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1 Introduction

This note concerns three papers by Cox and Wermuth (2008; 2014; 2015 (hereforth WC‘08,
WC‘14 and CW‘15)) in which they call attention to a class of problems they named “indirect
confounding,” where “a much stronger distortion may be introduced than by an unmeasured
confounder alone or by a selection bias alone.” We will show that problems classified as
“indirect confounding” can be resolved in just a few steps of derivation in do-calculus.

This in itself would not have led me to post a note on this blog, for we have witnessed
many difficult problems resolved by formal causal analysis. However, in their three papers,
Cox and Wermuth also raise questions regarding the capability and/or adequacy of the
do-operator and do-calculus to accurately predict effects of interventions. Thus, a second
purpose of this note is to reassure students and users of do-calculus that they can continue
to apply these tools with confidence, comfort, and scientifically grounded guarantees.

Finally, I would like to invite the skeptic among my colleagues to re-examine their hes-
itations and accept causal calculus for what it is: A formal representation of interventions
in real world situations, and a worthwhile tool to acquire, use and teach. Among those
skeptics I must include colleagues from the potential-outcome camp, whose graph-evading
theology is becoming increasing anachronistic (see discussions on this blog, for example,
http://www.mii.ucla.edu/causality/?p=3D1241).

2 Indirect Confounding – An Example

To illustrate indirect confounding, Fig. 1 below depicts the example used in WC‘08, which
involves two treatments, one randomized (X), and the other (Z) taken in response to an
observation (W ) which depends on X. The task is to estimate the direct effect of X on the
primary outcome (Y ), discarding the effect transmitted through Z.

As we know from elementary theory of mediation (e.g., Causality, p. 127) we cannot
block the effect transmitted through Z by simply conditioning on Z, for that would open the
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spurious path X → W ← U → Y , since W is a collider whose descendant (Z) is instantiated.
Instead, we need to hold Z constant by external means, through the do-operator do(Z = z).

X

U

Z

(Treatment 2)

W (Intermediate outcome)Y

(Outcome)

(Treatment 1)

(Unobserved health status)

Figure 1: An example of “indirect confounding” from WC‘08. Z stands for a treatment
taken in response to a test W, whose outcome depend ends on a previous treatment X. U is
unobserved. [WC‘08 attribute this example to Robins and Wasserman (1997); an identical
structure is treated in Causality, p. 119, Fig. 4.4, as well as in Pearl and Robins (1995).]

Accordingly, the problem of estimating the direct effect of X on Y amounts to finding
P (y|do(x, z)) since Z is the only other parent of Y (see Pearl (2009, p. 127, Def. 4.5.1)).

Solution:

P (y|do(x, z))
= P (y|x, do(z)) (since X is randomized)
=

∑
w P (Y |x,w, do(z))P (w|x, do(z)) (by the law of total probability)

=
∑

w P (Y |x,w, z)P (w|x) (by Rule 2 and Rule 3 of do-calculus)

We are done, because the last expression consists of estimable factors.
What makes this problem appear difficult in the linear model treated by WC‘08 is that

the direct effect of X on Y (say α) cannot be identified using a simple adjustment. As we
can see from the graph, there is no set S that separates X from Y in Gα. This means that α
cannot be estimated as a coefficient in a regression of Y on X and S. Readers of Causality,
Chapter 5, would not panic by such revelation, knowing that there are dozens of ways to
identify a parameter, going way beyond adjustment (surveyed in Chen and Pearl (2014)).
WC‘08 identify α using one of these methods, and their solution coincides of course with the
general derivation given above.

The example above demonstrates that the direct effect of X on Y (as well as Z on Y )
can be identified nonparametrically, which extends the linear analysis of WC‘08. It also
demonstrates that the effect is identifiable even if we add a direct effect from X to Z, and
even if there is an unobserved confounder between X and W – the derivation is almost the
same (see Pearl (2009, p. 122)).
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Most importantly, readers of Causality also know that, once we write the problem as “Find
P (y|do(x, z))” it is essentially solved, because the completeness of the do-calculus together
with the algorithmic results of Tian and Shpitser can deliver the answer in polynomial time,
and, if terminated with failure, we are assured that the effect is not estimable by any method
whatsoever.

3 Conclusions

It is hard to explain why tools of causal inference encounter slower acceptance than tools in
any other scientific endeavor. Some say that the difference comes from the fact that humans
are born with strong causal intuitions and, so, any formal tool is perceived as a threatening
intrusion into one’s private thoughts. Still, the reluctance shown by Cox and Wermuth seems
to be of a different kind.

Here are a few examples:
Cox and Wermuth (CW’15) write:

“...some of our colleagues have derived a ‘causal calculus’ for the challenging
process of inferring causality; see Pearl (2015). In our view, it is unlikely that
a virtual intervention on a probability distribution, as specified in this calcu-
lus, is an accurate representation of a proper intervention in a given real world
situation.” (p. 3)

These comments are puzzling because the do-operator and its associated “causal calculus”
operate not “on a probability distribution,” but on a data generating model (i.e., the DAG).
Likewise, the calculus is used, not for “inferring causality” (God forbid!!) but for predicting
the effects of interventions from causal assumptions that are already encoded in the DAG.

In WC‘14 we find an even more puzzling description of “virtual intervention”:

“These recorded changes in virtual interventions, even though they are often
called ‘causal effects,’ may tell next to nothing about actual effects in real in-
terventions with, for instance, completely randomized allocation of patients to
treatments. In such studies, independence result by design and they lead to
missing arrows in well-fitting graphs; see for example Figure 9 below, in the last
subsection.” [our Fig. 1]

“Familiarity is the mother of acceptance,” say the sages (or should have said). I therefore
invite my colleagues David Cox and Nanny Wermuth to familiarize themselves with the
miracles of do-calculus. Take any causal problem for which you know the answer in advance,
submit it for analysis through the do-calculus and marvel with us at the power of the calculus
to deliver the correct result in just 3–4 lines of derivation. Alternatively, if we cannot agree
on the correct answer, let us simulate it on a computer, using a well specified data-generating
model, then marvel at the way do-calculus, given only the graph, is able to predict the effects
of (simulated) interventions. I am confident that after such experience all hesitations will
turn into endorsements.

BTW, I have offered this exercise repeatedly to colleagues from the potential outcome
camp, and the response was uniform: “we do not work on toy problems, we work on real-life
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problems.” Perhaps this note would entice them to join us, mortals, and try a small problem
once, just for sport.

Let’s hope,

Judea
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