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A  signif icant and growing part of cl imate 
 research studies the causal links between 
 climate forcings and observed responses. This 

part has been consolidated into a separate research 
topic known as detection and attribution (D&A). 
The D&A community has increasingly been faced 

with the challenge of generating causal information 
about episodes of extreme weather or unusual climate 
conditions. This challenge arises from the needs for 
public dissemination, litigation in a legal context, 
adaptation to climate change, or simply improvement 
of the science associated with these events (Stott et al. 
2013). For clarity, we start by introducing a few no-
tations that will be used throughout this article: an 
event here is associated with a binary variable, say Y, 
which is equal to 1 when the event occurs and to 0 
when it does not, and we use the term event Y as an 
abbreviation for the event defined by Y = 1. In any 
event attribution study, the precise definition of the 
event to be studied—that is, the choice of the vari-
able Y—is crucial. Often, Y is defined ad hoc in the 
aftermath of an observed extreme situation based on 
exceedance over a threshold u of a relevant climate 
index Z, where both the index and the threshold are to 
a large extent arbitrary. In the conventional approach, 
which was introduced one decade ago by M. R. Allen 
and colleagues (Allen 2003; Stone and Allen 2005), 
one evaluates the extent to which a given external 
climate forcing f ∈ F —where F encompasses, for 
instance, solar irradiation, greenhouse gas (GHG) 
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emissions, ozone, or aerosol concentrations—has 
changed the probability of occurrence of the event Y. 
For this purpose, one compares the probability of oc-
currence of said event in an ensemble of model simu-
lations representing the observed climatic conditions, 
which simulates the actual occurrence probability in 
the real world, with the occurrence probability of the 
same event in a parallel ensemble of model simula-
tions, which represents an alternative world. The 
latter world is referred to as counterfactual, and it is 
the one that might have occurred had forcing f been 
absent. To be precise, we introduce the binary variable 
Xf to indicate whether or not the forcing f is present. 
The probability p1 = P(Y = 1|Xf = 1) of the event oc-
curring in the real world, with f present, is referred 
to as factual, while p0 = P(Y = 1|Xf = 0) is referred to 
as counterfactual. Both terms will become clear in 
the light of what immediately follows. The so-called 
fraction of attributable risk (FAR) is then defined as

. (1)

The FAR is interpreted as the fraction of the likeli-
hood of an event that is attributable to the external 
forcing f. Causal claims follow from the FAR and its 
uncertainty, associated with model and sampling 
errors, resulting in statements such as “It is very 
likely that over half the risk of European summer 
temperature anomalies exceeding a threshold of 
1.6°C is attributable to human influence” (Stott et al. 
2004, p. 612).

This conventional framework and the FAR were 
initially adapted from best practices in epidemiol-
ogy (Greenland and Rothman 1998), a field in which 
causal inference has always been of primary impor-
tance. Best practices in epidemiology are themselves 
to some extent anchored in what can be referred to as 
the standard theory of causality. Indeed, there exists a 
theoretical corpus of definitions, concepts, and meth-
ods to define causality rigorously and to address the 
issue of evidencing causal relationships empirically 
(e.g., Pearl 2000). The latter are readily accessible to 
users and are progressively being implemented in a 
growing number of fields. As a classic example taken 
from epidemiology, statements of great importance 
for public health, such as smoking causes lung can-
cer, are often based on these shared definitions and 
methods to investigate causality. The same is true of 
many causal studies that can be found in the fields of 
economics, social science, or artificial intelligence, to 
mention but a few domains of application. One point 
of entry into the standard theory consists of the fol-
lowing historical definition: “We may define a cause 

to be an object followed by another, where, if the first 
object had not been, the second never had existed” 
(Hume 2004, p. 48). Or, where X and Y are events: 
Y is caused by X if and only if (iff) were X not to oc-
cur, then Y would not occur. Despite its dating back 
to the eighteenth century, the above counterfactual 
definition and the general approach to causality that 
it implies is still relevant. Yet over the past decades, 
this definition has been further extended and refined 
within a probabilistic and graph–theoretical frame-
work, allowing for the counterfactual approach to 
be applied to actual datasets and to lead to reliable 
causal inference.

Overall, the current event attribution framework 
obeys the spirit of counterfactual logic, and it is thus 
loosely connected to the above-mentioned corpus. 
Yet it would be beneficial to tighten this connection 
by adding several important concepts, definitions, 
and mathematical results of causal counterfactual 
theory that, to the best of our knowledge, are lacking 
in the current event attribution framework. Among 
other lacking items, perhaps the most important one 
regards the absence of definition for the word cause. 
Several recurrent controversial arguments in the 
realm of event attribution may possibly be related to 
this lacking definition of causality: for instance, an 
argument often made (Trenberth 2012) is that any 
single event has multiple causes, so one can never 
assert that CO2 emissions, nor any other factors, have 
actually caused the event. Following this logic, single 
events are thus inherently never causally attributable 
at all. It is arguably difficult to clearly address this ob-
jection—or possibly many others—without a precise 
definition of causality in hand.

The purpose of this paper is to propose a set of 
definitions and methodological extensions to the cur-
rent event attribution framework that are rooted in 
recent developments of causal counterfactual theory. 
We start with a brief overview of the counterfactual 
theory, emphasizing the most relevant concepts, and 
then proceed to illustrate the proposed extensions by 
revisiting the historical case study of the European 
heatwave of 2003. Implications for causal claims are 
finally discussed.

A BRIEF OVERVIEW OF THE THEORY OF 
CAUSALITY. We all deal with cause and effect 
in our everyday life. Yet the notion of causality has 
long been shrouded in controversy, and the field of 
climate science is no exception in this respect. One 
may argue that the main reason for this state of af-
fairs is the lack of clear semantics for causal claims; 
scientists and philosophers have indeed struggled to 
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define precisely when one event truly causes another 
and conversely when it does not. For instance, while 
we all understand that barometers do not cause rain, 
even such a simple fact cannot be easily translated 
into a precise formalization or a mathematical equa-
tion. Beside this semantic difficulty, a fundamental 
question is to determine what evidence is required to 
justify the causal claim that the falling barometer did 
not cause the rainy episode and how such evidence 
may be extracted from observations.

Consider a naive observer O who knows nothing 
about either meteorology or barometers. By recording 
the movements of the barometer’s needle together 
with the changes in weather during a few weeks, O 
may be tempted to infer from the repeated observa-
tion of rainy episodes being preceded by a barometer 
fall and of sunny ones being preceded by a rise that the 
needle’s movement actually did cause the weather to 
change—even without a clue with respect to (wrt) the 
physical mechanism that may account for this causal 
relationship. However, O’s causal hypothesis will be 
quickly ruined if she/he has a flash of inspiration to 
start experimenting with the barometer; forcing its 
needle up and down will soon convince O that acting 
on the barometer does not induce a weather change. 
This simple example illustrates two aspects of causal-
ity: first, that causal investigation relies crucially on 
observations, and second, that two different types of 
observations may be used by the causal investigator 
(experimental and natural, i.e., nonexperimental). 
While both of these aspects may seem obvious, the 
difficulty starts with the implementation; given a 
piece of data, experimental or not, what causal con-
clusions can be drawn from it? And what is the level of 
confidence associated with such causal conclusions? 
Over the past decades, a rigorous theory of causality 
has emerged and been consolidated, with the purpose 
of addressing these questions. Its main ideas and 
concepts are exposed next.

The mathematical basis of causal theory. The counter-
factual definition of causality given by David Hume 
and spelled out above—that is, Y is caused by X iff Y 
would not have occurred were it not for X—can be 
used to introduce this brief overview. For instance, 
let R be a rainy episode and B be a downward move 
of the barometer’s needle; then, observing R while 
impeding B—that is, by holding the barometer’s 
needle—provides counterfactual evidence that falling 
barometers do not cause rain. Applying this approach 
to data requires a few mathematical concepts from 
the theory of probability and from graph theory. The 
former entails the notion of dependence between 

random variables that is, of course, different from 
that of causal dependence but proves instrumental 
in the formalization of causality. In the rainy episode 
example above, it is clear that the variables B and R are 
dependent, which of course does not imply anything 
about their causal relationship. If we now introduce 
the variable W to denote whether or not a road near O 
is wet, then the rain R and the wet road W are clearly 
dependent and this is also the case of the barometer 
B and the wet road W. Once we know, however, that 
it has rained, we can deduce that the road is certainly 
wet no matter the evolution of the barometer, so that 
W is independent of B conditionally on R. This im-
portant property is called conditional independence

 P(W|B,R) = P(W|R); (2)

this equation basically expresses that R screens off B 
from W. If we further complement our illustration 
by introducing L, which denotes whether or not a 
low pressure meteorological system is present above 
O, one can see by following a similar reasoning that 
P(R|B,L) = P(R|L) and P(W|R,L) = P(R|L), that is, that 
L screens off B from R and that R screens off L from W.

Oriented graphs are a very useful tool to visualize 
these considerations and can be considered as the 
second building block of causal theory (Pearl 2000). 
Skipping the rigorous definitions, a graph can be de-
scribed as a mapping of the conditional dependence 
relationships prevailing within a given joint prob-
ability distribution P(Z1,Z2,...,Zn) under study (Pearl 
2000; Ihler et al. 2007). Each variable Zk is thus repre-
sented by a node, which is connected to one or more 
nodes by arrows; each arrow points from a parent to a 
child. It is thus intuitive that graphs complement the 
purely probabilistic notion of dependence, which is 
symmetric and noncausal, by introducing an asym-
metry in the connections between variables, which 
is suited to encode causal relationships. The graph 
associated with (Z1,Z2,...,Zn) may be understood as a 
visual representation of the following factorization:

 , (3)

where P k denotes the parents of variable Zk. The 
graph representing causality in our illustrative wet 
road example is shown in Fig. 1a and visually encodes 
the following factorization:

 P(B,R,W,L) = P(L)P(B|L)P(R|L)P(W|R). (4)

Causal relationships among a set of variables 
can thus conveniently be represented by their joint 
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probability distribution, provided conditional 
dependence relationships are fully specified; such 
specification is conveniently encoded by using an ori-
ented graph in which each arrow represents a causal 
relationship. The existence of causal relationships 
has various implications on the joint dependence 
structure; for example, independent causes become 
dependent conditional upon their common effect, 
and dependent effects become independent condi-
tional upon their common cause. From the moment 
we have access to enough observations to infer the 
dependence structure, we are able to detect these 
signatures and thereby provide evidence of causal 
relationships. Algorithms such as those described in 
Spirtes et al. (2000) and Shimizu et al. (2006) basically 
follow this strategy and could perfectly be applied to 
the natural observations of R, B, and L collected by O.

An important limitation of using natural data 
is that several graphs can be compatible with the 
same joint distribution and hence with the same 
observations; identifiability is an issue. For instance, 
simultaneous changes in X and Y are compatible 
with both the causal relationships X → Y and Y → X 
whenever only these two variables are observed (e.g., 
when observing R and B but not L). The experimental 
approach is thus required for disambiguation of the 
causal relationship between X and Y. Several out-
comes Y are thereby experimentally collected for each 
tested value of X. The value of X is thus chosen by the 
experimenter, and treating it as a random variable is 
no longer relevant in this experimental context. How-
ever, a probabilistic treatment of the response Y is still 

relevant because other factors potentially affecting Y 
may not be controlled in the experimental setup. The 
notion of intervention was hence introduced to de-
scribe the situation where X is set by the experimenter 
at a chosen value x; it is denoted do(X = x). The notion 
of interventional probability then corresponds to the 
distribution of Y obtained in an experiment under the 
intervention do(X = x). It is denoted P[Y|do(X = x)] or 
alternatively P(Yx), where Yx denotes the new random 
variable obtained for Y subject to the intervention 
do(X = x). The set {P(Yx = y)|x,y = 0,1} obtained by 
collecting all the interventional probabilities of Y for 
every possible value of X is termed the causal effect of 
X on Y. It is important to note that, in general,

 P[Y|do(X = x) ≠ P(Y|X = x), (5)

which is why the notation do(X = x) is required. 
Indeed, P(R = 1|B = 1) reads in our example the 
probability of rain knowing that the barometer is 
decreasing in a nonexperimental context in which the 
barometer evolution is left unconstrained, whereas 
P[R = 1|do(B = 1)] reads the probability of rain forc-
ing the barometer to decrease in an experimental 
context in which the barometer is manipulated. The 
two probabilities are obviously distinct, and it is their 
difference that allows for disambiguation, as it reveals 
the absence of a causal link between B and R.

Nonetheless, confusion is still possible because 
P[Y|do(X = x)], and P(Y|X = x) may also sometimes 
be equal. This is the case when X satisfies a property 
called exogeneity wrt Y. Without going into details, 

Fig. 1. Graphs representing dependencies (a) among the four variables (R, B, W, L) used in our illustrative ex-
ample and (b) among forcings (X1, X2) and climate response Y. Dotted arrows represent dependency upon the 
unobserved variable υ.
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a sufficient condition for X to be exogenous wrt any 
variable is to be a top node of a causal graph. In the 
present context, radiative forcings under causal scru-
tiny are actually modeled in a physical setting, such 
as a general circulation model (GCM), as prescribed 
conditions that are external to the climate system; they 
are thus exogenous by construction. Provided D&A 
keeps on focusing on causal relationships between 
variables that are exogenous, the otherwise critical 
distinction between conditional and interventional 
probability is therefore not of utmost importance here 
because both quantities are actually the same.

Necessity, sufficiency, and probabilities of causation. To 
assess how likely it is that one event was the cause 
of another, the probability PN of necessary causal-
ity is defined, in agreement with the counterfactual 
principle, as the probability that the event Y would 
not have occurred in the absence of the event X given 
that both events Y and X did in fact occur. The prob-
ability PN thus quantifies how likely it is that X has 
caused Y in a necessary causation sense; here X is a 
necessary cause of Y means that X is required for Y 
to occur but that other factors might be required as 
well. In other words, it means that Y would not occur 
were it not for X. Sufficient causation, on the other 
hand, as in X is a sufficient cause of Y, means that X 
always triggers Y but that Y may also occur for other 
reasons without requiring X. The probability PS of 
sufficient causation is defined to be the probability 
that Y would have occurred in the presence of X, given 
that Y and X did not occur. Note that PN and PS are 
thus simultaneously interventional and conditional 
probabilities. To complete the probabilistic setting, 
PNS is the probability of necessary and sufficient 
causation. It is defined as the probability that Y would 
have occurred in the presence of X and that Y would 
not have occurred in the absence of X. These three 
definitions are formally expressed as follows (Pearl 
2000, p. 286):

PN =def P(Y0 = 0|Y = 1, X = 1),

PS =def P(Y1 = 1|Y = 0, X = 0), (6)

PNS =def P(Y0 = 0, Y1 = 1).

The three probabilities PN, PS, and PNS are of 
utmost importance because they provide a complete 
characterization of the causal relationship between X 
and Y as well as of the associated uncertainties. Their 
estimation can thus be viewed as the ultimate purpose 
of a causal attribution study. Before addressing the 
issue of deriving them in practice, it is enlightening 

to discuss which of the three probabilities are most 
relevant for causal attribution, in which context, and 
how they should be interpreted.

On the one hand, PN closely matches the reason-
ing used in lawsuits, where legal responsibility is 
understood counterfactually, that is, in the sense of 
necessary causation. In such a context, PN equals 
the probability that the damage Y suffered by the 
plaintiff would not have occurred were it not for the 
defendant’s action X, and the latter is declared guilty 
whenever it can be proven that PN is high enough; 
the threshold is explicitly set to 1/2 in a civil case 
(preponderance of the evidence) and to an unspeci-
fied value that is supposedly very close to one in a 
criminal case (beyond reasonable doubt). Assume for 
instance that individual A fires a gun (X) in a seem-
ingly deserted but public place. Unluckily, individual 
B, who happens to be standing 1 km away, is hit and 
injured (Y). Legally speaking, A is the obvious culprit 
for the injury of B and will likely be convicted in case 
of a trial because PN is very close to unity here; B 
would be safe and sound had it not been for A shoot-
ing. Nevertheless, the probability of the bullet hitting 
someone from such a long distance is very low, the 
lightest wind gust could possibly have deviated its 
trajectory and saved B. The probability of sufficient 
causation PS is thus close to zero here, but this is not 
important in a legal context, in which it is only PN 
that matters, while PS does not.

In contrast, consider the case of a policymaker who 
aims at reducing the number of casualties from acci-
dental shootings (Y) through a policy (X). An abrupt 
policy prohibiting gun sales altogether will clearly be 
sufficient but arguably not necessary since a smoother 
policy based on tightly regulated sales may achieve a 
similar result. In parallel, improving the dissemina-
tion of safety information to gun owners is arguably 
necessary but will likely not be sufficient. In any case, 
it is a high PS that guarantees that the desired objec-
tive Y will be met by the policy X, not a high PN; PS 
therefore tends to be more important than PN in the 
context of elaborating and assessing policies.

Even though all three probabilities relate to coun-
terfactual worlds, it is worthwhile underlining that 
these quantities are not nebulous metaphysical no-
tions: the definitions are precise and unambiguously 
implementable, as long as a fully specified probabi-
listic model of the world is postulated. That being 
said, it is still a difficult task to derive them under 
general assumptions and one that remains an active 
and challenging research topic in causal theory at 
present. Important results were obtained, however, 
by introducing some additional assumptions. For 
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instance, under the assumption of monotonicity, the 
following exact expressions hold:

 

 
  (7)
 
 

where variable Y is said to be monotonic wrt variable 
X iff for any realization ω, in the probability space 
Ω, Yx(ω) is a monotonic function of x. Furthermore, 
when assuming exogeneity of X wrt Y in addition to 
monotonicity, the expressions given in Eq. (7) sim-
plify because interventional and conditional prob-
abilities are then equal, that is, px = P(Yx = 1) for 
x ∈ {0.1}, and thus

  

  (8)

 

Note that, under such conditions and provided p1 ≥ p0, 
PN matches with the FAR; we elaborate on this co-
incidence further in this article. Another important 
result of causal theory that is linked to Eq. (8) is 
that under exogeneity and releasing the assumption 
of monotonicity, the probabilities of causation are 
then no longer identifiable, but the three quantities 
1 – p0/p1, 1 – (1 – p1)/(1 – p0), and p1 – p0 provide lower 
bounds respectively for PN, PS, and PNS. Figure 2 
shows a plot of the expressions given in Eq. (8); it 
can be seen that PN is more sensitive to p0 than to 
p1 and conversely that PS is more sensitive to p1 than 
to p0. Necessary causation is enhanced further by an 
event being rare in the counterfactual world, whereas 
sufficient causation is enhanced further by its being 
frequent in the real one. This being said, PN and PS 
are clearly not independent and coincide under two 
situations: (i) when p0 + p1 = 1 (e.g., in a deterministic 
context where p1 = 1 and p0 = 0, then both PN and 
PS = 1), and (ii) when p0 = p1 (e.g., where the counter-
factual and real worlds’ responses are identical, then 
both PN and PS = 0).

CAUSAL ATTRIBUTION OF CLIMATE-
RELATED EVENTS. Choosing to focus on PN or 
PS is a matter of point of view. To illustrate this issue, 
we can consider two typical perspectives: the ex post 

perspective of the plaintiff—or the judge or insurance 
contract holder—and the ex ante perspective of the 
planner—or the policymaker or campaigner. In the 
first case, the question of who is to blame for the event 
that occurred—with potentially many implications of 
its answer—is central. The problem of climatic event 
attribution can thus be compared to a lawsuit and 
actually does already appear in courts (Adam 2011); 
we may primarily seek to determine responsibilities 
for the event and its aftermaths, where responsibility 
is understood in a legal sense, that is, in a necessary 
causation sense. Event attribution thus requires the 
adversarial debate typical of a lawsuit in order to 
cautiously balance incriminating versus exonerating 
evidence, that is, to evaluate the main cause under 
scrutiny, for example, anthropogenic forcings, as well 
as each and every possible alternative explanations, 
for example, natural forcings or internal variability of 
the climate system, which may have led to the same 
outcome. If the resulting PN is high enough, then 
human responsibility is established and a ruling may 
in theory follow, as it does in litigation cases. In any 
case, as in the imprudent shooter example, PS does 
not matter here, only PN does.

By contrast, the planner is looking forward and 
may ask instead the general type of question what 
should be done today wrt events that may occur in 
the future? For instance, in the context of mitigation, 
two causal questions are at stake: on the one hand, 
what is the, expectedly beneficial, effect of limiting 
CO2 emissions? And, on the other hand, what is the, 
expectedly costly, effect of not limiting them? The 
first question seeks a causal guarantee that remov-
ing the forcing will make the event less frequent, 
and the concern is thus predicated on necessary 
causality. Conversely, the second question seeks a 
causal guarantee that maintaining the forcing will 
maintain the event frequency, and the concern is thus 
predicated on sufficient causality. Therefore, PS is 
the appropriate focus for the planner when assessing 
the future costs that inaction will imply, but PN is at 
stake when assessing the future benefits of enforcing 
strong mitigation actions. Policy elaboration requires 
both sides of this assessment; thus, both PN and PS 
are of interest here. To summarize, depending on the 
context, PN, PS, or both may be relevant and can help 
answer different causal questions.

Methodological proposal. Our methodological pro-
posal for the attribution of weather and climate-related 
events is rather straightforward, and it is derived from 
previous considerations. It consists of deriving the 
probabilities of necessary and of sufficient causality, 
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PNf and PSf associated with 
the causal relationship be-
tween each forcing f ∈ F , 
and an event Y of interest. 
As outlined in the introduc-
tion, the choice of Y is based 
on a climate variable Z and a 
threshold u; this choice de-
pends on the causal focus of 
the study and is otherwise 
rather arbitrary. Once Y has 
been duly defined, the caus-
al chain to be investigated is 
actually quite simple, not-
withstanding the complex-
ity of the climate system. It 
can be represented by the 
single, standard graph of 
Fig. 1b, independently of 
the specificities of the event 
Y under scrutiny. A set of 
binary variables {Xf : f ∈ F } 
that represent the external 
forcings occupy the top 
nodes in this graph and 
are thus exogenous. The 
event variable Y has parents 
P = {Xf : f ∈ F }, and it is 
also influenced by internal 
climate variability υ that 
is treated here as random 
terms (Ghil et al. 2008).

Next, we can apply Eq. (8) because all the forc-
ings are exogenous, and one may also assume that 
the event Y is monotonous wrt the forcing. Indeed, 
assuming that the latter does not hold would imply 
that despite the event being more frequent in the 
factual world than in the counterfactual one (i.e., 
p1 > p0), there exists some realizations ω ∈ Ω, such 
that Y0(ω) = 1 and Y1(ω) = 0. That is, one can find 
some conditions under which the event does occur 
when the forcing is turned off but no longer occurs 
only by turning it on—other conditions being held 
unchanged. Such conditions are arguably not realis-
tic physically for a broad class of events and for the 
forcings usually considered in D&A. We thus derive 
PN = 1 – p0/p1 and PS = 1 – (1 – p1)/(1 – p0) for each 
forcing f and omit hereinafter, for simplicity, the index 
f. Hence, the challenge is now to estimate the causal 
effects {p0, p1}. In many fields, experimental and/or 
natural observations of a response Y—say, in epidemi-
ology, a disease—and of a factor X—say, a bad habit or 
a treatment—are available for a sample of individuals, 

allowing for a direct estimation of p1 and p0. Most 
unfortunately, in the climate sciences, no such sample 
of Earth-like climate systems is accessible to natural 
observation and even less so to experimental testing. 
The paleoclimatic record may in theory palliate this 
difficulty by considering several remote episodes 
of Earth’s climatic history as a sample (National 
Research Council 1995). An important limitation of 
this approach, however, is the limited size and high 
uncertainty of the indirect paleoclimatic estimates 
of both the response Y and the forcings Xf over the 
distant past. Furthermore, such nonexperimental 
analysis is inherently restricted to forcings that can be 
traced to paleoclimatic perturbations that did occur 
and for which exogeneity is guaranteed. With such 
strong limitations on the natural observation side and 
with in situ experimentation inaccessible, we are left 
with the only remaining alternative: so-called in silico 
experimentation. This option is rendered plausible by 
the increasing realism of climate system models that 
were developed partly for this purpose. Estimates of 

Fig. 2. Contour plots of (top left) PN, (top right) PS, (bottom left) PNS, and 
(bottom right) PN – PS as functions of the counterfactual probability p0 (hori-
zontal axis) and of the factual probability p1 (vertical axis).
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the causal effects {p0, p1} can be obtained from an 
ensemble of numerical experiments consisting of r1 
and r0 runs under factual and counterfactual condi-
tions, respectively, wrt one or more forcings f. An 
obvious estimation strategy is to use the empirical 
frequencies p^x =  for x ∈ {0,1}, where Yx

(k) 
is the event occurrence in the kth run of the factual 
or counterfactual experiment. This option presents 
a major shortcoming since p^x, as well as PN and PS, 
are affected by high sampling uncertainty. In practice, 
because of restrictions on computer resources, rx is 
typically in the range of 10–100, while asymptotic 
convergence requires rx to be large compared to the 
return period Tx ≃ 1/px of the event; the latter is 
clearly out of reach for the rare events usually at stake. 
Another serious difficulty is that climate models, 
including the most detailed GCMs, are simplified 
representations of reality that are affected by both 
numerical and physical modeling errors. Thus, the 
real causal effects may differ from the model causal 
effects. While both these difficulties are serious, they 
can be addressed by introducing additional assump-
tions on the distribution of the climate variable Z and 
by treating model error as an additional random term 
influencing the response variable Y. Discussing such 
approaches is beyond the scope of this paper. The 
probabilities PN and PS are then derived from the 
estimates p^1 and p^0 so obtained.

Causal claims are eventually formulated from 
these probabilities and translated into words based 
on standardized uncertainty wording, such as the 
one used in IPCC (2013). Summarizing, the general 
methodological approach proposed herewith consists 
of the following:

•  Define a response variable of interest Y based on 
a climate index Z and threshold u.

•  Infer the causal effects associated with Y, based on 
in silico experimentation.

•  Derive PN and PS for each forcing and formulate 
associated causal claims by using, for instance, the 
IPCC (2013) uncertainty terminology.

2003 European heatwave. We illustrate our approach 
by revisiting one of the first counterfactual event attri-
bution studies (Stott et al. 2004), which focused on the 
European heatwave of the summer of 2003. Applying 
our notation and the above three steps to this study,

• Z is the mean summer temperature anomaly over 
Europe, and u is set at 1.6°C.

•  The factual and counterfactual probability den-
sity functions (PDFs) of Z are obtained from the 

cor responding two ensembles by fitting a general-
ized Pareto distribution to each one (cf. Fig. 
3a). The inference procedure yields two ranges 
of values for the return periods: 350 ≤ T0 ≤ 2500 and 
100 ≤ T1 ≤ 1000. For the sake of clarity, we choose 
to concentrate here on two values that are arbi-
trarily chosen within these ranges: T0 = 1250 yr and 
T1 = 125 yr, implying p0 = 0.0008 and p1 = 0.008.

•  These values of p0 and p1 yield PN = 0.9 and 
PS = 0.0072, by applying Eq. (8).

It follows that CO2 emissions are very likely to 
be a necessary cause, but are virtually certainly not 
a sufficient cause, of the summer of 2003 heatwave. 
This statement highlights a distinctive feature of 
unusual events: several necessary causes may often 
be supported by the data but rarely a sufficient one. 
To further illustrate this point, we plot PN, PS, and 
PNS as a function of the threshold u in Fig. 3b. It is 
clear from this figure that the causal evidence shifts 
from necessary and not sufficient when u is large 
(unusual event) to sufficient and not necessary when 
u is small (usual event). This shift occurs because, in 
the latter case, it is the nonoccurrence of event Y that 
becomes an unusual event. But this rare “nonevent” 
tends to be less unusual in the counterfactual world 
than in the factual one, which implies necessity for 
the “nonevent” and thus sufficiency for the event by 
the definitions of PN and PS, respectively, in Eq. (6).

In any case, a low threshold conversely yields 
PN ≃ 0 and PS ≃ 1; it follows that anthropogenic CO2 
emissions are virtually certainly a sufficient cause, 
and are virtually certainly not a necessary cause, of 
the fact that the summer of 2003 was not unusually 
cold. Therefore, this symmetrically illustrates that 
the occurrence of a usual event—or equivalently, the 
nonoccurrence of a rare event—is thus often prone 
to have a sufficient cause but rarely necessary ones.

The above analysis defines the occurrence of the 
2003 European heatwave wrt to the particular year 
when it occurred. Such a definition of the event inher-
ently considers that the particular year of occurrence 
(2003) is a relevant feature thereof and consequently 
builds this feature into the causal analysis. This ap-
proach is particularly relevant in the context, say, of 
an insurance contract, which may often apply only 
to a single specified year. But a broader perspective 
focusing on longer time scales is arguably more rel-
evant in other contexts, such as elaborating adapta-
tion and mitigation policy, which has no reason to 
grant any particular importance to the year 2003. In 
such a context, one would release the year 2003 as 
an event feature and focus instead on the fact that a 
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severe European heatwave did occur. The meaningful 
temporal feature retained here would be occurrence 
during the industrial period instead of occurrence 
during year 2003. It is straightforward to translate 
this approach into our proposed framework by going 
through the same three steps again. In what follows, 
for clarity, we denote with an asterisk the new vari-
ables Y*, Z*, and u*:

• The variable Z* is defined as the number of occur-
rences of European heatwaves over a time period of 
length τ ending in 2003, where in any given year a 
heatwave occurrence is defined as above by Z ≥ u, 
and the threshold u* is set to 1. The event Y* thus 
occurs if at least one heatwave took place in Europe 
during the time interval 2004 – τ ≤ t ≤ 2003.

• Deriving the new causal effects {p0*, p1*} is straight-
forward, subject to assuming stationarity wrt time 
(see discussion immediately below) based on the 
previous causal effects {p0*, p1*}:

 px* = P(Zx* ≥ 1) = 1 – (1 – px)
τ. (9)

 For τ = 1, this equation reduces to px* = px since 
Y* = Y in this case. When τ is large compared to 
the return period of event Y (i.e., τ large compared 
to 1/px), it implies px* ≃ 1; this is also unsurprising 
because in either the factual or the counterfactual 
world, the occurrence of a heatwave, no matter 
how rare in any given year, is certain over a suf-
ficiently long period.

• Plotting in Fig. 3c PN* and PS* as a function of τ, 
based on Eq. (9), we see that the causal evidence 
shifts from necessary and not sufficient in the 
limiting case τ = 1 (since Y* = Y) to sufficient and 
not necessary when τ gets asymptotically large. For 
τ = 200 yr—that is, the industrial period, which 
matches approximately the instrumental record 
length—we find from Eq. (9) that p0 = 0.14 and 
p1 = 0.80 and next that PN* ≃ PS* ≃ 0.8.

It follows that anthropogenic CO2 emissions are 
likely to be both a necessary cause and a sufficient 
one for a 2003-like heatwave to have occurred at 
least once over the industrial period. In summary, 
sufficient causality does not apply to the event oc-
currence on the particular year when it did occur, 
but it does for such an event to have occurred at least 
once over the entire period. Evidence of necessary 
causality, on the other hand, is strong in both cases. 
This illustrative example thus shows that whether one 
considers something as fortuitous as its particular 
year of occurrence to be a relevant feature of the event 

Fig. 3. Causal inference for the 2003 European heat-
wave. (a) Counterfactual and factual PDFs of the tem-
perature anomaly index, using a generalized Pareto 
distribution fit after Stott et al. (2004); (b) probabilities 
PN, PS, and PNS as a function of the threshold u; and 
(c) PN, PS, and PNS as a function of the length of the 
observation period τ.

under scrutiny, or not, has crucial implications for 
the associated level of causal evidence. Replacing the 
feature year of occurrence by the feature occurrence 
during the industrial period may be more relevant to 
the analysis in many situations and yield more power-
ful causal evidence.

This being said, the stationarity hypothesis under-
lying Eq. (9) is unrealistic because mean temperature 
did change over the period considered and so did 
extremes. This convenient assumption was made here 
for the sake of illustrating in a simple and qualitative 
way the effect on PN and PS of defining the event 
occurrence on a longer period of length τ. While a 
realistic nonstationary treatment of this case study 
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is beyond our scope, it is important to underline 
that including assumptions of nonstationarity into 
a causal inference study presents no particular dif-
ficulties in general. For instance, in the present case 
study, this may be done merely by using the more 
general expression

  (10)

in place of Eq. (9) in order to determine the causal 
effects {p0*, p1*}. In Eq. (10), px,t denotes the probability 
of occurrence of a heatwave in year t and is thereby 
allowed to change over time. In practice, (px,t)

τ
t=1 may 

be estimated based on an ad hoc statistical model 
accounting for nonstationarity. For instance, a com-
monplace choice for the latter is to specify the PDF 
of the index Z in year t conditionally on a covariate 
that changes in time (e.g., mean temperature) and/
or an explicit parametric dependence to time t (e.g., 
a linear trend). Note that Eq. (10) would clearly be 
required for the estimation of p1* because the factual 
world has undeniably changed. Yet Eq. (9) may still be 
considered acceptable for the estimation of p0* since 
the counterfactual world would arguably have suf-
fered limited changes. Accordingly, one may expect 
that when moving to a nonstationary treatment (i) p0* 
would only be marginally affected and (ii) p1* would 
potentially be substantially affected. More precisely, 
one would expect p1* to have a lower value because 
px,t is expected to be lower than its value in the year 
2003 for any year t preceding it. Therefore, based on 
the above considerations and on Fig. 2, accounting 
for nonstationarity would expectedly translate here 
into a slight decrease in PN, a potentially pronounced 
decrease in PS, and a lower level of causal evidence 
overall—as compared to the values given above for 
illustration.

In any case, each of the different perspectives taken 
above addresses a causal question about the 2003 
heatwave that is different and may be of interest for 
distinct purposes. But while the questions only differ 
slightly, the answers vary greatly. The answer to such 
an open question as have CO2 emissions caused the 
2003 European heatwave is thus dramatically affected 
by (i) how one defines the event 2003 European heat-
wave and (ii) whether causality is understood in a nec-
essary or sufficient sense. Precise causal answers about 
climate events thus require precise causal questions.

CONCLUDING REMARKS. We have provided 
an introduction to causal theory, as used in causal 
studies across several disciplines, and proposed 

a simple methodology for its application to D&A 
studies. We hope that this methodological frame-
work—along with the more precise vocabulary it 
relies on—will help clarify discussions between D&A 
experts as well as communication to wider audiences.

We have shown, with simple examples, that it 
is important to distinguish between necessary and 
sufficient causality. Such a distinction is, at present, 
lacking in the conventional event attribution frame-
work. Any time a causal statement is being made 
about a weather or climate-related event, part of the 
audience understands it in a necessary causation 
sense, while another part understands it in a suf-
ficient causation sense, which can give rise to many 
potential misunderstandings. Introducing the clear 
distinction may thus clarify discussions. Specifically, 
it may for instance help address the claim recalled in 
the “Background and rationale” section, according to 
which single events are never attributable since they 
are multicaused. In light of what precedes, this claim 
intrinsically postulates that a cause qualifies as such 
only if it is both necessary and sufficient. The latter is 
arguably far too restrictive an approach of causation.

Our revisiting the well-known case study of the 
European heatwave of 2003 should clarify an apparent 
paradox in the interpretation of such studies. Even in 
the few such cases where evidence supporting neces-
sary causation is strong, assertive causal statements 
appear to have been shied away from, possibly by the 
perception that sufficiency was lacking. A statement 
such as “CO2 emissions have not caused the particular 
event Y: they have only caused the probability of occur-
rence of Y-like events to increase” may actually often 
be too conservative and even wrong; as in the above 
example, it may indeed be the case that CO2 emissions 
did cause event Y, although in a restrictively necessary 
causation sense. Further, by defining the event to mean 
not just occurrence in a particular year but during the 
entire industrial era, it may be possible to establish 
that event Y was in fact caused by increased CO2 emis-
sions—this time wrt both necessity and sufficiency.

Our proposed methodology, like the conventional 
one, relies on in silico experimentation to derive both 
the factual and counterfactual probabilities p1 and 
p0 , respectively; use the two to obtain the quantity 
1 – p0/p1  and then translate it into a causal statement. 
Our extended framework, however, has important 
distinctive features. First, we have shown that 1 – p0/p1 
is associated only with the first facet of causality, 
that of necessity, and we have introduced its second 
facet, that of sufficiency, which is associa ted with the 
symmetric quantity 1 – (1 – p1)/(1 – p0). Both have 
been shown to be relevant depending on the context. 
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Second, the interpretation given to 1 – p0/p1 differs 
under both frameworks, which has deep implica-
tions for the formulation of causal statements and 
the treatment of uncertainty. The quantity 1 – p0/p1 
was coined as the fraction of attributable risk upon 
being introduced in event attribution, and similarly 
in other applied fields, terms like excess risk ratio, 
attributable fraction, or attributable proportion are 
also used to name the same quantity. The FAR, as 
well as these similar terms, is used to communicate 
the idea—particularly relevant in epidemiology from 
which it originates—that the exposition to a given 
risk factor X translates into an increase of, say, the 
frequency of a given disease Y. In this terminology, 
the quantity 1 – p0/p1 is a frequency increase index; 
it corresponds to a statistical monitoring approach, 
which is more descriptive than structural, in the sense 
that it does not embed any precisely defined causal 
meaning. For this reason, Pearl (2000) has argued that 
the term attributable risk is a misnomer; because such 
a precise causal meaning is lacking, the associated 
statement can only address the increase in frequency. 
Accordingly, uncertainty analysis conducted on the 
FAR by deriving its probability distribution cannot 
be easily translated into uncertainty on the causal 
link at stake; instead, the focus on the frequency 
increase and its uncertainty yields statements like 
“there is a 90% confidence level that CO2 emissions 
have increased the frequency of occurrence of Y-like 
events by a factor at least two.”

In causal theory, the probability of necessary 
causation PN formally embeds the notion of causal 
attribution in its definition, given by Eq. (6). While PN 
is not easily computable in general, it coincides with 
1 – p0/p1 under exogeneity and monotonicity. These 
two rather restrictive conditions are fortunately met 
in the context of D&A, thus the quantity 1 – p0/p1 usu-
ally referred as FAR now has a precise causal meaning, 
instead of being merely an index of frequency increase. 
This shift in interpretation affects the associated causal 
claim, which can now address more directly the actual 
causal link. Moreover, this shift has an immediate 
implication in terms of assessing the uncertainty of 
the claim: the latter is indeed already quantified be-
cause PN is a probability, which inherently measures 
uncertainty. Therefore, based on the same supporting 
data, the new interpretation translates into “CO2 emis-
sions are likely to have caused event Y in a necessary 
causation sense,” a claim that is more direct, assertive, 
and clear from a causal attribution standpoint than 
the previous one.

Finally, at a more practical level, attribution stud-
ies applying causal theory require the availability of 

counterfactual model simulations. This carries an 
immediate implication wrt the design of standard-
ized Coupled Model Intercomparison Project (CMIP) 
experiments that specifically address D&A purposes. 
The present analysis suggests moving toward a fully 
counterfactual design in the future—that is, all forc-
ings except f being on—instead of the mostly factual 
one prevailing at present—that is, forcing f only being 
on. Generalizing this design would be a significant 
step forward in attribution studies of weather and 
climate-related events.
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