I wherein

a (the antecedent) and i (the observed intent) need not be equivalent. We start by writing

the corresponding expansion of the counterfactual, summing over all possible intents, i′:

P (YX=a|X = i) (A.1)

=
∑
i′

P (YX=a|X = i, I = i′)P (I = i′|X = i) (A.2)

=
∑
i′

P (YX=a|I = i′)P (I = i′|X = i) (A.3)

=
∑
i′

P (YX=a|Ix=a = i′)P (I = i′|X = i) (A.4)

=
∑
i′

P (Y |do(X = a), I = i′)P (I = i′|X = i) (A.5)

=
∑
i′

P (Y |do(X = a), I = i′)1(i′ = i) (A.6)

= P (Y |do(X = a), I = i) (A.7)
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Eq. (A.2) expands the counterfactual using the law of total probability to sum over all

intent conditions. Eq. (A.3) follows from the conditional independence Yx ⊥⊥ X|I that holds,

allowing us to remove X = i. Eq. (A.4) follows because Ix = I given that (I ⊥⊥ X)Gx , where

Gx is the interventional submodel where all causal parents of X are severed (as represented

by the counterfactual antecedent notation). Eq. (A.5) is a notational re-arranging because

all variables (Yx and Ix) are in terms of the interventional submodel Mx (and thus Gx),

licensing us to express the quantity using the do(x) notation. Eqs. (A.6, A.7) follow from

the fact that, observationally, an agent’s final arm choice will always coincide with their

intent (i.e., P (i|x) = 1 ∀i = x, 0 otherwise), which nullifies all summed expressions where

the two differ.

Theorem 3.4.3 (Sufficiency of i-regret Minimization for u-regret Minimization). Let Ri
t be

the cumulative i-regret (Def. 3.4.6) and Ru
t be the cumulative u-regret (Def. 3.7) experienced

by an ISDM agent in a MABUC problem by trial t. As t→∞, if Ri
t = O(1) then Ru

t = O(1)

if the following equivalence holds:

x∗(ut) = argmax
x∈X

P (yx|ut) = argmax
x∈X

P (yx|it) = x∗(it) ∀ ut (3.18)

In words, sub-linear cumulative i-regret will imply sub-linear cumulative u-regret if the op-

timal action under known confounder state U = ut is the same as the optimal action under

experienced intent I = it for all trials t ∈ T .

Proof. The conditions under which Ru
t = O(1) are when there exists some t′ such that for all

trials t+ ∈ [t′, T ], E[Ru
t+ ] = 0. In other words, for some choice policy that converges to the

optimal policy after t′, the optimal action chosen for all t+ will be x(t+) = x∗(ut+). Were

x(t+) 6= x∗(ut+), then there would be some ε = x∗(ut+)−x(t+) over which Ru
t+ =

∑
t∈[t′,T ] ε 6=

0. As such, if x∗(ut+) = x∗(it+), then x(t+) = x∗(it+) = x∗(ut+)⇒ E[Ru
t+ ] = 0.

Theorem 3.4.2 (RDT u-regret Reduction is Superior to CDT). Let Ru
t be the cumulative

u-regret (Def. 3.2.2) experienced by an agent in a MABUC problem by trial t. If Ru
t (CDT )

represents the u-regret experienced by a CDT agent and Ru
t (RDT ) represents the u-regret

experienced by an RDT agent, then as t → ∞, Ru
t (RDT ) ≤ Ru

t (CDT ) for all possible

MABUC parameterizations.
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Proof. Note that e-regret is defined over the experimental reward space, as would be maxi-

mized by a traditional, Causal Decision Theory (CDT, Def. 3.4.4) agent, such that x∗CDT =

argmaxx∈X P (Yx). Conversely, i-regret is defined over the counterfactual reward space, as

would be experienced by a Regret Decision Theory agent (RDT, Def. 3.4.5), such that

x∗RDT (i) = argmaxx∈X P (Yx|i). We can next note that:

P (Yx) =
∑
i

P (Yx|i)P (i) (A.8)

To show that Ru
t (CDT ) < Ru

t (RDT ) it is sufficient to show that the rewards collected by

a CDT-maximizing agent would be strictly greater than those collected by an RDT agent.

Assume to the contrary that this is the case, such that if WCDT represents the expected

winnings of the CDT agent and WRDT represents the expected winnings of the RDT agent,

WCDT > WRDT . We thus have:

WCDT = P (Yx∗CDT ) =
∑
i

P (Yx∗CDT |i)P (i) (A.9)

WRDT =
∑
i

P (Yx∗RDT (i)|i)P (i) (A.10)

In other words, CDT chooses the x that maximizes the probability-weighted reward sum

over intents, whereas RDT chooses the x that maximizes within-intent reward, summed over

the probability-weighted priors of each intent. However, because in either case, each P (i)

will be the same, we have:

WCDT > WRDT ⇒
∑
i

P (Yx∗CDT |i)P (i) >
∑
i

P (Yx∗RDT (i)|i)P (i) (A.11)

Contradiction: P (Yx∗RDT (i)|i) is, by definition, the largest reward possible under each in-

tent, meaning that even if x∗CDT is the maximizing arm in all intent conditions, WCDT =

WRDT , andWCDT 6> WRDT . Thus, we are guaranteed thatWCDT 6> WRDT and soRu
t (CDT ) 6<

Ru
t (RDT ). The cases where Ru

t (CDT ) > Ru
t (RDT ) and Ru

t (CDT ) = Ru
t (RDT ) are shown

in Examples 5.1.1 and 6.1.1, respectively.
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APPENDIX B

Supplementary Material for Chapter 4

Cue Word Strong Association Target Weak Association Target

accelerate speed: 0.386 gas: 0.029

adjective noun: 0.333 English: 0.043

bell ring: 0.399 school: 0.041

bandage cut: 0.331 hurt: 0.071

cow milk: 0.352 pasture: 0.042

chair table: 0.314 sofa: 0.077

dig shovel: 0.32 grave: 0.031

dart board: 0.358 throw: 0.081

extinct dinosaur: 0.32 animal: 0.033

enrage mad: 0.304 temper: 0.014

frost cold: 0.37 jack: 0.036

fur coat: 0.324 warm: 0.047

gain weight: 0.26 acquire: 0.016

glue sticky: 0.371 paper: 0.053

hoop hula: 0.392 earring: 0.039

hand finger: 0.358 glove: 0.048

injection needle: 0.331 drug: 0.047

imagine dream: 0.336 fantasy: 0.075

juggler circus: 0.362 act: 0.039

jazz music: 0.367 blues: 0.048

keyboard piano: 0.355 play: 0.033
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knife fork: 0.327 spoon: 0.051

lobby hotel: 0.345 lounge: 0.034

lung breathe: 0.362 smoke: 0.057

mortgage house: 0.349 bill: 0.024

mansion house: 0.326 huge: 0.036

nucleus atom: 0.316 science: 0.053

noise loud: 0.34 ear: 0.058

outcome end: 0.31 future: 0.021

orchestra music: 0.309 conductor: 0.052

peer friend: 0.325 group: 0.039

picture frame: 0.316 camera: 0.051

quantity amount: 0.379 many: 0.043

roof house: 0.307 tar: 0.024

ray sun: 0.362 beam: 0.047

scold yell: 0.32 anger: 0.02

scheme plan: 0.392 sneaky: 0.028

sailing boat: 0.359 swim: 0.021

task job: 0.37 duty: 0.055

thief steal: 0.388 crook: 0.091

universe world: 0.385 everything: 0.014

used old: 0.358 worn: 0.061

virus sick: 0.351 germ: 0.026

visitor guest: 0.365 relative: 0.061

wrist watch: 0.345 bracelet: 0.061

weird strange: 0.312 normal: 0.049

yummy good: 0.34 sweet: 0.02

year month: 0.321 annual: 0.045

zero none: 0.338 number: 0.065

zucchini vegetable: 0.331 broccoli: 0.034
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Table B.1: List of quiz questions in the human-subjects

RCT experiment.
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Figure B.1: Image of the informed consent screen presented to participants before beginning

the quiz.
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APPENDIX C

Supplementary Material for Chapter 6

Theorem 6.2.1 (Heterogeneous Intent Empirical Counterfactual Estimation). Let X be a

decision variable in a heterogeneous intent SDM MΠA (Def. 6.2.3) with measured outcome Y ,

and let IA1 , ..., IAa be the heterogeneous intents for X of actors in the IECs A = {A1, ..., Aa}

in MΠA . A HI-specific outcome quantity P (Yx′ |IAj = iAj , ..., IAa = iAa) is equivalent to

a counterfactual for a single IEC Aj ∈ A, P (Yx′ |XAj = iAj , ..., IAa = iAa), and can be

estimated empirically for observed intents iA1 , ..., iAa , and antecedent X = x′ (where X = x′

indicates the antecedent for any of the individual IEC SDMs as well as the HI-SDM since,

by assumption, do(XAj) = do(XAi) for any two IECs Ai 6= Aj). Formally, we may write the

counterfactual query in interventional notation such that

P (YX=x′|XAj = iAj , ..., IAa = iAa) = P (YX=x′|IAj = iAj , ..., IAa = iAa) (6.3)

= P (Y |do(X = x′), IAj = iAj , ..., IAa = iAa) (6.4)

Proof. This proof employs the causal assumptions implicit in the prototypical HI-SDM,

depicted graphically in Figure 6.1 with each HI-SDM’s constituent individual IEC SDMs.

The proof for the empirical estimation of heterogeneous intent follows from the analogous

one for empirical counterfactual estimation for homogeneous intent. Recall from the theorem

statement that Aj ∈ A is a single IEC. Also, we note that by definition of a HI-SDM (Def.

6.2.3), do(XAj = xAj) is considered an equivalent intervention to some other IEC As ∈ A,

meaning: do(XAj = xAj) = do(XAs = xAs) = do(X = x). We begin by writing our

counterfactual query P (YX=x′ |XAj = iAj , ..., IAa = iAa) and then demonstrate that it can be
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written in strictly interventional notation.

P (YX=x′|XAj = iAj , ..., IAa = iAa)) (C.1)

=
∑

i
A′
j∈IAj

P (YX=x′ |XAj = iAj , IAj = iAj ..., IAa = iAa)P (IAj = iA
′
j |XAj = iAj , IA\Aj = iA\Aj)

(C.2)

=
∑

i
A′
j∈IAj

P (YX=x′ |IAj = iAj ..., IAa = iAa)P (IAj = iA
′
j |XAj = iAj , IA\Aj = iA\Aj) (C.3)

=
∑

i
A′
j∈IAj

P (YX=x′|IAjx = iAj ..., IAax = iAa)P (IAj = iA
′
j |XAj = iAj , IA\Aj = iA\Aj) (C.4)

=
∑

i
A′
j∈IAj

P (Y |do(X = x′), IAj = iAj ..., IAa = iAa)P (IAj = iA
′
j |XAj = iAj , IA\Aj = iA\Aj)

(C.5)

=
∑

i
A′
j∈IAj

P (YX=x′|IAj = iAj ..., IAa = iAa)1(iA
′
j = iAj) (C.6)

= P (Y |do(X = x′), IAj = iAj ..., IAa = iAa) (C.7)

Eq. (C.2) expands the counterfactual using the law of total probability to sum over

the intent conditions of Aj. Eq. (C.3) follows from the conditional independence YX=x ⊥⊥

XAj |IAj that holds in MΠAj , allowing us to remove XAj = iAj . Eq. (C.4) follows because

I
Aj
x = IAj given that (IAj ⊥⊥ X)Gx , where Gx is the interventional submodel where all

causal parents of X are severed (which can be considered for either MΠAj individually, or

the HI-SDM MΠA , as represented by the counterfactual antecedent notation). Eq. (C.5) is

a notational re-arranging because all variables (Yx and IAx ) are in terms of the interventional

submodel Mx (and thus Gx), licensing us to express the quantity using the do(x) notation.

Eqs. (C.6, C.7) follow from the fact that, observationally, an agent’s final arm choice will

always coincide with their intent (i.e., P (iAj |xAj , ..., iAa) = 1 ∀iA = xA, 0 otherwise, regardless

of the value of iAa), which nullifies all summed expressions where the two differ.

Corollary 6.2.1.1 (Equivalence of Pre- and Post-Assignment Intent Sampling). In an HI-

RCT (Def. 6.2.6) with randomly assigned treatment X, measured outcome Y , IECs A =

{A1, ..., An}, and intended treatments of actors in each IEC IA = {IA1 , ..., IAa}, empirical
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estimation of IEC-specific treatment outcomes can be accomplished by the tenets of the

Heterogeneous Intent Empirical Counterfactual Estimation, Theorem 6.2.1. Because HI-

RCTs randomize treatment assignment, IECs that are sampled before treatment assignment

yield equivalent information about the assigned treatment’s outcome Yx as do those that are

sampled after, or formally:

P (Yx|iA1 , ..., iAa) = P (Yx|iA1
x , ..., iAax ) (6.6)

Proof. The proof for Theorem 6.2.1.1 follows immediately from the graphical assumptions

of an RCT, namely, that treatment X is randomized via the semantics of an intervention

do(X). In the canonical HI-RCT depicted in Figure 6.2 (right), we note that IAj ⊥⊥ X ⇒

IAj = I
Aj
x ∀ Aj ∈ A by the rules of do-calculus. Therefore:

P (Yx|iA1 , ..., iAa) = P (Yx|iA1
x , ..., iAax ) = P (Y |do(x), iA1 , ..., iAa)

Theorem 6.2.2 (HI-RDT u-regret Reduction is Superior to RDT). LetRu
t be the cumulative

u-regret (Def. 3.2.2) experienced by an agent in a MABUC problem by trial t. If Ru
t (RDT )

represents the u-regret experienced by an RDT agent and Ru
t (HIRDT ) represents the u-

regret experienced by an HI-RDT agent, then as t → ∞, Ru
t (HIRDT ) ≤ Ru

t (RDT ) for all

possible MABUC parameterizations.

Proof. This proof also follows from Theorem 3.4.2, in which the u-regret experienced by

an RDT agent was shown to be always lesser than or equal to a CDT agent. Consider a

heterogeneous-intent MABUC problem (HI-MABUC) in which actors belong to some num-

ber of intent equivalence classes IA = {IA1 , ..., IAa} (IECs, 6.2.4). Note that i-regret 3.4.6

is defined over the counterfactual RDT reward space for a single IEC, as would be max-

imized by a Regret Decision Theory (RDT, Def. 3.4.5) agent, such that x∗RDT (iAj) =

argmaxx∈X P (Yx|iAj) for an individual actor belonging to the IEC Aj. By extension, hi-

regret is defined over the counterfactual reward space for IECs, as would be experienced

by a Heterogeneous-Intent Regret Decision Theory target (HIRDT, Def. 6.2.5), such that
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x∗HIRDT (iA) = argmaxx∈X P (Yx|iA) and iA is a vector of IEC intents iA = {iA1 , ..., iAa}. We

can next note the key relationship between RDT and HI-RDT maximization targets:

P (Yx|IAj = iAj) =
∑

i′∈IA\Aj

P (Yx|IAj = iAj , IA\Aj = i′)P (IA\Aj = i′|IAj = iAj) (C.8)

In words, an IEC actor’s RDT maximization target is simply a probability-weighted sum

over the superset of HI-specific reward targets, and so HI-RDT agents record strictly more

information than RDT agents do. This implies that any RDT quantity can be computed

from adequately sampled HI-RDT quantities.

To show that Ru
t (RDT ) < Ru

t (HIRDT ) it is sufficient to show that the rewards collected

by any RDT-maximizing agent in a HI-MABUC would be strictly greater than those collected

by the HI-RDT agent. Assume to the contrary that this is the case, such that if WRDT

represents the expected winnings of any RDT agent Aj and WHIRDT represents the expected

winnings of the HI-RDT agent, WRDT > WHIRDT . We thus have:

WRDT =
∑
i∈IAj

P (Yx∗RDT (i)|i)P (i) =
∑

i′∈IA\Aj

∑
i∈IAj

P (Yx∗RDT (i)|i, i′)P (i|i′) (C.9)

WHIRDT =
∑

i′∈IA\Aj

∑
i∈IAj

P (Yx∗HIRDT (i,i′)|i, i′)P (i|i′) (C.10)

In other words, RDT chooses the x that maximizes within-intent reward, summed over the

probability-weighted priors of each intent, whereas HI-RDT chooses the x that maximizes

between-intent reward, summed over the probability-weighted priors of all IEC intents. How-

ever, because in either case, each P (i|i′) will be the same, we have:

WRDT > WHIRDT ⇒ (C.11)∑
i′∈IA\Aj

∑
i∈IAj

P (Yx∗RDT (i)|i, i′)P (i|i′) >
∑

i′∈IA\Aj

∑
i∈IAj

P (Yx∗HIRDT (i,i′)|i, i′)P (i|i′) (C.12)

Contradiction: P (Yx∗HIRDT (i,i′)|i, i′) is, by definition, the largest reward possible under all

IEC intents, meaning that even if x∗RDT is the maximizing arm in all IEC intent conditions,

WRDT = WHIRDT , and WRDT 6> WHIRDT . Thus, we are guaranteed that WRDT 6> WHIRDT

and so Ru
t (RDT ) 6< Ru

t (HIRDT ). The case where Ru
t (RDT ) > Ru

t (HIRDT ) is shown in

Example 6.1.1.
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Theorem 6.2.3 (Sufficiency of hi-regret Minimization for u-regret Minimization). Let RiA

t

be the cumulative hi-regret (Def. 6.2.7) and Ru
t be the cumulative u-regret (Def. 3.2.2)

experienced by an HI-SDM agent in a HI-MABUC problem by trial t. As t → ∞, if

RiA

t = O(1) then Ru
t = O(1) if the following equivalence holds:

x∗(ut) = argmax
x∈X

P (yx|ut) = argmax
x∈X

P (yx|iAt ) = x∗(iAt ) ∀ ut (6.10)

In words, sub-linear cumulative hi-regret will imply sub-linear cumulative u-regret if the

optimal action under known confounder state Ut = ut is the same as the optimal action

under experienced HIs IA = iAt for all trials t ∈ T .

Proof. The conditions under which Ru
t = O(1) are when there exists some t′ such that for all

trials t+ ∈ [t′, T ], E[Ru
t+ ] = 0. In other words, for some choice policy that converges to the

optimal policy after t′, the optimal action chosen for all t+ will be x(t+) = x∗(ut+). Were

x(t+) 6= x∗(ut+), then there would be some ε = x∗(ut+)−x(t+) over which Ru
t+ =

∑
t∈[t′,T ] ε 6=

0. As such, if x∗(ut+) = x∗(it+), then x(t+) = x∗(iAt+) = x∗(ut+)⇒ E[Ru
t+ ] = 0.
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