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Abstract: This note examines one of the most crucial questions in causal inference: “How generalizable are
randomized clinical trials?” The question has received a formal treatment recently, using a non-parametric
setting, and has led to a simple and general solution. I will describe this solution and several of its
ramifications, and compare it to the way researchers have attempted to tackle the problem using the
language of ignorability. We will see that ignorability-type assumptions need to be enriched with structural
assumptions in order to capture the full spectrum of conditions that permit generalizations, and in order to
judge their plausibility in specific applications.

Keywords: generalizability, transportability, selection bias, admissibility, ignorability

1 Transportability and selection bias

The long-standing problem of generalizing experimental findings from the trial sample to the population as
a whole, also known as the problem of “sample selection-bias” [1, 2], has received renewed attention in the
past decade, as more researchers come to recognize this bias as a major threat to the validity of experi-
mental findings in both the health sciences [3] and social policy making [4]. Since participation in a
randomized trial cannot be mandated, we cannot guarantee that the study population would be the same
as the population of interest. For example, the study population may consist of volunteers, who respond to
financial and medical incentives offered by pharmaceutical firms or experimental teams, so, the distribu-
tion of outcomes in the study may differ substantially from the distribution of outcomes under the policy of
interest.

Another impediment to the validity of experimental finding is that the types of individuals in the target
population may change over time [5]. For example, as more individuals become eligible for health
insurance, the types of individuals seeking services would no longer match the type of individuals that
were sampled for the study [3]. A similar change would occur as more individuals become aware of the
efficacy of the treatment. The result is an inherent disparity between the target population and the
population under study.

The problem of generalizing across disparate populations has received a formal treatment in Pearl and
Bareinboim [6] where it was labeled “transportability,” and where necessary and sufficient conditions for
valid generalization were established (see [7]). The problem of selection bias, though it has some unique
features, can also be viewed as a nuance of the transportability problem, thus inheriting all the theoretical
results established in Pearl and Bareinboim [6] that guarantee valid generalizations. I will describe the two
problems side by side and then return to the distinction between the type of assumptions that are needed
for enabling generalizations.

The transportability problem concerns two dissimilar populations, � and ��, and requires us to
estimate the average causal effect P�ðyxÞ (explicitly: P�ðyxÞ¼Δ P�ðY ¼ yjdoðX ¼ xÞÞ in the target population
��, based on experimental studies conducted on the source population �.1 Formally, we assume that all
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1 We focus our discussion on the average causal effect (ATE), yet identical considerations apply to other causal parameters,
such as the effect of treatment on the treated (ETT). On the connection between ATE and ETT, see Ref. [8].
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differences between � and �� can be attributed to a set of factors S that produce disparities between the
two, so that P�ðyxÞ ¼ PðyxjS ¼ 1Þ. The information available to us consists of two parts; first, treatment
effects estimated from experimental studies in � and, second, observational information extracted from
both � and ��. The former can be written PðyjdoðxÞ; zÞ, where Z is set of covariates measured in the
experimental study, and the latters are written P�ðx; y; zÞ ¼ Pðx; y; zjS ¼ 1Þ, and Pðx; y; zÞ respectively. In
addition to this information, we are also equipped with a qualitative causal model M, that encodes causal
relationships in � and ��, with the help of which we need to identify the query P�ðyxÞ. Mathematically,
identification amounts to transforming the query expression

P�ðyxÞ ¼ PðyjdoðxÞ; S ¼ 1Þ ð1Þ
into a form derivable from the available information ITR, where

ITR ¼ fPðyjdoðxÞ; zÞ;Pðx; y; zÞ;Pðx; y; zjS ¼ 1Þg: ð2Þ
The first two components of ITR represent, respectively, the experimental and observational findings in �,
while the third component represents observational findings in ��. Appendix 1 demonstrates how the query
P�ðyxÞ can be derived from ITR using assumptions about the disparities between � and �� that are encoded
in a graph.

The selection bias problem is slightly different. Here the aim is to estimate the average causal
effect PðyxÞ in the � population, while the experimental information available to us, ISB, comes from a
preferentially selected sample, S ¼ 1, and is given by PðyjdoðxÞ; z; S ¼ 1Þ. In addition, we also assume to
have access to observational information Pðx; y; zjS ¼ 1Þ and Pðx; y; zÞ; the first represents observations
obtained from the selected sample, S ¼ 1, and the second represents observation taken on the population at
large. Thus, the selection bias problem calls for transforming the query PðyxÞ to a form derivable from the
information set:

ISB ¼ fPðyjdoðxÞ; z; S ¼ 1Þ;Pðx; y; zjS ¼ 1Þ;Pðx; y; zÞg: ð3Þ
In the Appendix section, we demonstrate how transportability problems and selection bias problems are
solved using the transformations described above. At this point, however, it is important to note the
syntactic differences between the information sets available in the two problems. ITR is characterized by
the fact that S does not appear in the conditioning part of any do-expression, thus reflecting the fact that we
do not have experimental information from the target population ��. ISB on the other hand is characterized
by the fact that do-expressions are always conditioned on S, reflecting the fact that we have experimental
information only on the selected sample, S ¼ 1.

The analysis reported in Pearl and Bareinboim [6] has resulted in an algorithmic criterion for deciding
whether transportability is feasible and, when confirmed, the algorithm produces an estimand for the
desired effects [7]. The algorithm is complete, in the sense that, when it fails, a consistent estimate of the
target effect does not exist (unless one strengthens the assumptions encoded in M).

There are several lessons to be learned from this analysis when considering generalizing experimental
findings.
1. The graphical criteria that authorize transportability are applicable to selection bias problems as well,

provided that the graph structures for the two problems are identical. This means that whenever a
selection bias problem is characterized by a graph for which transportability is feasible, recovery from
selection bias is feasible by the same algorithm. (The Appendix demonstrates this correspondence.)

2. The assumptions needed for transportability are more involved than the ones usually invoked for
ensuring non-confoundedness, also called “treatment assignment ignorability.” In graphical terms,
these assumptions may require several d-separation tests on several sub-graphs. It is utterly unimagin-
able therefore that such assumptions could be managed by unaided human judgment, as is normally
assumed in the potential outcomes literature [3, 9].

3. In general, problems associated with generalizing across populations cannot be handled by balancing
disparities between distributions. A given disparity between Pðx; y; zÞ and P�ðx; y; zÞ may demand
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different adjustments, depending on the location of S in the causal structure. A simple example of this
phenomenon is demonstrated in Figure 3(b) of [6] where a disparity in the average reading ability of
two cities requires two different treatments, depending on what causes the disparity. If the disparity
emanates from age differences, adjustment is necessary, because age is likely to affect the potential
outcomes. If, on the other hand the disparity emanates from differences in educational programs, no
adjustment is needed, since education, in itself, does not modify response to treatment. Such distinc-
tions, which may become quite intricate in large systems, are managed automatically in the graph-
based representation.

4. In many instances, generalizations can only be achieved by conditioning on post-treatment variables,
an operation that is generally frowned upon in the potential outcomes [10, pp. 73–74, 11, 12]; but has
become extremely useful in graphical analysis. The difference between the conditioning operators used
in these two frameworks is reflected in the difference between the counterfactual expression
PðYx ¼ yjzÞ and the do-expression PðY ¼ yjdoðX ¼ xÞ; zÞ [13]. The latter expression defines information
that is estimable directly from experimental studies, whereas the former invokes retrospective counter-
factuals that may or may not be estimable empirically.

In the next section we will discuss the differences between these two conditioning operators and the benefit
of leveraging post-treatment variables in problems concerning generalization.

2 Ignorability versus admissibility in the pursuit of generalizations

A key assumption in almost all conventional analyses of generalization (from sample-to-population) is
S-ignorability, written

Yx??SjZ ð4Þ
where Yx is the potential outcome predicated on the intervention X ¼ x, S is a selection indicator (with S ¼ 1
standing for selection into the sample) and Z a set of observed covariates. This assumption, commonly
written as a difference Y1 � Y0??SjZ, appears in Hotz et al. [5]; Cole and Stuart [14]; Tipton et al. [15];
Hartman et al. [9], and possibly other researchers confined to potential outcomes analysis. This assumption
states that in every stratum Z ¼ z of the set Z, the potential outcome Yx is independent of the factors S that
may produce cross-population differences.

Given this assumption, the problem of generalizing across populations has a trivial solution, which
reads: If we succeed in finding a set Z of pre-treatment covariates such that cross-population differences
disappear in every stratum Z ¼ z, then the problem can be solved by averaging over those strata.2

Specifically, if PðyxjS ¼ 1; Z ¼ zÞ is the z-specific probability distribution of Yx in the sample, then the
distribution of Yx in the population at large is given by the post-stratification formula

PðyxÞ ¼
X

z

PðyxjS ¼ 1; zÞPðzÞ ð5Þ

which is often referred to as re-calibration or re-weighting. Here, PðzÞ is the probability of Z ¼ z in the target
population (where S ¼ 0). Equation (5) follows from S-ignorability by conditioning on z and, adding S ¼ 1 to
the conditioning set – a one-line proof. The proof fails however when no covariate set Z exists that satisfies
S-ignorability, in which case the post-stratification formula will be invalid. Moreover, even when S-ignor-
ability holds, eq. (5) would only be applicable if the factor PðyxjS ¼ 1; zÞ is estimable in the experimental
study and this will generally not be the case when Z contains post-treatment variables (see [13], Figure 1).

2 Lacking a procedure for finding Z, this solution addresses only part of the problem, leaving the choice of Z to unaided
intuitive judgement.
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Symmetrically, when we consider transportability problems, our query is P�ðyxÞ ¼ PðyjdoðxÞ; S ¼ 1Þ (see
eq. (1)), and S-ignorability would permit us to remove the S ¼ 1 condition and obtain the post-stratification
formula

P�ðyxÞ ¼ PðyxjS ¼ 1Þ ¼
X

z

PðyxjzÞPðzjS ¼ 1Þ ð6Þ

Similar to eq. (5), this formula takes a weighted average of the z-specific potential outcome Yx over all levels
of Z. Here, in syntactic contrast, the average is weighed by PðzjS ¼ 1Þ which is, again, the distribution of
Z in the target population (where S ¼ 1). As in the case of selection bias, eq. (6) is only useful when
S-ignorability holds and when PðyxjzÞ is estimable from the experimental data. Unfortunately, when
Z contains post-treatment variables, the former condition will be harder to meet; we shall see that
S-ignorability is rarely satisfied in transportability problems by any set Z containing post-treatment variables.

In graphical analysis, on the other hand, the problem of generalization has been studied using another
assumption, labeled S-admissibility [7], which is defined by:

PðyjdoðxÞ; zÞ ¼ PðyjdoðxÞ; z; sÞ ð7Þ
or, using counter factual notation,

PðyxjzxÞ ¼ Pðyxjzx; sxÞ
It states that in every treatment regime X ¼ x, the observed outcome Y is conditionally independent of the
selection mechanism S, given Z, all evaluated at that same treatment regime.

Clearly, S-admissibility coincides with S-ignorability for pretreatment S and Z; the two notions differ
however for treatment-dependent selection and covariates. To witness, consider the model of Figure 1(a),
and let X stand for education, Z for skill, S for training, and Y for salary.

S-admissibility eq. (4) looks at those people who were assigned x years of education who subsequently
achieved skill level z, and asks whether their salary Y would depend on their training S. The graph states that
skill alone determines salary, not how it was acquired, therefore PðyjdoðxÞ; zÞÞ ¼ PðyjdoðxÞ; z; sÞ ¼ PðyjzÞ
namely, training and education have no effect on salary, once we know z, as shown in the graph.

In contrast, S-ignorability Yx??SjZ asks for the role that training plays in the salary of those individuals
who are currently at skill Z ¼ z, had they received x years of schooling. Surely, unless x is pathologically
low, the skill levels attained by these individuals would depend on the amount of training (S) they receive,
and so would their salary Y. We thus conclude that Yx is not independent of S given Z, namely,
S-ignorability does not hold. The condition Z ¼ z merely selects a subpopulation for consideration but,

S (Training)

(a) (b)

S (Test)

Z
(Skill)

Z
(Skill)

Y
(Salary)

Y
(Salary)

X
(Education)

X
(Education)

Figure 1: (a) A transportability model in which a post-treatment variable Z is S-admissible but not S-ignorable;
(b) A selection-bias model in which Z is both S-admissible and S-ignorable. Note that S is a root node in (a) and a sink node
in (b), where it is a proxy of Z. In both models, the post-stratification formula (5) is not estimable non-parametrically.
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unless individuals in this subpopulation possess some abnormal qualities, they should exhibit the natural
dependence of salary on training.3

The Appendix section shows that unbiased generalization across studies is indeed feasible in scenarios like
Figure 1(a), despite the fact that Z is not S-ignorable. This is facilitated by the fact that Z is S-admissible, since Z
separates Y from S in the graph, and leads to the following estimand for the target effect:

PðyxjS ¼ 1Þ ¼
X

z

PðyjdoðxÞ; zÞPðzjx; S ¼ 1Þ:

Note that this estimand invokes nonconventional average of the z-specific effect, weighted by the condi-
tional probability PðzjxÞ at the target population.

A similar situation occurs in sample-selection problems such as the one depicted in Figure 1(b), where
generalization from samples to populations through the post-stratification formula (5) requires S-ignorability.
Here, the post-stratification formula (5) is valid becauseZ is S-ignorable (Z separates S fromYx in the graph), yet the
formula is useles, because the z-specific causal effect PðyxjS ¼ 1; zÞ is not estimable from the experimental study.

Remarkably, the target distribution PðyxÞ can be estimated using a modified formula:

PðyxÞ ¼
X

z

PðyjdoðxÞ; z; S ¼ 1ÞPðzjxÞ

which follows from the fact that Z is S-admissible. The derivation is presented in Scenario 3 of the Appendix
and demonstrates that, regardless of whether Z satisfies S-ignorability or S-admissibility, experimental
findings are not generalizable by standard procedures of post-stratification. Rather, modified procedures
need be applied, dictated by the graph structure.

One of the reasons that S-admissibility has received greater attention in the graph-based literature is that it
has a very simple graphical representation: Z and X should separate Y from S in a mutilated graph, from which
all arrows entering X have been removed. Such a graph depicts conditional independencies among observed
variables in the population under experimental conditions, i.e., where X is randomized.

S-ignorability requires a more elaborate graphical interpretation; it can be verified from either twin
networks [16, pp. 213–4] or from counterfactually augmented graphs [16, p. 341]. Using either representa-
tion, it is easy to see that S-ignorability is rarely satisfied in problems in which Z is a post-treatment
variable. This is because, whenever S is an ancestor of Z, or a proxy of such ancestor, Z cannot separate Yx

from S.
As noted in Keiding [17] the re-calibration formula (5) goes back to eighteenth century demographers

[18, 19] facing the task of predicting overall mortality (across populations) from age-specific data. Their
reasoning was probably as follows: If the source and target populations differ in distribution by a set of
attributes Z, then to correct for these differences we need to weight samples by a factor that would restore
similarity to the two distributions. Some researchers view eq. (5) as a version of Horvitz and Thompson [20]
post-stratification method of estimating the mean of a super-population from un-representative stratified
samples. The essential difference between survey sampling calibration and the calibration required in
eq. (5) is that the calibrating covariates Z are not just any set by which the distributions differ; they must
satisfy the S-ignorability (or admissibility) condition, which is a causal, not a statistical condition and is not
discernible therefore from distributions over observed variables. In other words, the re-calibration formula
should depend on disparities between the causal models of the two populations, not merely on distribu-
tional disparities; we discussed this point in Section 1 (item 3) and it is also demonstrated in the Appendix
(Figure 2(a)). While S-ignorability and S-admissibility are both sufficient for re-calibrating pre-treatment

3 To show explicitly that S-ignorability does not hold in Fig. 1(a), one can examine a linear model and use eq. (11.28) of Pearl
[16, p. 389] and show that it yields

E½YxjZ ¼ z; S ¼ s� ¼ ax þ bz þ cs

with non-zero c.
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covariates Z, S-admissibility goes further and discovers generalizations that leverage both pre-treatment
and post-treatment variables. The three examples discussed in the Appendix demonstrate this point.

3 Conclusions

1. Many opportunities for generalization are opened up through the use of post-treatment variables. These
opportunities remain inaccessible to ignorability-based analysis, partly because S-ignorability does not
always hold for such variables but, mainly, because ignorability analysis requires information in the
form of z-specific counterfactuals, which is often not estimable from experimental studies.

2. Most of these opportunities have been chartered through the completeness results for transportability
[1], others can be revealed by simple derivations in do-calculus as shown in the Appendix.

3. There is still the issue of assisting researchers in judging whether S-ignorability (or S-admissibility) is
plausible in any given application. Graphs excel in this dimension because they match the format in
which people store scientific knowledge. Researchers who insist on discerning S-ignorability by
appealing to human intuition do so at the peril of missing opportunities for generalization, or produ-
cing biased effect estimates. Readers can appreciate the magnitude of these perils by examining the
simple examples presented in Figure 2 of the Appendix; discerning S-ignorability in any one of the
three scenarios is a formidable judgmental task if unaided by graphs.

Acknowledgment: This note has benefitted from discussions with Elias Bareinboim, Stephen Cole, Peng
Ding, Guido Imbens, Jasjeet Sekhon, and Elizabeth Tipton.

Funding: This research was supported in part by grants from NSF #IIS-1302448 and ONR #N00014-10-1-0933
and #N00014-13-1-0153.

Appendix

To each of the models represented in Figure 2 we will provide a scenario, a problem specification and a
derivation of the target estimand.

Scenario 1 (Figure 2(a)):
X ¼ Treatment, Y ¼ outcome, Z ¼ a bio-marker believed to mediate between treatment and outcome.
S ¼ a factor (say diet) that makes the effect of X on Z different in the two populations, � and ��.
The curved dashed arch between X and Y represents the presence of unobserved confounders.

YX Z

S = 1 S = 1

S = 1

Z YX YX Z

(b) (c)(a)

L

Figure 2: (a) Generalizable transportability problem in which Z is S-admissible but S-ignorability does not hold.
(b) Generalizable selection-bias problem in which Z is S-admissible but S-ignorability does not hold. (c) Generalizable selection-
bias problem in which S-admissibility and S-ignorability both hold, yet post-stratification (eq. (5)) fails to estimate
the target treatment effect PðyxÞ.
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Problem formulation:
Needed:

P�ðyxÞ ¼ PðyjdoðxÞ; S ¼ 1Þ
Information set available:

ITR ¼ fPðyjdoðxÞ; zÞ;Pðx; y; zjS ¼ 1Þ;Pðx; y; zÞg:
Assumptions: S-admissibility (deduced from Fig. 2(a))

PðyjdoðxÞ; zÞ ¼ PðyjdoðxÞ; z; sÞ
Derivation:

P�ðyxÞ ¼ PðyjdoðxÞ; S ¼ 1Þ
¼

X

z

PðyjdoðxÞ; S ¼ 1; zÞPðzjdoðxÞ; S ¼ 1Þ

¼
X

z

PðyjdoðxÞ; zÞPðzjdoðxÞ; S ¼ 1Þ

¼
X

z

PðyjdoðxÞ; zÞPðzjx; S ¼ 1Þ

Each step in this derivation follows from probability theory and the assumption of S-admissibility which
permits us to remove the factor S ¼ 1 from the first factor of the second line. The result is an estimand in
which the condition S ¼ 1 does not appear in any do-expression, hence it is estimable from ITR.

Scenario 2 (Figure 2(b))
This is a selection-bias version of the transportability problem presented in Scenario 1. Assume variable L
stands for “location” and that selection for the study prefers subjects from one location over another [5].
The task is to estimate the average causal effect over the entire population.

Problem formulation:
Needed:

PðyxÞ ¼ PðyjdoðxÞÞ
Information set available:

ISB ¼ fPðyjdoðxÞ; z; S ¼ 1Þ; Pðx; y; zjS ¼ 1Þ;Pðx; y; zÞg:
Assumptions: S-admissibility (deduced from the model of Fig. 2(b))

PðyjdoðxÞ; zÞ ¼ PðyjdoðxÞ; z; sÞ
Derivation:

PðyxÞ ¼ PðyjdoðxÞÞ
¼

X

z

PðyjdoðxÞ; zÞPðzjdoðxÞÞ

¼
X

z

PðyjdoðxÞ; z; S ¼ 1ÞPðzjdoðxÞÞ

¼
X

z

PðyjdoðxÞ; z; S ¼ 1ÞPðzjxÞ

The first term in the sum is estimable from the biased experimental study while the second from the target
population.
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Scenario 3 (Figure 2(c))
This is another selection-bias version of the problem presented in Scenario 1. Assume Z represents a post-
treatment complication and, naturally, people with complications are more likely to enter the database.

Problem formulation:
The problem is identical to that of Scenario 2 with the exception that now both S-admissibility and
S-ignorability hold for variable Z. The former can be seen from its graphical definition, since Z and X
separate Y from S, and the latter by noting the Z separate S from all exogenous factors that affect Y.

Derivation:
The same as in Scenario 2. Again, we see that the final estimand calls for averaging the z-specific effect in
the experiment over all strata of Z, but now the average is weighted by the conditional probability PðzjxÞ
instead of the marginal PðzÞ that appears in eq. (5).

Remark 1 Note that, in Scenario 2, if variable L is observable, then the selection bias problem can be solved by
re-calibration over L, since L is treatment-independent and satisfies S-ignorability (and S-admissibility). It is
only when L is unobserved that we must resort to Z, a post treatment variable that does not satisfy
S-ignorability.
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