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Rubin’s classic missingness mechanisms are central to handling missing data and minimizing
biases that can arise due to missingness. However, the formulaic expressions that posit certain
independencies among missing and observed data are difficult to grasp. As a result, applied
researchers often rely on informal translations of these assumptions. We present a graphi-
cal representation of missing data mechanism, formalized in Mohan, Pearl, and Tian (2013).
We show that graphical models provide a tool for comprehending, encoding, and communi-
cating assumptions about the missingness process. Furthermore, we demonstrate on several
examples how graph-theoretical criteria can determine if biases due to missing data might
emerge in some estimates of interests and which auxiliary variables are needed to control for
such biases, given assumptions about the missingness process.
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The classic missingness mechanisms by Rubin (1976) define
how analysis variables and missingness relate to each
other. Many researchers have an intuitive understanding
about these mechanisms, but lack knowledge about the pre-
cise meaning of the conditional independencies that are
expressed in Rubin’s taxonomy. In this article, we first
review classic missingness mechanisms and discuss how the
conditional independencies that define those mechanisms
can be encoded in a graphical model. Graphs have been used
informally in popular texts and articles to aid understand-
ing of the mechanisms (Enders, 2010; Schafer & Graham,
2002) and to illustrate how missingness relates to other
variables in a model. However, in previous publications,
graphs were used simply as illustrations, whereas we use for-
mal graph theory (Pearl, 2009) to encode the assumptions
that are critical for techniques such as multiple imputa-
tion (MI), or full-information maximum likelihood (FIML).
The use of such formal graphs can aid in thinking about
missing data problems and can help researchers to formal-
ize what relations among the observed, partially observed,
and unobserved causes of missingness are pertinent for bias
removal.

Correspondence should be addressed to Felix Thoemmes, MVR G62A,
Cornell University, Ithaca, NY 14853. E-mail: felix.thoemmes@cornell.edu

MISSING DATA MECHANISM

We begin by reviewing the classic mechanisms defined by
Rubin (1976): missing completely at random (MCAR), miss-
ing at random (MAR), and not missing at random (NMAR).
We note that NMAR is also often called missing not at ran-
dom (MNAR). In our overview, we use a slightly modified
version of the notation employed by Schafer and Graham
(2002). We also express the equalities of probabilities that
are used to describe the missingness mechanisms using con-
ditional independence statements (Dawid, 1979), because
these will map onto the graphical concept of d-separation
that we employ later.

We denote an N × K matrix by D. The rows of D repre-
sent the cases n = 1, . . . , N of the sample and the columns
represent the variables i = 1, . . . , K. D can be partitioned
into an observed part, labeled Dobs, and a missing part Dmis,
which yields D = (Dobs, Dmis). Further, we denote an indica-
tor matrix of missingness, R, whose elements take on values
of 0 or 1, for observed or missing values of D, respectively.
Accordingly, R is also an N × K matrix. Each variable in D
can therefore have both observed and unobserved values.

MCAR

MCAR is the most restrictive assumption. It states that the
unconditional distribution of missingness P(R) is equal to the
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conditional distribution of missingness given Dobs and Dmis,
or simply D.

P( R |D ) = P( R |Dobs, Dmis) = P( R ) (1)

These equalities of probabilities can be expressed as condi-
tional independence statements, here in particular

R ⊥⊥ (Dobs, Dmis). (2)

The MCAR condition is therefore fulfilled when the
missingness has no relationship with (is independent of) both
the observed and unobserved parts of D.

In an applied research context, we could imagine MCAR
being fulfilled if the missing data arose from a purely “acci-
dental” (random) process. In such an instance, missingness
R would be completely independent of every observed or
unobserved variable, as expressed in Equation 2. As an
example of MCAR, a single item from an online question-
naire might be missing because a participant accidentally hit
a button to submit an answer twice and therefore accidentally
skipped a question. The reason this item is missing is based
on a presumably purely random accident and is unrelated
to other observed or unobserved variables. Another exam-
ple might be a missing behavioral observation; for example,
the view of a camera that was recording a playground was
temporarily obstructed by another object. MCAR is rare in
applied research and usually does not hold, unless it has been
planned by the researcher in so-called missingness by design
studies (Graham, Taylor, Olchowski, & Cumsille, 2006).
When MCAR holds, even simple techniques like listwise
deletion will yield consistent estimates (Enders, 2010); how-
ever it is generally not advisable to use these simple methods
due to loss in statistical power. The modern approaches of
MI and FIML are preferred, because their estimates will
also yield consistent estimates without this loss of statistical
power (Enders, 2010).

MCAR cannot be empirically verified (Gelman & Hill,
2007; Raykov, 2011), but examination of homogeneity of
means and variances can at least refute that MCAR holds.
Little (1988) provided a multivariate test of homogeneity,
and Raykov, Lichtenberg, and Paulson (2012) discussed
individual testing of homogeneity of means and variances
with Type I error correction. Mohan and Pearl (2014) also
provided a complete characterization of the refutable impli-
cations of MCAR. The inability to directly test MCAR can
also be seen by the fact that it posits independence assump-
tions about quantities that are by definition unobserved, here
in particular Dmis.

MAR

MAR is a somewhat less restrictive condition than MCAR.
MAR states that the conditional probability of missingness,
given the observed part Dobs is equal to the conditional

probability of missingness, given the observed and the unob-
served part (Dobs, Dmis).

P( R |D ) = P( R |Dobs, Dmis) = P( R |Dobs). (3)

These equalities of probabilities can be expressed as condi-
tional independence statements, here in particular

R ⊥⊥ Dmis |Dobs. (4)

In words, MAR states that missingness is independent of
the unobserved portion of D, given information about the
observed portion of D. Dependencies between the observed
portion and missingness are allowed.

In an applied research context, we could imagine that
missingness is caused by certain observed variables that
might also have an effect on important analysis variables.
For example, missingness on an achievement measure could
be caused by motivation (or lack thereof). Further we can
assume that motivation also has an effect on achievement.
As long as motivation is observed and conditioned on,
there is no more dependence between R and Dmis; they are
conditionally independent of each other, as expressed in
Equation 3. For MAR to hold, we have to observe and con-
dition on those covariates that affect the causal missingness
mechanisms. This might not often be easy to achieve in an
applied setting, as presumably many variables might exhibit
such a structure. MI and FIML will yield consistent results
if MAR holds (Allison, 2001). Just as MCAR, MAR can-
not be verified empirically either, as it also posits conditional
independence assumptions among quantities that are by def-
inition unobserved, specifically, Dmis. Recently, a refutation
test has been suggested that tests whether data follow a con-
dition labeled MAR+. MAR+ always implies MAR, but the
reverse is not true. Failure to reject MAR+ thus lends ample
evidence that MAR also cannot be rejected (because the
occurrence of MAR without MAR+ is rare). For details on
testing MAR+ see Potthoff, Tudor, Pieper, and Hasselblad
(2006) and Pearl and Mohan (2014).

NMAR

Finally, NMAR is the most problematic case. NMAR is
characterized by the absence of any of the aforementioned
equalities of probabilities or conditional independencies.
That is,

P( R |Dobs, Dmis) �= P( R |Dobs). (5)

No conditional independencies are implied by Equation 5.
We discuss two cases in which NMAR could emerge. The

first case emerges when particular values of a variable are
associated with higher probabilities of missingness on the
same variable. A typical example for NMAR is a situation
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in which participants with very high incomes are unwilling
to answer survey questions about their income, and are thus
missing. In this case missingness is directly related to the
variable with missing data and they are thus dependent on
each other, as expressed in Equation 5. A second example
in which NMAR is present are situations in which an unob-
served variable has an effect on both the variable with miss-
ing data and its missingness mechanism. This unobserved
variable could induce a dependency between missingness
and the variable with missing values. In an applied research
context, we could again imagine that motivation has an effect
on test scores and whether or not missing data are observed,
but in this case motivation has not been measured and is
therefore a fully unobserved variable. In the more general
case, a set of fully and partially observed variables might
induce a dependency between causes of missingness (RX)
and the variable with missing values (X). Note that observ-
ing proxies (variables that are either causes of the unobserved
variables, or are caused by the unobserved variable) can help
mitigate the bias that is due to not observing the variables
that induce dependencies. The bias-reducing properties of
such proxy variables in the context of causal inference were
discussed by Pearl (2010b).

The reason it is important to distinguish among these
three mechanisms is that they prescribe different treatments
of the missing data problem. If MCAR holds, listwise dele-
tion yields consistent results (even though FIML or MI will
still outperform listwise deletion in terms of statistical power
and are thus preferred). If MAR holds, FIML and MI will
yield consistent estimates. If NMAR holds, other special
techniques need to be used. Those include approaches that
estimate a separate model for the probability of being miss-
ing, or examine individual subsamples of cases that share
the same pattern of missing data. For details on these mod-
els see Enders (2011), or Muthén, Asparouhov, Hunter, and
Leuchter (2011). However, none of these approaches is guar-
anteed to yield consistent estimates in all NMAR situations
(Mohan, Pearl, & Tian, 2013).

An applied researcher therefore needs to think about
which mechanism might be present. One method that can
aid in this deliberation is to use graphical models to display
assumed relationships between fully observed variables,
partially observed variables, unobserved variables, and
missingness. We now present how missingness mechanisms
can be displayed in graphs, and then explain how applied
researchers can encode their assumptions in these graphs
and determine what data analytic treatment is likely to be
effective.

GRAPHICAL DISPLAYS OF MISSINGNESS
MECHANISMS

The graphs that we are going to use are sometimes referred
to as nonparametric structural equation models (because the

arrows in the graphs do not imply linear, but functional
relationships with unknown form; Pearl, 2010a), directed
acyclic graphs (DAGs), or in the context of missing data, m-
graphs (Mohan et al., 2013). The idea to represent missing
data problems using graph theory was (to our knowledge)
first briefly mentioned by Glymour (2006), and has also been
used by Daniel, Kenward, Cousens, and De Stavola (2011),
and Martel García (2013).

An m-graph consists of nodes that represent fully
observed variables, partially observed variables, unobserved
variables, and missingness information. In our graphs,
fully observed variables are represented as solid rectangles.
Observed variables are sometimes endowed with distur-
bance terms that represent other unobserved variables that
have direct effects on this variable. Disturbance terms are
displayed using the letter ε. Often, they are omitted for
simplicity, but we show them explicitly in our graphs for
completeness. Whenever it is necessary to explicitly show
a fully unobserved variable, we do so by displaying it with
a dashed circle. Partially observed variables (i.e., variables
with missing data) are displayed in the following manner:
Any variable that has missing data is shown with a dashed
rectangle. The actually observed portion of this variable,
however, is displayed in a proxy of this variable and is drawn
with a solid rectangle. This proxy is further signified with a
star (�) symbol in its variable name. The proxy variable takes
on the values of the variable in the dashed circle when R
indicates that data are observed, and has missing data when-
ever R indicates that data are in fact missing. Information
about missingness deviates slightly from the common nota-
tion used earlier that simply uses R as an indicator for
missingness in the data. In m graphs, the nodes labeled R rep-
resent causal mechanisms that are responsible for whether a
datum ultimately becomes observed or unobserved. In addi-
tion, we consider such mechanisms for every single variable
and hence add a subscript to the nodes labeled R that shows
which variable this missingness indicator is associated with.
We do not explicitly portray R variables corresponding to
fully observed variables in the graph since they are constants.
We still might refer to the nodes labeled R as missingness
indicators, with the understanding that this also refers to the
causal mechanism responsible for missingness. Missingness
indicators R are also endowed with disturbance terms that
represent all additional and unobserved causal influences on
missingness.

Observed variables, unobserved variables, disturbance
terms, and missingness indicators can be connected in
the graph by unidirected or bidirected arrows. Unidirected
arrows represent assumed causal relations between variables,
whereas bidirected arrows are a shorthand to express that
one or more unobserved variables have direct effects on
the variables connected with bidirected arrows. We use m-
graphs to express the process by which variables in the
model, including missingness indicators, R, obtain their val-
ues. In other words, one should think about an m-graph
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as a data-generating model in which the values of each
variable are determined by the values of all variables that
have direct arrows pointing into that variable. To deter-
mine the statistical properties of the variables in the graph,
we rely on the so-called d-separation criterion (Pearl,
1988), which determines whether two variables in a graph
are statistically independent of each other given a set of
other variables. The d-separation criterion forms the link
between the missingness mechanisms depicted in the graph
and the statistical properties that are implied by those
mechanisms.

The d-Separation Criterion

Conditional independence in graphs, or d-separation (Pearl,
2010), can be derived from a DAG using a set of relatively
simple rules. Two variables X and Y , could be connected
by any number of paths in a graph. A path is defined as
any sequence of directed or bidirected arrows that connect
X and Y . It is not of importance for the definition of a path
whether the individual segments of it have arrows point-
ing in one or the other direction. A path is defined to be
open if it does not contain a so-called collider variable that
has two arrows pointing into it; for example, X→ C← Y .
Any path that contains at least one collider is said to be
closed. An open path induces a dependency between two
variables, whereas a closed path does not induce any such
dependency. Conditioning on a variable in a path that is
not a collider closes (blocks) this path. Importantly, con-
ditioning on a collider (or any variable that is directly or
indirectly caused by a collider), on the other hand, opens
a previously closed path. Two variables in a graph are d-
separated if there exists a set of variables Z in the graph that
blocks every open path that connects them. This set Z may
be empty (implying unconditional independence). Likewise,
two variables are said to be d-connected conditional on Z
if and only if Z does not block every path between the
two. Being d-connected implies that the two variables are
stochastically dependent on each other. One way to deter-
mine whether two variables are d-separated would be to list
all paths that connect two variables and determine whether
each path is open or closed, given a conditioning set Z.
In large graphs this can become time-consuming, if done
by hand. Programs like DAGitty (Textor, Hardt, & Knüppel,
2011), DAG program (Knüppel & Stang, 2010), TETRAD
(Scheines, Spirtes, Glymour, Meek, & Richardson, 1998),
or the R package dagr (Breitling, 2010) automate this task.
Readers who need more detailed information on how to
apply the d-separation criterion are referred to Appendix A,
which provides a small worked-out example of determin-
ing paths and checking whether they are open or closed.
In addition, readers can consult the article by Hayduk et al.
(2003) or the chapter by Pearl (2009), entitled “d-separation
without tears.” This chapter can be accessed online under
bayes.cs.ucla.edu/BOOK – 2K/d – sep.html.

FIGURE 1 A simple missing completely at random model.

Graphical Display of MCAR

In Figure 1, we present a graphical display of MCAR for
the simple case in which a single variable X has an effect
on a single variable Y . In this simple case, X is completely
observed and only Y suffers from missingness. We use a
dashed rectangle to represent the variable Y that has missing
data. Note that this should not be confused with a latent vari-
able in structural equation modeling that is being estimated
in a model. Whether data on Y are missing is determined by
the variable RY in the graph. Note that the term εR denotes
all possible causes of why the variable Y is missing. The
proxy of Y is denoted as Y� and is strictly a function of
the underlying Y and the missingness indicator, and there-
fore has no ε term. We use an additional subscript for R to
denote that this missingness indicator pertains only to vari-
able Y . When RY takes on the value 0, Y� is identical to Y ,
and if RY takes on the value 1, Y� is missing. The graphical
model allows that individual variables have different causes
of missingness, meaning that we could consider a situation
in which one variable has missingness that might be MCAR,
whereas another variable might have missingness that would
be considered NMAR.

In Figure 1, we can see that there is only a single arrow
pointing to RY from the disturbance term εR, meaning that
missingness arises only due to unobserved factors, contained
in εR. Further, these unobserved factors have no association
with any other variable or disturbance term in the model,
as can be seen by the fact that εR is not connected to other
parts of the model. We could also express this by stating that
missingness is due to completely random and unobserved
factors, all contained in εR. The single path that connects Y
and RY via Y� is blocked, because Y� is a collider with two
arrows pointing into it.

The important independence that we need to focus on is
between variables that have missing data and their associ-
ated missingness indicators, in our example RY and Y . In this
graph Y and RY (and X and RY) are said to be d-separated
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without having to condition on any other variables, implying
unconditional stochastic independence between the variables
Y and RY. Note that this maps on the definition of MCAR
as defined using conditional independence in Equation 2.
To express this more generally, the missingness of a vari-
able Y could be viewed as MCAR, whenever the missing
data indicator RY is unconditionally d-separated from Y with
missing data. If more than one variable exhibits missing data
and we want to check whether MCAR holds for each of these
variables as well, we simply need to check whether they
are also unconditionally d-separated from their respective
missingness indicators.

Graphical Display of MAR

To illustrate MAR, we employ the same example with two
variables X and Y , in which only Y has missing data. The
MAR condition (see Equation 4) implies the conditional
independence RY ⊥⊥ Y|X. In Figure 2a we show the simple
situation in which MAR holds, as long as X is observed and
used in either FIML or MI. In Figure 2a, Y and RY are d-
connected, via the open path Y ← X→ RY . However, if one
conditions1 on X, this path becomes blocked and Y and RY

are now d-separated, implying conditional stochastic inde-
pendence RY ⊥⊥ Y|X, as similarly defined in Equation 4, and
therefore MAR holds.

In our second example in Figure 2b, we add an addi-
tional variable A. A represents a variable that might not be
of substantive interest, but could aid in the estimation of
missing data; for example, through virtue of making MAR

FIGURE 2 A simple missing at random model (a) without auxiliary
variables and (b) with auxiliary variables.

1In the context of missing data, conditioning on a variable can refer to
using this variable in the FIML estimation or alternatively as a predictor in
an MI framework.

more plausible, or by reducing variance and thus standard
errors. Such a variable is usually referred to as an auxiliary
variable. Auxiliary variables are typically correlated with the
variable with missing data and missingness (Enders, 2010).
In Figure 2b, Y and RY are d-connected via two paths, one
traversing X, and the other one traversing A. Specifically, Y
and RY are d-connected via the open path Y ← A→ RY and
via the path Y ← X→ RY . However, if one conditions on
X, the second path becomes blocked, and if one conditions
on A, the first path becomes blocked and Y and RY are now
d-separated, implying conditional stochastic independence
RY ⊥⊥ Y|(A, X), and therefore MAR holds. We see here that
using only X as a conditioning variable leaves Y and RY d-
connected and thus MAR is violated. Only if variable A (even
though it might not be of substantive interest) is also used to
condition, Y and RY become d-separated and MAR holds.
Expressed generally, whenever the set of missingness indi-
cators R and the sets of partially observed and unobserved
variables in the graph can be d-separated given the set of
observed variables, MAR holds.

Graphical Display of NMAR

Finally, we consider graphs that are NMAR. The first exam-
ple is given in Figure 3a, in which Y and RY are directly
connected by a path. Y and RY are said to be d-connected
through the direct path Y → RY . Two adjacent, connected
variables in a graph can never be d-separated. Hence, no
conditional stochastic independence can arise, and NMAR
is present.

Another situation that is also NMAR emerges whenever
there is an omitted variable that has an effect on both the
variable with missing data and the missingness on this vari-
able. This omitted variable can be displayed as a latent,

FIGURE 3 A simple not missing at random model with direct path
between missingness and (a) variable with missing data and (b) unobserved
variable related to both Y and RY.
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unobserved variable in the graph, or simply as correlated dis-
turbance terms. Figure 3b displays such a situation in which
an omitted variable influences both Y and RY. Here, Y and RY

are d-connected via the path Y ← L1 → RY . The variable L1

in the graph should not be confused with a modeled, latent
variable in a structural equation model, but rather is a sim-
ple depiction of an unobserved variable. The path between
Y and RY cannot be blocked via conditioning, because no
observed variables reside in the middle of the path. Again, no
stochastic conditional independence can be achieved through
conditioning and NMAR holds.

In the previous sections we showed how the classic
missingness mechanisms can be expressed via graphs that
encode conditional independencies and applied the graph-
theoretic concept of d-separation. In summary, when a vari-
able Y and its associated missingness indicator RY cannot
be d-separated using any set of observed variables, NMAR
holds. If Y and RY can be d-separated using any set of other
observed variables then MAR holds, and parameters related
to Y (e.g., means) can be consistently estimated, when using
methods that assume MAR (FIML, MI). A special case arises
when Y and RY are d-separated given no other variables
(unconditionally independent), which maps onto the classic
MCAR condition.

Differences Between m-graphs and Other Graphical
Displays

After we have introduced m-graphs, it is informative to
highlight some important differences from other graphical
displays that are being used in the literature. Some readers
might be familiar with graphs that have been used in the
context of missing data; for example, in the seminal paper
by Schafer (1999) or the widely used text by Enders (2010).
A key difference is that in m-graphs, directed arrows specify
causal relations among variables and hence permit us to infer
conditional independencies. Other texts use either bidirected
arrows or undirected arrows interchangeably. Enders (2010)
described the relations in his graphs as “generic statistical
associations,” and specifically did not distinguish between
two variables simply being correlated due to unobserved
variables (spurious correlation), or two variables having a
causal relationship with each other (e.g., A causing B).

We illustrate now why it is important to distinguish
causal relationships from generic statistical associations to
recover consistent parameter estimates from variables with
missing data. Consider a simple example in which a single
variable B has missing data, indicated by RB and a variable
A, fully observed is at the disposal of the researcher. This
example mirrors one that is also used in Enders (2010) to
describe the MAR mechanism. In Figure 4a, dashed lines are
shown to display generic statistical associations. A generic
statistical association might emerge because of direct effects
as displayed in Figure 4b, but they could also emerge due to
spurious associations due to unobserved variables L1 and L2

FIGURE 4 Differences in graphs comparing (a) generic statistical asso-
ciations, and directed relationships in (b) and (c). Disturbance terms are
omitted.

in Figure 4c. Both patterns in Figure 4b and 4c have the same
generic statistical associations (i.e., correlational patterns),
yet they have different underlying structures. Hence they
require different treatments for missing data. If we were
to rely solely on correlational patterns, Figure 4b and 4c
would be treated the same and in both cases inclusion of A
as an auxiliary variable would be recommended (because
A is correlated with B and missingness on B). Further, it
would be expected that inclusion of A as an auxiliary would
eliminate bias in B. However, when applying graphical
criteria, the two situations in Figure 4b and 4c require
different treatments. In Figure 4b, we conclude that B and
RB can only be d-separated if one uses A as a conditioning
variable. Ignoring A will yield biased results and inclusion
of it eliminates bias. The exact opposite conclusion is
yielded by Figure 4c. Here, B and RB are unconditionally
independent from each other, because A is a collider and no
open path exists between B and RB. Because conditioning
on a collider opens a path (Pearl, 2010), inclusion of A as
a conditioning auxiliary variable will induce dependencies
between B and RB that bias estimates of B.

To further convince readers that this pattern of bias reduc-
tion and induction holds, we simulated data based on models
in Figure 4b and 4c, and estimated the mean of B using either
listwise deletion or a FIML model that included A as an
auxiliary variable. In this illustration all variables were com-
pletely standardized (true mean of 0 and unit variance) and
all path coefficients were set to .7. The missing data rate on
B was set to 30%. Sample size was fixed at 100,000 to min-
imize sampling error. All analyses were performed in R (R
Development Core Team, 2011) and lavaan (Rosseel, 2012).
Results of this data illustration are given in Table 1.

It can be easily seen in Table 1 that in the situation in
which A is a direct cause of B and missingness, listwise
deletion is heavily biased and inclusion of A as an auxiliary
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TABLE 1
Illustrative Data Example: Means and Standard Deviation of

Variable B

Listwise FIML With A

Model 4b −.30 (.93) −.01 (1.00)
Model 4c .00 (1.00) .18 (1.05)

Note. FIML= full-information maximum likelihood.

variable completely nullifies this bias. On the other hand,
if A is only spuriously correlated due to unobserved third
variables, listwise deletion is completely unbiased in this
example, whereas inclusion of A induces strong biases.
Interestingly, in both situations A is strongly correlated to
both B and its missingness (RB) and according to conven-
tional wisdom should be included as an auxiliary variable.
The graphs that only rely on generic statistical associations
are unable to differentiate these two cases, even though they
clearly have very different implications. The m-graphs that
we present in this article immediately tell us that this type of
bias behavior will emerge because in the graph in Figure 4b,
A is needed to d-separate B from RB, whereas in the graph
in Figure 4c, A will induce a dependency in previously d-
separated variables B and RB. For simulation studies that
further explore this phenomenon of bias-inducing auxiliary
variables in more detail, the reader is referred to Thoemmes
and Rose (2014).

CONSTRUCTION OF AN M-GRAPH

So far we have only discussed how missingness mechanisms
would be displayed in a graph and how this could be a peda-
gogical tool to think about missing data. However, m-graphs
could also be used in an applied context. Researchers can
use m-graphs to graphically display their theoretical knowl-
edge and assumptions about relationships among variables
and missingness. In practice, one could start by construct-
ing a graph of substantive variables of interest along with
their missingness indicators, and the observed portion of
the variables. Assumed causal relationships among sub-
stantive variables themselves and substantive variables and
missingness could then be added to the graph. In the next
step, the applied researcher can augment the graph with
potentially observable variables that are not of substan-
tive interest, but might be related to analysis variables or
missingness (auxiliary variables). Finally, unobservable vari-
ables can be added to the graph along with their assumed
relations between substantive variables and missingness. The
resulting graph would then represent the best state of knowl-
edge of the applied researcher. Differently said, this graph is
a representation of all theoretical considerations and assump-
tions about relationships among variables and causes of
missing data.

This is clearly no easy task for an applied researcher, but
there are some advantages to doing it. First, the assump-
tions that the researcher is making are clearly laid out
in the graphical model. If, for example, no unmeasured
confounders are assumed between two particular variables in
a graph (or between a missingness indicator and a variable),
their disturbance terms will not be connected by a bidi-
rected arrow. This assumption can immediately be seen (and
challenged) by other researchers, something that is arguably
harder if researchers only appeal to broader concepts, for
example, claiming that data are MAR, without providing
much evidence on why this should, in fact, hold. The graph
thus replaces a general statement, usually provided as a
narrative, that MCAR, MAR, or NMAR might hold, with
specific assumptions about the relationships among vari-
ables. Note, for example, that the generic claim that MAR
holds could be translated in a graphical model in which all
disturbance terms of missingness indicators and variables
with missing data are uncorrelated, and all variables that
induce dependencies between a variable Y and its mecha-
nism RY are in fact collected. Given that MAR is frequently
invoked by applied researchers, it is actually informative
to think about what strict assumptions are imposed on a
graph that implies MAR. Second, if the researcher and crit-
ical peers agree about the assumptions in the graph, then
there should also be agreement that a particular missingness
mechanism holds and that therefore certain parameters in the
model can be consistently estimated. Of course, disagree-
ment about the assumptions will also lead to disagreement as
to which mechanism actually holds. Either way it should fos-
ter a more critical discussion about missingness mechanisms
among researchers, and encourage researchers and recipients
of research to think about the necessary assumptions that
need to be made to claim a particular mechanism.

Note that it is not necessary to have complete knowledge
about all relationships between variables among each other
and missingness. A lack of knowledge can always be repre-
sented by allowing directed and bidirected arrows to exist
between two variables, representing an effect that is also
confounded by unobserved variables. Likewise, an unwill-
ingness to rule out certain relationships can be expressed
by adding additional directed or bidirected arrows to the
graph and to potentially connect many variables. This usually
results in situations in which no (conditional) independence
holds anymore and thus NMAR is present. We would also
like to emphasize that graph structure is not estimated from
data, but is based on qualitative assumptions based on theory
that the applied researcher is able and willing to make. That
means that we are not claiming that we can verify particu-
lar missingness mechanisms from data alone, but rather that
certain assumptions, encoded in a graph, might imply a par-
ticular mechanism. Once assumptions have been postulated,
it is possible to determine whether these sets of assumptions
about missingness map onto any of the three mechanisms.
Further it is possible to determine whether any particular
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parameter estimate (e.g., mean, regression coefficient) can
be consistently estimated from the observed data, given the
spelled-out assumptions encoded in the graph.

HOW TO DETERMINE WHETHER
PARAMETERS CAN BE RECOVERED

After a researcher has settled on a particular structure in an
m-graph that represents his or her best theoretical knowledge
along with all assumptions that the researcher is willing (and
able) to make, it is possible to query the graph to determine
if certain parameters can be recovered even in the presence
of missing data. A researcher might ask whether a particu-
lar mean, or a regression coefficient, could be consistently
estimated, and if so, which auxiliary variables should be
used in the estimation. Mohan et al. (2013) provided a set
of necessary and sufficient conditions under which parame-
ter estimates can be recovered2 in the presence of missing
data. We do not present every condition here, but focus our
attention on cases that we deem especially useful for applied
researchers. In particular, we discuss conditions under which
parameter estimates of means and regression coefficients can
be recovered.

Graphical Criteria for Identification of Means

Mohan et al. (2013) provided criteria and associated proofs
that can be used to determine the recoverability of means
(or other univariate parameter estimates) in the presence of
missing data, given the assumed structure of a particular m-
graph. If it is possible to find a set of fully observed variables
W that d-separate Y from RY, then univariate parameters of Y
(e.g., the mean) can be recovered. W might include variables
that are of substantive interest or are auxiliary variables.
We could express this in a formula, which is quite similar
to the expression of MAR, save for the fact that W might be
a select subset of observed variables, as:

Y ⊥⊥ RY |W. (6)

Note that this definition immediately precludes
recoverability of means whenever Y has a direct effect
on RY, or if there is an unobserved (latent) variable that
affects both Y and RY (e.g., displayed in the form of a
bidirected arrow that connects disturbance terms). Both
of these situations are NMAR. If any variable in W is
partially observed, the simple criterion in Equation 6 also
does not generally hold anymore.3 Note that the criterion

2“Recovered” is defined as the ability to asymptotically estimate a
consistent parameter value in the presence of missing data.

3More complex criteria exist that allow the use of partially observed
variables in the conditioning set W. Those rely on a concept called ordered
factorization and can be found in Mohan et al. (2013).

in Equation 6 is a sufficient condition for recoverability of
means in Y , meaning that there are cases in which it does
not hold, but yet it would be possible to recover means and
other parameters.

We briefly note that there is an alternative graphical
criterion to check whether means of Y are recoverable.
It considers all R indicators of all variables in an m-graph at
once (Mohan et al., 2013). The joint distribution (and there-
fore means of variables) can be recovered if (a) there are no
arrows connecting the R variables, (b) there are no unob-
served (latent) variables that have direct effects on any R,
and (c) no variable with missing data has a direct effect on
its own associated missingness indicator.

Graphical Criteria for Identification of Regression
Coefficients

If the estimation of a regression coefficient of Y on X is of
interest, different graphical criteria need to be applied. Now
Y needs to be d-separated not only from RY, but also from
RX, conditional on X.

Y ⊥⊥ {RY , RX}|X. (7)

Importantly, when applying this criterion, X, the predictor
variables, could have missing data themselves. The recover-
abilty of the mean of X itself is not of concern when probing
the recoverability of the regression coefficient.

If this condition does not hold, we might attempt to find
a set of covariates W in which this independence holds.
However, we also need to ensure that Y is conditionally
independent of RW, as expressed here:

Y ⊥⊥ {RY , RX , RW}|X, W. (8)

In the case where W is fully observed, Equation 8 is suf-
ficient for recovery of the regression of Y on X. Otherwise,
additional conditions are required, namely that we also need
to show that the regression coefficients using X as predictors
of W are recoverable as well. This means that we need to
recursively apply Equations 7 and 8 to the regression of W
on X.

For readers who are unfamiliar with graphical models and
d-separation, some of these criteria might appear daunting.
Next we provide a worked-out example that shows the
application of these criteria. In addition, we provide com-
puter code for the program DAGitty (Textor et al., 2011),
that will automate queries of conditional independence
(d-separation).

ILLUSTRATIVE EXAMPLE

In this illustrative example, we want to highlight how an
applied researcher could use graphical methods to think
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about missing data. Our example is necessarily quite simple,
but the general underlying process could be applied to larger
problems. We consider a situation in which a single depen-
dent variable Y is predicted by a total of two independent
variables, X1, and X2. All of these variables have missing
values. The substantive interest is on univariate measures of
the Xs and Y (e.g., means), and on the regression coefficients
in which the Xs are used as predictors of Y . In addition,
there are a total of two auxiliary variables, A1 and A2, at
the disposal of the researcher. Those are not of substantive
interest, but have some assumed relationships with the sub-
stantive variables and with missingness. For simplicity, these
auxiliary variables are all completely observed and have no
missing data. Based on theoretical considerations, we con-
struct the m-graph in Figure 5. This graph represents our
theory and our assumptions about the causal processes that
govern relationships among variables and missingness. Other
researchers might challenge these assumptions encoded in
the graph, but as soon as there is agreement about assump-
tions, it is well defined which effects can be consistently
estimated, using criteria formulated earlier.

We begin by asking whether means of the two predictor
variables X1 and X2 can be recovered. From Figure 5, we
can see that X1 and RX1 are d-connected via a direct effect,
indicating that missingness on X1 depends directly on X1

itself. It is therefore impossible to d-separate these two

variables using any other observed variables as dictated
by Equation 6, NMAR holds, and we cannot recover an
unbiased mean of X1.

Considering estimates of X2, we observe multiple paths
that can be traced from X2 to RX2 ; however, in this exam-
ple, all of them traverse colliders and are already closed;
for example, X2 → A2 ← εA2 ↔ εRX2

→ RX2 . Application
of d-separation reveals that X2 and RX2 are unconditionally
independent of each other. That means that both listwise
deletion and FIML or MI would yield consistent results
of means of X2, because an MCAR situation is present.
Interestingly, A2 would not be needed for consistent esti-
mates, even though it is correlated with both X2 and RX2 .
In fact, using A2 is expected to induce biases in the estimate
of X2 because it induces a dependency between X2 and RX2 .

To determine the recoverability of the mean of Y we note
that Y ⊥⊥ RY |X1, X2, A1 holds. However, both X1, and X2 are
only partially observed and therefore the simple recovery
criterion is not fulfilled. The criterion that considers all vari-
ables to check recoverability of the mean of Y is also not
fulfilled because the missingness term of X1 has a direct
effect from X1 itself. We thus fail to meet sufficient condi-
tions to recover the mean of Y and conjecture that the mean
of Y remains biased. In summary, we would be unable to
recover the mean of X1 and Y , but would be able to get
consistent mean estimates of X2.

FIGURE 5 Illustrative example of regression problem with missing data.
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Finally, we are interested in the recoverability of the
regression coefficients from the Xs to the outcome Y . We first
check whether Y ⊥⊥ {RY , RX1, RX2}|{X1, X2} holds. This is
not the case, as A1 still d-connects Y and RY. However,
we also observe that Y ⊥⊥ {RY , RX1 , RX2}|{X1, X2, A1} holds.
Because we have introduced a new variable A1 to our con-
ditioning set, we also need to check whether the regression
of A1 on the Xs is also recoverable. We can do so by using
Equations 7 and 8 again, this time testing whether A1 ⊥⊥
{RA1 , RX1 , RX2}|{X1, X2} holds. Here, we first observe that A1

is fully observed (meaning that RA1 will be a constant that
is by definition unrelated to other variables), and that there-
fore this check can be reduced to A1 ⊥⊥ {RX1 , RX2}|{X1, X2}.
This in turn holds, and we thus now know that the regres-
sion of Y on X1, and X2 can be recovered when using A1

as an auxiliary variable. Interestingly, the regression coeffi-
cients can be recovered, even though the means of both X1

and Y cannot be recovered due to NMAR situations. Finally,
we note that an approach that does not consider an m-graph,
but only checks correlations among partially observed vari-
ables, missingness indicators, and auxiliary variables, would
come to the conclusion that both A1 and A2 should be used
as auxiliary variables, because they are correlated with some
variables and missingness indicators. The interested reader
can find many more illustrative examples of m-graphs in
Mohan et al. (2013).

Numerical Demonstration

We simulated data based on the model in Figure 5. For sim-
plicity, we completely standardized all variables, and fixed
every unidirected path to .3 on a standardized metric, and
fixed the bidirected arrows (correlations) to .5. For effects on
missingness indicators R, we modeled relationships between
variables and an underlying continuous variable that repre-
sents the latent cause of missingness. All variables had a
relatively large amount of 50% missing data and we likewise
used a large sample size of 10, 000 to have relatively precise
estimates of means and regression coefficients. The complete
data were generated using TETRAD (Scheines et al., 1998).
Missing data were imposed in R (R Development Core
Team, 2011) and subsequent analyses were also performed
in R, using the package mice (Van Buuren, Boshuizen, &
Knook, 1999) to perform multiple imputation.

We estimated means of all variables and the simple
regression model, regressing Y on both Xs, using either
listwise deletion, an imputation approach based on the
m-graph that only considers A1 as an auxiliary variable
(called m-graph imputation in Table 2), or a model-blind
imputation approach that uses both A1 and A2 as auxiliary
variables (called full imputation in Table 2). Table 2 presents
results of these analyses.

In line with our expectations from applying graphical cri-
teria, we observe bias in the means of X1 and Y under listwise
deletion, but no bias in the means of X2. Regression coeffi-
cients are slightly biased under listwise deletion (note that

TABLE 2
Parameter Estimates for Numerical Demonstration Under Different

Missing Data Treatment

Parameter Estimate Complete Listwise
m-graph

Imputation
Full

Imputation

Mean X1 .01 .25 .22 .21
Mean X2 .00 .00 .02 −.11
Mean Y .01 .30 .10 .10
Regression coefficient X1 .30 .29 .30 .31
Regression coefficient X2 .30 .28 .28 .26

bias in regression coefficients tends to be small if the logit of
the probability to be missing is linearly related to causes of
missingness, Collins, Schafer, & Kam, 2001).

Using MI based on a model-blind approach, we observe
that the mean of X1 is still biased, as we expected from the
graphical criterion. The bias in the mean of Y has been sub-
stantially reduced, but Y is still not entirely free of bias.
However, substantial bias in the mean of X2 has been intro-
duced, due to using A2 as an auxiliary variable. We further
observe small biases in regression coefficients.

Using MI based on the m-graph, we still see bias in the
means of X1 and (some residual bias) in Y , but A2 remains
bias-free, as was expected. Bias in regression coefficients
remains very small for the coefficient of X2.4

DISCUSSION

Our goal was to describe the classic missingness mechanisms
using graphical models and argue that graphs can be a useful
tool to think about missing data problems. We have demon-
strated that the mechanisms can be expressed with graphs
and importantly that the conditional independencies that are
formally represented in formulaic expressions of equality of
(conditional) probabilities can also be formally expressed
in a graph using the d-separation criterion. Besides its use
as a purely pedagogical tool, it might be useful for applied
researchers to consider graphical models when they are inter-
ested in thinking about the structural relationships between
variables and missingness indicators. As we have demon-
strated, there are instances in which a variable could pose as
a helpful auxiliary variable, but is in fact harmful. Although
it is impossible to distinguish these variables using statisti-
cal criteria, the graphs allow for theoretical considerations
to be expressed that might help to discover such a variable.
Of course, at the same time, if assumptions that went into
the graph are incorrect, then variables might be incorrectly
classified as being harmful. The important message is that it
is always better to use theoretical knowledge to think about
the particular structure of an auxiliary variable, as opposed

4To rule out that these results were influenced by a particular random
sampling, we replicated these results with an additional data set with a
sample size of 100,000 and observed nearly identical results.
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to always assuming that it never falls in the category of
bias-inducing auxiliary variables.

In practice, an applied researcher would have to express
his or her assumptions about structural relationships as
precisely as possible. An often levied criticism is that
such knowledge is not generally available, but in fact,
as we have described earlier, it is not a prerequisite to
have all available knowledge about all possible structural
relationships between variables, missingness, and other aux-
iliary variables. Ignorance about specific relationships can
be expressed by including additional directed or bidirected
paths in the model. Correlated disturbance terms can always
be included to express that unobserved causes of variables
might exert influences on observed variables. Including addi-
tional paths implies that one is imposing fewer restrictions, at
the expense of eventually having such a saturated model that
any restrictions needed to fulfill MCAR or MAR disappear.
This shows again that to claim MAR, certain independence
assumptions between missingness and other observed and
unobserved variables need to be made. A graphical display
might help the applied researcher to judge whether these
assumptions are plausible and whether it is plausible to
claim MAR. Once the researcher has identified an assumed
structural model, it is possible to determine the missingness
mechanism and recoverability by examining the graphical
criteria that we have described.

In summary, missingness mechanisms can be expressed
in graphical models that are able to encode assumptions
about conditional independence. These assumptions are
crucial in the definitions of MCAR, MAR, and NMAR.
We believe that graphs offer an alternative way to describe
and explain the missingness mechanisms. We further believe
that this approach might be accessible to a wide range of
researchers and potentially easier to grasp for students and
practitioners alike. We also tried to motivate use of such
graphs in thinking about missing data using an illustrative
example in which some background knowledge and assump-
tions about missingness, observed variables, and unobserved
variables were available. We hope that these tools help
students and applied researchers to think clearly about
missing data mechanisms in general and in particular about
the mechanisms that might be present in their own data.
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APPENDIX A
A SMALL D-SEPARATION EXAMPLE

The DAG in Figure A.1 shows a small example in which it is of interest to
determine whether X and Y are d-separated.

FIGURE A.1 A simple d-separation example. Disturbance terms are
omitted.

There are two paths that connect X and Y . The first is X→ Z← W ←
Y . Because this path contains a collider, it is closed. The second path is X→
W → Y . This path does not contain any collider and is therefore open. Thus,
X and Y are d-connected. We can further explore whether X and Y are d-
separated if we condition on any combinations of the remaining variables Z
and W. If we condition on only Z we open a previously closed path, and thus
X and Y are d-connected, given Z. If on the other hand, we only condition
on W, all previously open paths are blocked, and therefore X and Y are d-
separated, (X ⊥⊥ Y)|W. Finally, conditioning on both Z and W also blocks
all open paths. The path that was opened by conditioning on the collider Z
is again blocked, because W resides on this path as well. The concept of d-
separation can also be applied to m graphs in which certain nodes represent
missingness information.

APPENDIX B
COMPUTER CODE TO GENERATE THE

M-GRAPH FOR THE ILLUSTRATIVE EXAMPLE

This computer code can be pasted directly in the “Model text data” in the
DAGitty program (http://dagitty.net/) (Textor et al., 2011). The empty line
in the following code is critical and must be retained when copying the text.

a1 1 @0.420,0.914
a2 1 @0.048,0.682
rx1 0 @0.115,0.364
rx2 0 @0.154,0.830
ry 0 @0.750,0.726
u1 1 @0.052,0.873
u2 1 @0.030,0.428
x1 1 @0.117,0.121
x1star 1 @0.172,0.241
x2 1 @0.153,0.541

x2star 1 @0.143,0.662
y E @0.744,0.508
ystar 1 @0.749,0.614
a1 ry y
rx1 x1star
rx2 x2star
ry yobs
u1 a2 rx2
u2 x1 x2
x1 y x1star ry rx1
x2 x2star y ry a2
y ystar

Testing Conditional Independence

DAGitty is a program that checks d-separation in graphs (along with other
features, e.g., finding variable sets that block noncausal paths between two
variables). m graphs can be easily created in DAGitty (see preceding code)
by defining missingness indicators along with variables of substantive inter-
est. DAGitty does not support drawing of bidirected arrows, however they
can be easily represented as unobserved variables that have direct effects on
both variables that should be connected with a bidirected arrow. We make
use of these unobserved variables in the computer code and create U1 to U2,
corresponding to each of the two bidirected arrows in Figure 5.

After a graph has been defined, DAGitty will automatically produce all
(conditional) independence statements and report those on the right side of
the graph. However, this list of d-separation statements can get very long.
An alternative is to highlight two (or more) nodes in the graph and check
their independence visually. To do this, we designate one node the “expo-
sure” and the other node the “outcome.” In the context of an m graph, this
distinction is not meaningful, so it does not matter which node is labeled the
exposure or outcome. For this example, we always denote the actual variable
as the exposure and the missingness indicator as the outcome. Nodes are
highlighted by hovering over them with the mouse cursor and then pressing
“e” for exposure, and “o” for outcome. It is possible to designate more than
one node as the exposure or outcome, which is helpful in checking joint
independencies. Once two (or more) nodes have been selected, DAGitty
presents all active paths that connect the two variables in either red or green
(again, this distinction is not important in m graphs). These highlighted
paths induce a dependency between two nodes. If there are no red or green
paths, then the two nodes are d-separated from each other. If on the other
hand there are highlighted paths, the applied researcher could check whether
these paths can be blocked by some other variables that lie on highlighted
sequences of paths. To use a variable as a conditioning variable (equivalent
to an auxiliary variable in missing data estimation), the user has to hover the
mouse cursor over this variable and press “a”. The display (including high-
lighted paths) updates automatically and the user can check if after condi-
tioning any highlighted paths remain, or whether two nodes are d-separated.

In our example, we can begin by labeling X1 as the exposure and RX1 as
the outcome. We observe that the direct path between these two variables
is highlighted, indicating that this path induces a dependency between the
two nodes. Because we cannot condition on any variable in this direct path,
we conclude that X1 and RX1 are d-connected and that the mean of X1

cannot be recovered. We proceed by labeling X2 as the exposure and RX2

as the outcome and observe that no path is highlighted. We can conclude
that X2 and RX2 are d-separated and thus the mean of X2 is recoverable.
Repeating this for Y reveals that the unobserved X1, X2, and the observed
A1 are needed to d-separate Y and RY. Because the conditioning set contains
partially observed variables X1 and X2, the criterion is not fulfilled and
we conjecture that the mean of Y will remain biased. Finally, to check
recoverability of the regression of Y on both Xs, we highlight Y as the expo-
sure, and highlight RY, RX1 , and RX2 as outcomes. In addition, we highlight
X1 and X2 as adjustment variables. This allows us to check the compound
d-separation Y ⊥⊥ {RY , RX1 , RX2 }|{X1, X2}, defined earlier. We see that
conditioning on A1 eliminates all highlighted paths. Because A1 is fully
observed in this example, we do not need to check any further d-separation
criteria and can conclude that the regression coefficients are recoverable.

http://dagitty.net/
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