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Abstract

Causal inference is often phrased as a missing
data problem – for every unit, only the response
to observed treatment assignment is known, the
response to other treatment assignments is not.
In this paper, we extend the converse approach
of [7] of representing missing data problems to
causal models where only interventions on miss-
ingness indicators are allowed. We further use
this representation to leverage techniques devel-
oped for the problem of identification of causal
effects to give a general criterion for cases where
a joint distribution containing missing variables
can be recovered from data actually observed,
given assumptions on missingness mechanisms.
This criterion is significantly more general than
the commonly used “missing at random” (MAR)
criterion, and generalizes past work which also
exploits a graphical representation of missing-
ness. In fact, the relationship of our criterion to
MAR is not unlike the relationship between the
ID algorithm for identification of causal effects
[22, 18], and conditional ignorability [13].

1 INTRODUCTION

Missing data is a ubiquitous problem in data analysis, and
can arise due to imperfect data collection, or various types
of censoring, for instance via loss to followup, or death. In
addition, causal inference can be viewed as a missing data
problem, since the fundamental problem of causal infer-
ence [4] is that for every unit only the response to observed
treatment assignment is known, the responses to other, hy-
pothetical treatment assignments are not known.

Handling missing data entails either dealing with a la-
tent variable model or finding plausible assumptions under
which recoverability, that is unbiased inferences about all
cases from the observed cases, is possible. Well-known ap-
proaches of the former type include fitting a latent variable

model via gradient descent [17], the EM algorithm [1], or
performing Monte Carlo averaging via multiple imputation
[16]. Well-known approaches of the latter type include the
Kaplan-Meier estimator in survival analysis [5], and adjust-
ments based on Missing Completely At Random (MCAR),
and Missing At Random (MAR) assumptions [15].

While methods based on inference in a latent variable
model are more generally applicable, they are also method-
ologically and computationally challenging. At the same
time, recoverability methods based on MCAR and MAR
rely on strong assumptions on how missingness comes
about. When neither MCAR nor MAR holds, data is said
to be Missing Not At Random (MNAR), and in this case
a characterization of recoverability is an open problem,
although many sufficient conditions for recoverability are
known [7, 6].

In this paper, we take the converse view to “causality as
missing data,” and view missing data as a particular type
of partly causal, and partly probabilistic inference prob-
lem [2, 7]. We then represent this problem using partly
causal, and partly probabilistic graphical models, and ex-
ploit techniques developed for similar models in the con-
text of identification of causal effects to develop a general
algorithm for recoverability under MNAR. In fact, the rela-
tionship between our algorithm and MAR is not unlike the
relationship between the ID algorithm for identification of
causal effects [22, 18, 19], and the conditional ignorability
assumption in causal inference [13].

The paper is organized as follows. We introduce the no-
tation and concepts we will need in section 2. In section
3, we use missingness graphs and missingness models to
formally define missing data as a type of causal inference
problem where only interventions on certain variables are
allowed. We introduce recoverability and give examples of
where recoverability is possible in MNAR settings in sec-
tion 4. We introduce a general algorithm for recoverabil-
ity we call MID in section 5, and show it is sound. Sec-
tion 6 illustrates a complex case where the entire recursive
structure of MID is necessary. Section 7 discusses non-
recoverability, and section 8 contains our conclusions.
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2 PRELIMINARIES

Variables are capital letters, values are small letters. Vari-
able sets are bold capital letters, value sets are bold small
letters. A state space for a variable A is XA. A state space
for a set of variables A is the Cartesian product of the indi-
vidual state spaces: XA ≡ ×A∈AXA. For a set of values a,
and B ⊆ A, denote by aB a projection of a to B. Denote
aB as a shorthand for a{B}. We will denote a vector of 0s
as 0. 0B means “a set of 0 values to B.”

2.1 GRAPH THEORY AND NOTATION

A directed graph consists of a set of nodes and directed
arrows (→) connecting pairs of nodes. A mixed graph con-
sists of a set of nodes and directed and/or bidirected arrows
(↔) connecting pairs of nodes. A path is a sequence of
distinct edges where any edge in a sequence that ends in a
node A implies the subsequent edge must start with A, and
each such node A may only occur at most once in this way
in the sequence. A directed path from a node X to a node
Y is a path consisting of directed edges where all edges on
the path point away from X and towards Y .

If the edge X → Y exists in a graph G, we say X
is a parent of Y and Y is a child of X . If a di-
rected path from X to Y exists in G, we say X is
an ancestor of Y , and Y is a descendant of X . We
denote by paG(A), chG(A),deG(A), anG(A),ndG(A) the
sets of parents, children, descendants, ancestors, and non-
descendants of A in G, respectively. These are defined
disjunctively for sets, e.g. paG(A) =

⋃
A∈A paG(A).

Let faG(A) = paG(A) ∪ {A}, pasG(A) = paG(A) \ A,
ndpG(A) = ndG(A) \ paG(A). Given a graph G, we say a
vertex set A is ancestral if anG(A) = A. By convention,
in any directed graph, A ∈ anG(A) ∩ deG(A). A directed
graph is said to have a directed cycle if there is X,Y such
thatX ∈ anG(Y )∩chG(Y ). A directed graph without such
cycles is called a directed acyclic graph (DAG).

A conditional DAG (CDAG) G(V | W) is a DAG with
vertices V ∪W with the property that paG(W) = ∅. We
will denote vertices in V as circles, and vertices in W
as squares. Note that we do not require that all V ∈ V
must have parents. We simply distinguish certain parent-
less nodes in G as W. We will interpret vertices in V as
associated with random variables and vertices in W as as-
sociated with variables that have been “set to a constant” in
some way. One example of a CDAG is a mutilated graph
that arises in the analysis of interventional distributions.
When considering d-separation on vertices in V in a CDAG
[9], we will treat it as ordinary d-separation in a DAG, ex-
cept all nodes in W are implicitly conditioned on.

If vertices not in W in a CDAG correspond to a variable
partition into observed and missing variables, we will ex-
plicitly denote the set of vertices corresponding to miss-

ing variables as M, and the other vertices as O, like so:
G(O,M |W). A CDAG where W is empty is written as
G(V) or G(O,M) as a shorthand.

A conditional acyclic directed mixed graph (CADMG)
G(V | W) is a mixed graph with two types of edges →
and ↔ with no directed cycles, where no arrowhead may
point to an element of W. We will sometimes omit vari-
ables from CDAGs and CADMGs if they are obvious to
avoid notation clutter, e.g. we will write G(V |W) simply
as G. Given a CDAG G(O,M | W), define GB(G) to be
an edge subgraph obtained from G by removing all arrows
pointing away from B.

Define a latent projection of G(O,M | W) onto O ∪W
[23] to be a CADMG G(O)(O,M | W) ≡ G†(O | W)
such that for any V1, V2 ∈ O ∪W:

• There is an edge V1→V2 if and only if there is a di-
rected path V1→ . . .→V2 in G(O,M | W) with all
intermediate nodes in M.

• There is an edge V1↔V2 if and only if there
is a marginally d-connected path V1← . . .→V2 in
G(O,M |W) with all intermediate nodes in M.

Latent projections are a simplified representation of an in-
finitely large class of hidden variable CDAGs with struc-
tural features in common. In this paper, we use them only
to simplify the statements and proofs of our results. The re-
sults themselves will always be about models represented
by DAGs (and CDAGs).

Given a CDAG G(V | W), and A ⊆ V ∪W, define
GA(V | W) ≡ G(V ∩ A | W ∩ A) be a subgraph of
G containing the vertex set A and any edge in G between
elements in A.

Given a CADMG G(V |W), and V ∈ V, define the dis-
trict (or c-component [22, 18]) of V in G(V | W) to be
disG(V ) = {A ∈ V | V↔ . . .↔A}. The set of districts of
G(V |W) is denoted by D(G(V |W)), and it partitions
V.

For any V ∈ O in a CDAG G(O,M | W) where for ev-
ery M ∈ M, deG(M) ∩ O 6= ∅, define the clan of V
as claG(V ) ≡ anGDV ∪M

(DV ), where DV = disG(O)
(V ).

For example, in G shown in Fig. 1 (c), where {X,W} are
missing, claG(RX) = claG(SW ) = {W,RX , SW }, and
claG(RW ) = claG(SX) = {X,RW , SX}.

For any D ∈ D(G(O)(O,M | W)), and D1, D2 ∈ D,
claG(D1) = claG(D2). Thus we will write claG(D) ≡
claG(D), for any D ∈ D. In fact, the set of clans partitions
O ∪M in G with the property above.

Given a CDAG G, a total ordering ≺ on vertices in G is
topological given G if A ≺ B implies A 6∈ deG(B). Given
an ordering ≺ topological given G, define for any vertex V



in G, preG,≺(V ) = {W 6= V |W ≺ V } . Given ≺ topo-
logical for G with a vertex set V, if there is a subgraph G′
of G with a vertex set V′ ⊂ V, we will view≺with respect
to G′ as the natural subordering restricted to V′. Note that
this subordering will also be topological with respect to G′.

A counterfactual (potential outcome) Y (a) [8, 14] is a re-
sponse Y to a hypothetical assignment of a set of treat-
ments A to values a. Given a set of potential outcomes
Y1(a), . . . Yk(a), where Y = {Y1, . . . Yk}, we may con-
sider a joint distribution

p({Y1, . . . Yk}(a)) ≡ p(Y(a)) ≡ p(Y | do(a)).

The do(.) notation is discussed extensively in [10].

3 MISSING GRAPHS AND
MISSINGNESS MODELS

Given a CDAG G(V | W), we say pW(V) (a mapping
from XW to p(V)) is Markov relative to G if

pW(V) =
∏
V ∈V

pW(V | paG(V ) \W), (1)

and each term pW(V | paG(V ) \W) only depends on
W ∩ paG(V ).

Definition 1 (missingness graph) Given a DAG
G(O,M), a DAG Gm is called a missingness graph
for G if Gm has the vertex set O ∪M ∪RM ∪ SM, where
RM = {RM | M ∈ M}, SM = {SM | M ∈ M}, G =
GmO∪M, and for all M in M, paGm(SM ) = {M,RM},
chGm(SM ) = ∅, and chGm(RM ) ∩ (O ∪M) = ∅.

By convention, if M = ∅, then S∅ = R∅ = ∅. We will
refer to O∪RM ∪SM as V, and to V∪M as A. We call
elements of RM indicators, and elements of SM proxies.

Define M(Gm(A)) to be the missingness model for
a missingness graph Gm(A) as a set of distributions
{p(A)} over the following set of counterfactuals A ≡
{A(r)|R ⊆ RM, r ∈ XR} , such that (∀M ∈M) XRM

=
{0, 1}, XSM

= XM ∪ {missing}, and the missingness
mechanism that determines the value of SM is as follows:
SM (0RM

) = M and SM (1RM
) = missing. In addition:

(∀R ⊆ RM, r ∈ XR, V ∈ A),

V (r) ⊥⊥ {ndpGm
R
(V )}(r) | {paGm

R
(V )}(r). (2)

To obtain the set A, we first define

{A(r)|r ∈ XRM
} ≡ {SM(r),O,M|r ∈ XRM

} ,

and obtain the others via modified recursive substitution as
in definition 43 in [11], pp. 100-101.

A missingness model is thus really a particular type of
a graphical causal model where we only define interven-
tions on a subset of variables [11]. In particular, we allow

G(O,M) to represent an ordinary hidden variable statis-
tical model. (2) is just the DAG local Markov property
linking p(A(r)) and GmR , for every r. If we had chosen to
split variables in R into random and intervened versions,
and display both explicitly in the graph rather than only
displaying the random version of variables, and keeping in-
tervened versions implicit, as we do in GmR , we would end
up with Single World Intervention Graphs (SWIGs), and
the appropriate local Markov property for those graphs, as
discussed in [11].

Standard results on DAG models imply (2) is equivalent
to (1) for p(A(r)) and GmR (if we let W = ∅, and keep
fixed versions of R implicit in the graph). We may also let
W = R, and treat R as a split node as in a SWIG.

4 RECOVERABILITY

We call p(V) the manifest distribution. A functional of
p(A), f(p(A)) is said to be recoverable given p(V) in Gm
if there is a functional g of p(V), such that f(p(A)) =
g(p(V)) for every element of M(Gm). In this paper, we
will concentrate on recoverability of p(O ∪M), although
many other kinds of recoverability problems are also inter-
esting, for instance recovering the causal effect in a causal
model with missingness.

We explicitly represent missingness as a causal inference
problem because this allows us to rephrase recoverability
as identifiability of causal effects. If we were allowed to
assign RM without affecting other variables, we could use
proxies SM to recover the behavior of the underlying miss-
ing variables M, due to the following result.

Lemma 1 In a DAG G where M 6= ∅, for any p(A) ∈
M(Gm(V,M)), and RM ∈ RM, p(Y) ∈ M(Gm(V ∪
{M},M \ {M})V∪M\{SM ,RM}), where Y is{
{V ∪M \ {RM}}(r, 0RM

)
∣∣R ⊆ RM\{M}, r ∈ XR

}
.

Proof: {V ∪ M}(r, 0RM
) obeys (2) for GmR∪{RM}.

Since A \ {RM} is ancestral in GmR∪{RM}, {V ∪ M \
{RM}}(r, 0RM

) obeys (2) for (GmR∪{RM})A\{RM}. Our

conclusion follows since M = SM (0RM
). �

In other words, fixing RM to 0 gives a new model where
M is effectively observed since M = SM (0RM

). This
implies that if we were able to fix all of RM, we could
recover p(O ∪M).

Corollary 1 p({O,SM}(0RM
)) = p(O∪M) for any Gm,

and any p(A) ∈M(Gm).

This corollary implies that our recoverability problem is
solved by expressing a particular interventional distribution



as a function of the manifest in a restricted causal model.
We will attack this problem via two standard results for
causal models that hold in restricted causal models as well,
as shown in [11], propositions 45 and 46.

Theorem 1 For any p(A) ∈ M(Gm(V,M)), and (∀R ⊆
RM, r ∈ XR),

p(A(r)) =
∏
V ∈A

p(V | paGm(V ) \R, rpaGm (V )∩R). (3)

Theorem 2 For any p(A) ∈ M(Gm(V,M)), and (∀R ⊆
RM, r ∈ XR),

p({(V ∪M) \R}(r) | r) = p((V ∪M) \R | r). (4)

(3) is known as the truncated factorization [10], manipu-
lated distribution [21], or the g-formula [12]. (4) is known
as the consistency property.

We now illustrate how constraints of the missingness model
encoded by Gm, as well as (3) and (4) lead to recoverability.

4.1 EXAMPLES OF RECOVERABILITY

Consider Fig. 1, where X,C,W may possibly be high-
dimensional. In Fig. 1 (a), X is missing according to a
mechanism governed by an independent proxy RX , so

p(X) = p(SX(0RX
)) = p(SX | RX = 0).

The assumption present in this model which allows
us to recover the underlying missing variable, namely
(SX(0RX

) ⊥⊥ RX) is known as missing completely at ran-
dom (MCAR) assumption.1 This assumption is the miss-
ingness analogue of ignorability (lack of confounding be-
tween the missingness indicator RX and the proxy SX(r)
under assignment r to RX ).

In Fig. 1 (b), X is missing according to a mechanism gov-
erned by a proxy RX which has a (statistical) dependence
on X through C, which is a fully observed variable. In this
case,

p(X,C) = p(SX(0RX ) | C)p(C) = p(SX | RX = 0, C)p(C).

The assumption present in this model which allows
us to recover the underlying missing variable, namely
(SX(0RX

) ⊥⊥ RX | C) is known as the missing at random
(MAR) assumption. This assumption is the missingness
analogue of conditional ignorability (lack of confounding
between the indicator RX and the proxy SX(r) under as-
signment r to RX given that we conditioned on a set of
variables C).

In Fig. 1 (c), it is not the case that

{SW (0RW
), SX(0RX

)} ⊥⊥ {RX , RW }.
1⊥⊥ is the independence symbol.

X

SX

RX

(a)

X

C

SX

RX

(b)

X

W RW

RX

SW

SX

(c)

Figure 1: (a) A missingness model satisfying the missing
completely at random (MCAR) assumption. (b) A miss-
ingness model satisfying the missing at random (MAR) as-
sumption. (c) A missingness model where missingness is
not at random (MNAR), but where recoverability is never-
theless possible.

That is, data on X,W is not missing completely at random
(nor at random, since there is no fully observed variable
to screen off the dependence of proxies under indicator as-
signment from indicators.) Nevertheless, despite the fact
that data on p(X,W ) is missing not at random (MNAR),
we now show that p(X,W ) is recoverable. We will exploit
the fact that the missingness model implies

{SW (0RW
), RX(0RW

)} ⊥⊥ {SX(0RX
), RW } . (5)

It is not difficult to show that p(RW , RX , SW , SX) is equal
to

p({SW , RX}(RW )) · p(SX(RX), RW ) =

(p(SW | RX , RW )p(RX | RW )) · (p(SX | RX , RW )p(RW ))

This implies p(X,W ) = p(X)p(W ) is equal to∑
RX

p({SW , RX}(0RW ))

 ·
∑

RW

p(SX(0RX ), RW )

 =

p(SW | 0RW ) ·

∑
RW

p(SX | 0RX , RW )p(RW )



The key to this example is the joint independence (5); inde-
pendences of this type arise in hidden variable DAG mod-
els. We give an example later where recoverability is based
not on an ordinary independence, but on a generalized in-
dependence, or Verma constraint [23, 20]. In the following
sections, we give a general recursive scheme for solving
recoverability problems under MNAR using these types of
constraints.

4.2 KNOWN RESULTS FOR MISSINGNESS
GRAPHS

Recently [7] and [6] have used missingness graphs to de-
rive conditions for recoverability when data is MNAR. In
particular, the following characterization appears in [7] (as
theorem 2).



Theorem 3 For any p(A) ∈ M(Gm(V,M)), if no ele-
ments of RM are adjacent in Gm(V,M), then p(O ∪M)
is recoverable from p(O,SM,0RM

) if and only if M 6∈
paG(RM ) for any M ∈M. Moreover, p(O ∪M) is equal
to

p(O,SM,0RM)∏
RM∈RM

p
(
0RM

∣∣∣paG(RM ) \M,SpaG(RM )∩M,0RpaG(RM )∩M

) .

This result can be generalized in three directions. We may
consider cases where variables are unobserved and no miss-
ingness mechanism exists. We may consider recoverability
of other queries than p(O∪M), for instance causal effects
or marginal distributions. Finally, we may consider cases
where elements of RM are adjacent. This case is impor-
tant because it represents important classes of missingness
such as monotonic missingness due to loss to followup. A
unit that drops out of a longitudinal study at time t often re-
mains dropped out at times t+1, . . .. In our framework, we
would code this by requiring that for all t′ > t, RMt′ = 1
if RMt′−1

= 1, where Mt is unit’s status at time t. But
this coding is only possible if indicators are allowed to be
adjacent in the graph. In addition, allowing indicators to be
adjacent allows us to model non-monotone missing data,
where a unit may be missing at a particular time t, but then
becomes observed at a later time t+ k.

In this paper, we consider the problem of recovering p(O∪
M) given that every missing variable has an indicator and
a proxy (e.g. no completely hidden variables), and that in-
dicators RM are allowed to be adjacent. We give a re-
coverability algorithm that generalizes earlier work in this
setting.

5 A GENERAL RECOVERABILITY
ALGORITHM

The algorithm, which we call MID, work as follows. It
tries, for every RM ∈ RM, to recover

p(0RM
| paGm(RM ) \RM,0paGm (RM )∩RM

)

via a subroutine DIR. If every such conditional distribu-
tion is recovered, MID recovers p(O ∪M) via (3), other-
wise MID fails.

The subroutine DIR (so named for its resemblance to the
way the ID algorithm operates when identifying controlled
direct effects) has three cases. The first case, which is suf-
ficient for obtaining the soundness part of Theorem 3, at-
tempts to check if indicators for missing parents of RM are
non-parental non-descendants ofRM , in which case recov-
erability of the conditional distribution for RM is immedi-
ate.

Otherwise, DIR uses the other two cases to isolate RM

and its parents into smaller subproblems based on a partic-
ular type of ancestral set A†, or the clan D† of RM . DIR

is recursive, which means the input must also keep track of
a set W representing variables the clan subproblem ends
up depending on.

The situation is somewhat analogous to the way in which
the ID algorithm attempts to identify controlled direct ef-
fects p(Y | do(vpaG(Y ))) = p(Y (vpaG(Y ))), with three
major differences. First, we are attempting identification
in a setting where some variables start off being treated as
hidden, but in the course of the recursion of DIR become
observed due to fixing indicators to 0. In ID variables are
always either hidden or observed and do not change status.
Second, since we are only allowed to intervene on indica-
tors, we are attempting to identify

p(RM (0RM∩paG(RM )) | {paG(RM ) \RM}(0RM∩paG(RM ))).

Finally, there is not necessarily a fully interventional in-
terpretation for the intermediate objects pW(.) that arise
during the execution of DIR, since W may contain ele-
ments outside RM. This is a necessary consequence of our
insistence on not imposing a causal model on p(M ∪ O).
Intermediate objects that arise during the execution of ID
can always be interpreted as interventional distributions.

5.1 SOUNDNESS

MID and its subroutine DIR appear below as algorithm 1.
In this section, we prove that MID is sound.

Corollary 1 implies that if were able to express
p({O,SM}(0RM

)) as a function of the manifest distri-
bution, we would solve the recoverability problem for
p(O ∪M). If we happen to know

p(0RM
| paGm(RM ) \RM,0RM∩paGm (RM ))

for every RM ∈ RM as a function of the manifest, this
would suffice due to the following result.

Lemma 2 UnderM(Gm), if for every RM ∈ RM,

p(0RM
| paGm(RM ) \RM,0paGm (RM )∩RM

)

is a functional fRM
(.) of p(O,SM,0RM

), then

p({O,SM}(0RM
)) =

p(O,SM,0RM
)∏

RM∈RM
fRM

(p(O,SM,0RM
))
.

Proof: p({O,SM}(0RM
)) =

∑
M p({A \RM}(0RM

)).

p({A \RM}(0RM
)) =

p(A \RM,0RM
)∏

RM∈RM
fRM

(p(O,SM,0RM
))

is implied by (3). But no denominator is a function of M,
so we can apply the sum to the numerator first. � Finding
functionals fRM

(.) for every RM in order to apply Lemma
2 is the job of the subroutine DIR.



Algorithm 1 Gm(V,M) a missingness graph, p(V)
a manifest distribution from p(A) ∈ M(Gm(V,M)),
pW(V) a family of manifest distributions from elements
of p(A) ∈M(Gm(V,M)), ≺ a topological order on Gm.

procedure MID(Gm(V,M), p(V))
for each RM ∈ RM,

p̃(0RM
| paGm(RM ) \RM,0paGm (RM )∩RM

)

← DIR(Gm, p, RM )

if (∃RM ∈ RM), s.t. DIR(Gm, p, RM ) = ∅,

return “cannot recover.”

else return

p(O,SM,0RM)∏
RM∈RM

p̃(0RM | paGm(RM ) \RM,0paGm (RM )∩RM
)
.

end procedure
procedure DIR(Gm(V,M |W), pW(V), RM )

if RM∩(paGm (RM )\W) ⊆ ndpGm(RM ), return

pW

0RM

∣∣∣∣∣∣
paGm(RM ) \ (M ∪W ∪RM)
0RM∩paGm (RM )

,SM∩paGm (RM )

0RM∩(paGm (RM )\W)

 .

else A† ← {RM}.
while

(
anGm(A†) ∪ SanGm (A†)∩M 6⊆ A†

)
do

A† ← anGm(A†) ∪ SanGm (A†)∩M.
if A† ⊂ A,

return DIR(GmA† , pW∩A†(V ∩A†), RM ).
D← disGm

(V)
(RM ), D† ← claGm(RM ).

if D ⊂ V,

Z† ← pasGm
(V)

(D) ∩RM

Y† ← pasGm
(V)

(D) \RM

Mo
D† ← {M ∈ (M ∩D†) | RM ∈ Z†}

Mh
D† ← (M ∩D†) \Mo

D†

V† ← D ∪Mo
D†

G̃m ← GmD†(V
†,Mh

D† |Y
†)

pY†(D)←
∏
V ∈D

pW

(
V

∣∣∣∣∣ preGm
(V)

,≺(V ) \ Z†,
0preGm

(V)
,≺(V )∩Z†

)

return DIR(G̃m, pY†(D), RM )
end if
return ∅.

end procedure

Soundness of DIR

The subroutine DIR invoked by MID aims to recover
fRM

(p) = p(0RM
| paGm(RM ) \ RM,0paGm (RM )∩RM

)
by recursively attempting to restrictRM and paGm(RM ) to
either an appropriate ancestral subset containing these ver-
tices, or an appropriate clan of Gm, and, in the base case,
exploiting the independence structure, and properties of the
subproblem that is left.

To prove the soundness of DIR, we must establish, by
induction on algorithm structure, certain results about the
subproblems it considers. We will represent subproblems
as a pair consisting of a CDAG G̃m that is a subgraph of the
original graph Gm, and a conditional fragment of the miss-
ingness model which can be viewed as a set of all interven-
tional distributions relevant to the subproblem, which also
possibly depend on variables W from larger subproblems.

Given an element p(A) ofM(Gm(A)), B ⊆ A, and W ⊆
A \ B, a conditional fragment of p(A) with respect to B
and W, denoted by FW,B, is a mapping from elements w
in XW to

Fw,B ≡ {pw(B(r)w) | R ⊆ RM ∩B, r ∈ XR} .

Note that we cannot view pw(B(r)w) as a joint response
of B to an intervention setting R∪W to r∪w, because W
may contain elements outside R that we are not allowed to
intervene on.

For each call to DIR, we want to show that all interven-
tional distributions in the input fragment are Markov with
respect to the appropriately modified input graph, that we
have enough information in the subproblem to possibly
obtain fRM

(p), and that the manifest distribution of the
fragment for the current (inner) call can be obtained from
the manifest distribution of the fragment for the previous
(outer) call.

Definition 2 FW,B is causal Markov relative to a CDAG
Gm(B | W) if (∀w ∈ XW, pw(B(r)w) ∈ Fw,B),
pw(B(r)w) is Markov relative to Gm(B |W)R.

This definition is how we will relate fragments and corre-
sponding subgraphs, and the following two results estab-
lish this relationship for the two recursive cases relevant
for DIR.

Lemma 3 For FW,A causal Markov relative to Gm(A |
W), let D ∈ D(Gm(V)), D† ≡ claGm(D), W† ≡
pasGm

(V)
(D), W∗ ≡ W† \W. Then for any w† ∈ XW† ,

Fw†,D† ≡
{
p̃w†(D

†(r)w†)
∣∣r ∈ XR,R ⊆ RM ∩D

}
is

causal Markov relative to GmfaGm (D†)(D
† |W†), where for

any w consistent with w†, p̃w†(D†(r)w†) is∏
V ∈D†

pw(V |(r ∪w†)paGm (V )∩(R∪W∗),paGm(V ) \ (R ∪W†))



Proof: For any CDAG G(O,M | W), faG(claG(D)) is
equal to claG(D) ∪ pasG(O)

(D) for any D ∈ D(G(O)). The
proof is now immediate. Elements p̃w†(D†(r)w†) of each
Fw†,D† are Markov relative to (GmfaGm (D†))R by construc-
tion. The definition of p̃w†(D†(r)w†) implies it is the same
object for any w consistent with w†. �

Lemma 4 For FW,A causal Markov relative to Gm(A |
W), let V† ⊆ A ∪ W be ancestral, W† ≡ W ∩
V†, A† ≡ A ∩ V†. Then for any w† ∈ XW† ,
Fw†,D† ≡

{
p̃w†(A

†(r)w†)
∣∣r ∈ XR,R ⊆ RM ∩A†

}
is

causal Markov relative to GmA†(A
† | W†), where for any

w consistent with w†, p̃w†(A†(r)w†) is∏
V ∈A†

pw(V | rpaGm (V )∩R,paGm(V ) \ (R ∪W†))

Proof: Immediate. Elements pw†(A
†(r)w†) of each

Fw†,A† are Markov relative to (GmA†)R by construction.
The definition of p̃w†(D†(r)w†) implies it is the same ob-
ject for any w consistent with w†. �

The next two results re-express p(RM | paGm(RM )) from
a function of the larger fragment of the outer recursive call
to a function of the smaller fragment of the inner call.

Lemma 5 Assume FW,A is causal Markov relative to
Gm(A |W), and FW†,D† is defined as in Lemma 3. Then
for any RM ∈ D†, pW(RM | paGm(RM ) \W) is equal
to pW†(RM | paGm

faGm (D†)
(RM ) \W†).

Proof: Since RM ∈ D†, this follows by Lemma 3. That is,
pW†(RM | paGm

faGm (D†)
(RM ) \W†) is equal to pW(RM |

W†
paGm (RM )∩(W†\W)

,paGm(RM ) \W†), which is equal
to pW(RM | paGm(RM ) \W). �

Lemma 6 Assume FW,A is causal Markov relative to
Gm(A |W), and FW†,A† is defined as in Lemma 4. Then
for any RM ∈ A†, pW(RM | paGm(RM ) \W) is equal
to pW†(RM | paGm

A†
(RM ) \W†).

Proof: Since RM ∈ A†, this follows by Lemma 4. That
is, pW†(RM | paGm

A†
(RM ) \W†) is equal to pW(RM |

paGm(RM ) \W). �

The next two results express the analogue of the manifest
distribution of the smaller fragment as a function of the
manifest distribution of the larger fragment. We assume
Mo

D† , M
h
D† , V

†, Z†, Y†, and G̃m are defined as in the dis-
trict case of DIR. Let W† = Y† ∪Z†, and O† = D∩O.

Lemma 7 Assume FW,A is causal Markov relative to
Gm(A | W), and FW†,D† is defined as in Lemma 3.

Then the marginal pY†,0
Z†
(O†,Mo

D† ,SMh

D†
,RMh

D†
) of

pW†(D†) ∈ FW†,D† is equal to∏
V ∈V† pW(V | preGm

(V)
,≺(V ) \ Z†,0preGm

(V)
,≺(V )∩Z†).

Proof: Fix w and w† consistent with w, such that w†
Z†

=
0. We get the following set of equalities, where the first
is by assumption on missingness models, the second by
(4), (3) and the definition of Mo

D† , the third by defini-
tion, the fourth by Lemma 3, and the last by standard re-
sults on district factorization of hidden variable DAG mod-
els found in [22]. If we range over all possible w†

Y†
, the

last expression reduces to
∏

V ∈V† pW(V |preGm
(V)

,≺(V ) \
Z†,0preGm

(V)
,≺(V )∩Z†).

pw†(O
†,Mo

D† ,SMh

D†
,RMh

D†
)

= pw†(O
†,SMo

D†
(RMo

D†
= 0),SMh

D†
,RMh

D†
)

= pw†(O
†,SMo

D†
,SMh

D†
,RMh

D†
)

=
∑
Mh

D†

pw†(O
†,SMo

D†
,SMh

D†
,RMh

D†
,Mh

D†)

=
∑
Mh

D†

∏
V ∈D†

pw(V | w†
paGm (V )∩(W†\W)

,paGm(V ) \W†)

=
∏
V ∈D

pw(V |preGm
(V)

,≺(V ) \W†,w†
preGm

(V)
,≺(V )∩W†)

�

Lemma 8 Assume FW,A is causal Markov relative to
Gm(A | W), and FW†,A† is defined as in Lemma 4.
Then the element pW†(V ∩ A†) of FW†,A† is equal to∑

V\A† pW(V).

Proof: pW†(V ∩ A†) is equal to
∑

A†\V pW†(A†) (by
definition), which is equal to

∑
A†\V

∑
A\A† pW(A)

by Lemma 4. But since both V,A† are subsets of
A, this is just

∑
A\(V∩A†) pW(A), which is equal to∑

V\A†
∑

A\V pW(A) =
∑

V\A† pW(V). �

The following result establishes the validity of the base
case of DIR, where pW(RM | paGm(RM ) \W) is ex-
pressed in terms of the manifest distribution for the current
fragment.

Lemma 9 Assume FW,A is causal Markov relative to
Gm(A | W). Then if RM∩(paGm (RM )\W) ⊆
ndpGm(RM ), then

pW(0RM
| paGm(RM )\(W∪RM),0RM∩(paGm (RM )\W))

is equal to pW

0RM

∣∣∣∣∣∣
paGm(RM ) \ (M ∪W ∪RM)
0RM∩paGm (RM )

,SM∩paGm (RM )

0RM∩(paGm (RM )\W)

.



Proof: We get the following set of equalities, where the first
follows by assumption, and the fact that pW(A) is Markov
relative to Gm, the second is by the properties of the miss-
ingness model, and the third is by (4):

pW

(
0RM

∣∣∣∣ paGm(RM ) \ (W ∪RM)
0RM∩(paGm (RM )\W)

)
=

pw

0RM

∣∣∣∣∣∣
paGm(RM ) \ (M ∪W ∪RM)

paGm(RM ) ∩M,0RM∩paGm (RM )

0RM∩(paGm (RM )\W)

 =

pW

0RM

∣∣∣∣∣∣
paGm(RM ) \ (M ∪W ∪RM),
SM∩paGm (RM )(0RM∩paGm (RM )

)

0RM∩paGm (RM )
,0RM∩(paGm (RM )\W)

 =

pW

0RM

∣∣∣∣∣∣
paGm(RM ) \ (M ∪W ∪RM)
0RM∩paGm (RM )

,SM∩paGm (RM )

0RM∩(paGm (RM )\W)

 .

�

Before putting all these results together to show soundness
of DIR, we must prove one additional utility lemma that
shows the set A† constructed by DIR is ancestral.

Define an automorphism from vertex sets in Gm,
ρM,Gm(B), as anGm({RM} ∪B) ∪ SanGm ({RM}∪B). Let
A† be the fixed point of ρM,Gm with the starting input of
the empty set.

Lemma 10 A† is an ancestral set in Gm.

Proof: A simple proof by contradiction follows by defini-
tion of ρM,Gm . �

We now show the main result of this paper.

Theorem 4 MID is sound.

Proof: Assuming DIR returns the answer for every RM ∈
RM, Corollary 1, and Lemma 2 ensure that MID recovers
p(M ∪O) from p(V).

The soundness of DIR follows by induction on the recur-
sive call structure. The inductive hypothesis is that the in-
put conditional fragment F

W̃,Ã
is causal Markov relative

to the appropriate graph derived from the input graph G̃m,
that the input manifest p̃

W̃
(V) is the function of the origi-

nal manifest p(V), and that p̃
W̃
(RM | paG̃m(RM )\W̃) =

p(RM | paGm(RM )).

The base case trivially holds for the original inputs to DIR.
If the inductive hypothesis is true, and DIR returns after
the first conditional, soundness follows by Lemma 9.

If DIR returns after the second conditional, then Lemma
10 ensures the constructed set A† is ancestral, and the in-
duction for the following recursive call is maintained via
Lemmas 4, 8 and 6.

If DIR returns after the third conditional, Lemma 3
ensures Fw̃,D† is causal Markov relative to GmfaGm (D†)

for all values of w̃, including those that set Z† to
0. Lemma 5, and the inductive hypothesis ensures
pW†(RM | paGm

faGm (D†)
(RM ) \W†) is equal to pW(RM |

paGm(RM ) \W). Finally, Lemma 7 ensures the manifest
for the recursive call is a function of the input manifest.
In fact, because we set Z† to 0, properties of missingness
models ensure we can treat Mo

D† as observed in subsequent
recursive calls, which means we no longer need to consider
SMo

D†
.

Since induction follows for all cases, so does our conclu-
sion. �

6 A COMPLEX RECOVERABLE
EXAMPLE

We now work through an example where all cases of MID
and DIR are necessary. Consider the graph shown in Fig.
2 (a). Here C and D are shown in green to indicate that
they are fully observed. This is a more complex version
of the example in Fig. 1 (c). Unlike that case, here,
there are no conditional independences that hold between
proxies and indicators. However, if we were to divide by
p(D | C) and sum out C, in the resulting distribution
pD(SA, SB , RA, RB , A,B), for any fixed value d ofD, we
would have

({SA(0RA
), RB} ⊥⊥ {SB(0RB

), RA(0RB
)})pd

This is a type of Verma constraint [23] or generalized inde-
pendence constraint [20].

Our goal is to recover p(A,B,C,D) given the missing-
ness model corresponding to this graph, and in particular
the above constraint. We must recover p(0RB

| A,D)
and p(0RA

| 0RB
, B,D) from p(RA, RB , SA, SB , C,D).

In either case, we note that D is not an element
of claGm(RA) = claGm(RB), which implies we can
use the clan case of DIR and consider a subproblem
shown in Fig. 2 (b), with the corresponding mani-
fest p̃D(RA, RB , SA, SB , C) = p(SA, SB , RA, RB |
D,C)p(C). In the new subproblem (for either RA or
RB), C is not a part of the ancestral set A† constructed
by DIR in the ancestral case, so we consider a new sub-
problem shown in Fig. 2 (c), with the corresponding man-
ifest p̃D(RA, RB , SA, SB) =

∑
c p̃D(SA, SB , RA, RB |

D, c)p̃D(c). This new subproblem now resembles the ex-
ample in Fig. 1 (c), and is solved similarly. In particular,
we recover p(0RB

| D,A) as

p̃D(SA | 0RA
, 0RB

)p̃D(0RB
)∑

RB
p̃D(SA | 0RA

, RB)p̃D(RB)

and p(0RA
| 0RB

, B,D) as p̃D(0RA
| 0RB

, SB). We
then obtain p(A,B,C,D) by dividing the manifest distri-
bution for observed cases p(0RA

, 0RB
, SA, SB , C,D) by

the above two probabilities.
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Figure 2: (a) An example where recoverability is possi-
ble via MID. (b),(c) Graphs corresponding to subproblems
considered by MID in recovering p(A,B,C,D).

7 NONRECOVERABILITY

The generality of MID naturally raises the question of
whether it is complete, that is whether whenever it outputs
“cannot recover” then it is possible to construct two ele-
ments of the missingness model that agree on the manifest
but disagree on the underlying joint distribution. We leave
this difficult question aside in this paper in the interests of
space, but note that an approach similar to one used to show
completeness for causal effects identification [18] seems
promising. That is, use MID as a guide for constructing
a “zoo” of structures where recoverability does not seem to
be possible, and then construct a general method for show-
ing non-recoverability for this “zoo.”

Some results on non-recoverability do exist. For example,
it can be shown that p(A) is not recoverable in the miss-
ingness model with the graph in Fig. 3 (a) [7], and sim-
ilarly that p(A,B) is not recoverable in the missingness
model with the graph in Fig. 3 (b). Characterization of
non-recoverability is an open problem.

8 DISCUSSION AND CONCLUSIONS

We have represented missing data as a type of a restricted
causal inference problem. Using the machinery of graphi-
cal causal models, we have given a general algorithm for
recoverability of a joint distribution in MNAR settings.
Though we do not require this, our formalism allows the
joint distribution we recover to come from a statistical,
rather than a causal model – all causal assumptions may be
restricted to the missingness model governing the behavior
of proxies of missing variables under interventions on indi-
cators. We show that the MCAR, MAR, MNAR taxonomy
is not sufficiently granular to classify cases where recover-
ability is possible. In particular, there are MNAR examples
where constraints akin to Verma constraints permit recov-
erability.

Aside from the algorithm, our formalism allows us to seam-
lessly integrate issues of identification of causal effects, and
recoverability. For instance, it is known that in the graph
shown in Fig. 3 (c) (where we treat↔ edges as indicating

A

RA

(a)

A B

RB RA

(b)

C A Y

RY SY

(c)

Figure 3: (a) p(A) is not recoverable. (b) p(A,B) is not
recoverable. (b) A graph with hidden variables where p(Y )
is not recoverable, but p(Y (a)) is.

the presence of an unobserved parent), p(Y ) is not recover-
able. However, if the graph on C,A, Y represents a causal
model, we can show that p(Y (a)) is recoverable. In partic-
ular

p(Y (a)) = p(SY (a, 0RY
)) =

∑
c p(SY , 0RY

| a, c)p(c)∑
c p(0RY

| a, c)p(c)

A similar observation appears in [6], example 3.

By explicitly representing missingness via an intervenable
indicator, and a proxy as a response to this intervention, our
formalism allows us to reason explicitly about the interpre-
tation of censoring by death using the existing language of
interventions. That is if SX is observed patient history, and
1RX

implies it is missing due to the patient dying, then we
may either disallow considering SX(0RX

) (e.g. “resurrect-
ing the patient”) for that patient, allow SX(0RX

), but treat
it as making statements about exchangeable but different
patients who happened to be alive that transfer over to the
dead patient in a hypothetical alternative history where the
patient never died, and so on.

Note that if we assume a known relationship p(SM (rRM
) |

M) between M and SM (rRM
) other than direct equality,

we can use the approach in this paper to address certain
coarsening [3] and measurement error settings. We do not
consider these extensions explicitly here for space reasons,
but they are straightforward.

Acknowledgements

This research was supported in parts by grants from
NIH R01 AI104459-01A1, NSF #IIS-1302448 and ONR
#N00014-10-1-0933 and #N00014-13-1-0153.

References
[1] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum

likelihood from incomplete data via the EM algorithm. Jour-
nal of the Royal Statistical Society, Series B, 39:1–38, 1977.

[2] Constantine E. Frangakis, Donald B. Rubin, Ming-Wen An,
and Ellen MacKenzie. Principal stratification designs to es-
timate input data missing due to death. Biometrics, 63:641–
662, 2007.

[3] Daniel F. Heitjan and Donald Rubin. Ignorability and coarse
data. Annals of Statistics, 19(4):2244–2253, 1991.

[4] Paul W. Holland. Statistics and causal inference. Journal of
the American Statistical Association, 81:945–960, 1986.



[5] E.L. Kaplan and P. Meier. Nonparametric estimation from
incomplete observations. Journal of the American Statisti-
cal Association, 53:457–481, 1958.

[6] Karthika Mohan and Judea Pearl. Graphical models for re-
covering probabilistic and causal queries from missing data.
In Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence,
and K.Q. Weinberger, editors, Advances in Neural Informa-
tion Processing Systems 27, pages 1520–1528. Curran As-
sociates, Inc., 2014.

[7] Karthika Mohan, Judea Pearl, and Jin Tian. Graphical mod-
els for inference with missing data. In C.J.C. Burges, L. Bot-
tou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, ed-
itors, Advances in Neural Information Processing Systems
26, pages 1277–1285. Curran Associates, Inc., 2013.

[8] J. Neyman. Sur les applications de la thar des probabilities
aux experiences agaricales: Essay des principle. excerpts
reprinted (1990) in English. Statistical Science, 5:463–472,
1923.

[9] Judea Pearl. Probabilistic Reasoning in Intelligent Systems.
Morgan and Kaufmann, San Mateo, 1988.

[10] Judea Pearl. Causality: Models, Reasoning, and Inference.
Cambridge University Press, 2000.

[11] Thomas S. Richardson and Jamie M. Robins. Sin-
gle world intervention graphs (SWIGs): A unification
of the counterfactual and graphical approaches to causal-
ity. preprint: http://www.csss.washington.
edu/Papers/wp128.pdf, 2013.

[12] J.M. Robins. A new approach to causal inference in mortal-
ity studies with sustained exposure periods – application to
control of the healthy worker survivor effect. Mathematical
Modeling, 7:1393–1512, 1986.

[13] Paul R. Rosenbaum and Donald B. Rubin. The central role
of the propensity score in observational studies for causal
effects. Biometrika, 70:41–55, 1983.

[14] D. B. Rubin. Estimating causal effects of treatments in ran-
domized and non-randomized studies. Journal of Educa-
tional Psychology, 66:688–701, 1974.

[15] D. B. Rubin. Inference and missing data (with discussion).
Biometrika, 63:581–592, 1976.

[16] D. B. Rubin. Multiple Imputation for Nonresponse in Sur-
veys. New York: Wiley & Sons, 1987.

[17] Stuart Russell, John Binder, Daphne Koller, and Keiji
Kanazawa. Local learning in probabilistic networks with
hidden variables. In Proceedings of the 14th international
joint conference on Artificial intelligence (IJCAI-95), pages
1146–1152. Morgan Kaufmann Publishers Inc. San Fran-
cisco, CA, USA, 1995.

[18] Ilya Shpitser and Judea Pearl. Identification of joint inter-
ventional distributions in recursive semi-Markovian causal
models. In National Conference on Artificial Intelligence,
volume 21. AUAI Press, 2006.

[19] Ilya Shpitser and Judea Pearl. Complete identification meth-
ods for the causal hierarchy. Journal of Machine Learning
Research, 9(Sep):1941–1979, 2008.

[20] Ilya Shpitser, Thomas S. Richardson, and James M. Robins.
An efficient algorithm for computing interventional distri-
butions in latent variable causal models. In Uncertainty in
Artificial Intelligence, volume 27. AUAI Press, 2011.

[21] P. Spirtes, C. Glymour, and R. Scheines. Causation, Predic-
tion, and Search. Springer Verlag, New York, 1993.

[22] Jin Tian and Judea Pearl. On the testable implications of
causal models with hidden variables. In Uncertainty in Arti-
ficial Intelligence, volume 18, pages 519–527. AUAI Press,
2002.

[23] T. S. Verma and Judea Pearl. Equivalence and synthesis
of causal models. Technical Report R-150, Department of
Computer Science, University of California, Los Angeles,
1990.

http://www.csss.washington.edu/Papers/wp128.pdf
http://www.csss.washington.edu/Papers/wp128.pdf

	INTRODUCTION
	PRELIMINARIES
	GRAPH THEORY AND NOTATION

	MISSING GRAPHS AND MISSINGNESS MODELS
	RECOVERABILITY
	EXAMPLES OF RECOVERABILITY
	KNOWN RESULTS FOR MISSINGNESS GRAPHS

	A GENERAL RECOVERABILITY ALGORITHM
	SOUNDNESS

	A COMPLEX RECOVERABLE EXAMPLE
	NONRECOVERABILITY
	DISCUSSION AND CONCLUSIONS



