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Conditioning on Post-treatment Variables

Abstract: In this issue of the Causal, Casual, and Curious column, I compare several ways of extracting
information from post-treatment variables and call attention to some peculiar relationships among them. In
particular, I contrast do-calculus conditioning with counterfactual conditioning and discuss their interpre-
tations and scopes of applications. These relationships have come up in conversations with readers,
students and curious colleagues, so I will present them in a question–answers format.
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Question-1 (Is Rule-2 valid?)

Rule-2 of do-calculus does not distinguish post-treatment from pre-treatment variables. Thus, regardless of the
nature of Z, it permits us to replace Pðy j doðxÞ; zÞ with Pðy j x; zÞ whenever Z separates X from Y in a mutilated
graph GX (i.e. the causal graph, from which arrows emanating from X are removed). How can this rule be
correct, when we know that one should be careful about conditioning on a post-treatment variables Z?

Example 1 Consider the simple causal chain X ! Y ! Z. We know that if we condition on Z (as in case
control studies) selected units cease to be representative of the population, and we cannot identify the causal
effect of X on Y even when X is randomized. Applying Rule-2 however we get Pðy j doðxÞ; zÞ ¼ Pðy j x; zÞ. (Since
X and Y are separated in the mutilated graph X Y ! Z). This tells us that the causal effect of X on Y IS
identifiable conditioned on Z. Something must be wrong here.

Answer-1

Yes, something is wrong here, but not with Rule-2. It has to do with the interpretation of Pðy j doðxÞ; zÞ,
which will become clear when we prove the validity of Rule-2 in our graph

X ! Y ! Z

Rule-2 says:

Pðy j doðxÞ; zÞ ¼ Pðy j x; zÞ If X??Y j Z in GX

Indeed, if we go to the definition of Pðy j doðxÞ; zÞ, we obtain:

Pðy j doðxÞ; zÞ ¼ Pðy; z j doðxÞÞ=Pðz j doðxÞÞ by def:

¼ Pðy; z j xÞ=Pðz j xÞ since X is randomized

¼ Pðy j x; zÞ
which proves Rule-2.
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The same result obtains whenever Z blocks all back-door paths from X to Y, as in the canonical
confounding model (Figure 1(a)), as well as in the typical selection-bias model (Figure 1(b)). Pðy j doðxÞ; zÞ
is identified (by Pðy j x; zÞ) in both models, despite the fact that in Figure 1(b) Z is a descendant of both
treatment and outcome, in double violation of the back-door criterion. Pðy j doðxÞ; zÞ is no longer estimable
when conditioning on Z opens a back-door path from X to Y as in Figure 2(a), because the condition
ðX??Y j ZÞGX is violated. It is identified in Figure 2(b), where the condition is satisfied.

Question-2 (Why back-door prohibition?)

So, when do we need to worry about conditioning on X-affected covariates, virtual colliders, case control
studies, etc.? It seems that Rule-2 allows us to circumvent the prohibition that the back-door criterion
imposes against conditioning on a treatment-dependent Z.

Answer-2

The two are not contradictory. Rule-2 is always valid, regardless if Z is pre-treatment or post-treatment. At
the same time, the prohibition imposed by the back-door cannot be dismissed, it needs to be considered on
two occasions. First, whenever we seek a license to use the adjustment formula and write:

Pðy j doðxÞÞ ¼
X

z

Pðy j x; zÞPðzÞ ð1Þ

Second, whenever we seek to estimate causal effects in a specific group of units characterized by Z ¼ z.
Contrary to syntactic appearance, the expression Pðy j doðxÞ; zÞ in Rule-2, does not represent such effects
when Z is post-treatment.

Let us deal with these two cases separately.

YX

Z

Z

YX

(a) (b)

Figure 1: Two models in which Pðy jdoðxÞ; zÞ ¼ Pðy j x; zÞ because Z d-separates X from Y once we remove arrows
emanating from X.
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Figure 2: In Model (a), Pðy j doðxÞ; zÞ is not identified (when U is unobserved) since Rule-2 in inapplicable. It is identified in
Model (b) since X and Y are separated in GX .
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2.1 License to adjust

Consider the adjustment formula of eq. (1). This formula is not valid when Z is Y-dependent, as in our
causal chain

G1 : X ! Y ! Z:

If we apply it blindly, we get the sum in (eq. (1)), instead of the correct answer, which is
Pðy j doðxÞÞ ¼ Pðy j xÞ.

To see what goes wrong with blind adjustment, let us trace its derivation, for a pre-treatment Z:

Pðy j doðxÞÞ ¼
X

z

Pðy j doðxÞ; zÞPðz j doðxÞÞ

¼
X

z

Pðy j x; zÞPðz j doðxÞÞ by Rule-2

¼
X

z

Pðy j x; zÞPðzÞ since Z precedes X

This works fine when we can substitute Pðz j doðxÞÞ with PðzÞ, but not when Z is post-treatment and
Pðz j doðxÞÞ depends on x. Thus, Rule-2 in itself is not sufficient for adjustment; blind adjustment will
produce erroneous estimands.

If we avoid the substitution Pðz j doðxÞÞ ¼ Pðz j xÞ and proceed cautiously in G1, we get

Pðy j doðxÞÞ ¼
X

z

Pðy j doðxÞ; zÞPðz j doðxÞÞ

¼
X

z

Pðy j x; zÞPðz j doðxÞÞ by Rule-2

¼
X

z

Pðy j x; zÞPðz j xÞ by Rule-2 on Z

¼ Pðy j xÞ
which is the correct answer for G1. But this is obtained though careful derivation, not by blind adjustment.

Blind adjustment is valid, however, when Z is pure descendant1 of X, as in Figure 3. We know that the
back-door prohibition against post-treatment covariates is lifted in this case [1, p. 339, 2] and, indeed, if we
take Z as a covariate and blindly apply the adjustment formula to G2, we get the correct result:

Pðy j doðxÞÞ ¼
X

z

Pðy j x; zÞPðzÞ

¼ Pðy j xÞ
ð2Þ

The latter equality is obtained through the conditional independence Pðy j x; zÞ ¼ Pðy j xÞ which holds in G2.

1 By pure descendant we exclude variables that are descendants of any intermediate variable between X and Y.

YX

Z

U

G2

Figure 3: A model in which Z is a pure descendant of X, thus satisfying the (extended) back-door condition and permitting
adjustment for Z.
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2.2 Identifying unit-specific effects

We are now ready to discuss the second task for which back-door admissibility is needed: estimating unit-
specific effects.

In many applications, the query of interest is not to find Qdo ¼ Pðy j doðxÞ; zÞ, but to find Qc ¼ Pðyx j zÞ,
where yx is short for the counterfactual statement Yx ¼ y. Back-door admissibility gives us the license to
equate the two queries, and get

Pðy j doðxÞ; zÞ ¼ Pðyx j zÞ ¼ Pðy j x; zÞ ð3Þ
By the counterfactual query Qc we mean: Take all units which are currently at level Z ¼ z, and ask what

their Y would be had they been exposed to treatment X ¼ x. This is different from Qdo ¼ Pðy j doðxÞ; zÞÞ,
which means: Expose the whole population to treatment X ¼ x, take all units which attained level Z ¼ z
(post exposure) and report their Y 0 s.

We call Qc‘‘unit-specific’’ because, as x varies, Qc remains focused on the same set of units (i.e. those
that are currently at Z ¼ z), with (hypothetical) histories that vary with x. Some of these units may not have
experienced any of those histories and would have attained different levels of Z if they did. In contrast, Qdo

focusses on one stratum, Z ¼ z, and, as x varies, it allows different units to enter and leave that stratum.
Obviously, when Z is a pre-treatment covariate, we have Qdo ¼ Qc, but when Z is post-treatment, the

most common question we ask is Qc: find Pðyx j zÞ, not Qdo: find Pðy j doðxÞ; zÞÞ. The back-door criterion
gives us a license to equate both queries with Pðy j x; zÞ. Here is why: If Z satisfies the back-door condition,
the First Law of causal inference2 dictates the conditional independence Yx??X j Z, also known as ‘‘con-
ditional ignorability’’ [3], so

Pðyx j zÞ ¼ Pðyx j z; xÞ ¼ Pðy j z; xÞ:
This license is similar to Rule-2, but it is applied to a different expression; whereas ignorability allows us to
remove a subscript, Rule-2 allows us to remove a do-operator.

We can see the difference in graph G2 of Figure 3. Here Z satisfies the (extended) back-door condition,
so we can write

Pðyx j zÞ ¼ Pðy j z; xÞ ¼ Pðy j xÞ
Rule-2 in itself does not give us this license because it is applicable to a different query Pðy j doðxÞ; zÞ and
cannot handle counterfactual expressions.

Question-3 (the key question)

Should we be concerned with the difference between Qdo and Qc? If so, when?

Answer-3

We certainly should, because the two questions have different semantics and deliver different answers,
whenever Z does not satisfy the back-door condition. This can be demonstrated in graph G3.

3

G3 : X ! Z ! Y

2 The First Law of causal inference refers to the structural definition of counterfactuals [1, p. 98, 9], that is, YxðuÞ is defined as
the solution for Y in a mutilated model, in which the equation for X is replaced by a constant X ¼ x.
3 The failure of “conditional ignorability” in G3 can also be verified directly from the twin network, as is demonstrated in
Ref. [1, p. 214].
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In this graph, Qdo gives:

Pðy j doðxÞ; zÞÞ ¼ Pðy j x; zÞ ðfrom Rule-2Þ
¼ Pðy j zÞ

While Qc gives:

Pðyx j zÞ ¼
X

x0
Pðyx j x0; zÞPðx0 j zÞ

¼ Pðy j x; zÞPðx j zÞ þ
X

x0�x

Pðyx j x0; zÞPðx0 j zÞ

¼ Pðy; x j zÞ þ
X

x0�x

Pðyx j x0; zÞPðx0 j zÞ

which is totally alien to Qdo ¼ Pðy j zÞ.
Intuition supports this inequality. If we let X be education, Z be skill and Y be salary, Qdo looks at

people assigned to x years of education who subsequently achieved skill level z, and asks how would their
salary Y depend on x, assuming that they end up with the same skill Z ¼ z. The graph states that skill alone
determines salary, not how it was acquired, therefore Qdo evaluates to: Pðy j doðxÞ; zÞÞ ¼ Pðy j zÞ namely,
education has no effect on salary, once we know z, as shown in the graph.4 In contrast, Qc asks for the
role that education plays in the salary of one specific group of units, those at skill Z ¼ z. In other words, we
look at those who are currently at skill Z ¼ z and ask, counterfactually: what their salary would be like had
they received x years of schooling. Since some of those at skill Z ¼ z had no schooling, their skill level
would be greater than z had they received schooling, and so would their salary. This explains the inequality
Qdo �Qc.

Question-4 (Qdo or Qc)

Which query, Qdo or Qc, is normally asked when Z is affected by X?

Answer-4

Qdo is rarely posed as a research question of interest, probably because it lacks immediate causal
interpretation. It serves primarily as an auxiliary mathematical object in the service of other research
questions. One such research question is the unconditional causal effect of X on Y, denoted Pðy j doðxÞÞ,
which is fully analyzed using the do-calculus [4], namely, using Qdo. Another research question benefitting
from Qdo occurs in transportability problems [5, 6], where the target query is P�ðy j doðxÞÞ (the causal effect
in a new population), and has been fully analyzed in do-calculus, again, using Qdo. I have not seen Qdo

presented as a target query on its own right.

Question-5 (selection bias)

What about selection bias problems, where the selection mechanism is often outcome-dependent?

4 In fact, Qdo has no immediate causal interpretation; comparing two values of x for the same z amounts to comparing salaries
of under-educated highly-talented individuals with those of over-educated un-talented individuals.

J. Pearl: Conditioning on Post-treatment Variables 135

Brought to you by | University of California - Los Angeles - UCLA Library
Authenticated

Download Date | 4/22/15 11:09 PM



Answer-5

If we aim at estimating Pðy j doðxÞÞ from selection biased data under S ¼ 1, we are not asking for Qdo nor
for Qdo. Rather, we are asking for Pðy j doðxÞÞ and we are allowed to use all means available, including the
rules of do-calculus (which invoke Pðy j doðxÞ; zÞ) as long as we can recover Pðy j doðxÞÞ from selection biased
data [7].

To demonstrate, assume that variable Z in Figure 3 stands for ‘‘selection’’ to the data, and our task is to
recover the causal effect Pðy j doðxÞÞ. Applying Rule-2 (on the null set) we can write

Pðy j doðxÞÞ ¼ Pðy j xÞ
¼ Pðy j x; Z ¼ 1Þ using Y??Z jX

which established the recovery of the target effect from the biased data Pðy j x; Z ¼ 1Þ.
As another example, consider the following model (after [8]) X ! Y  L! S where L is unobserved

and S ¼ 1 represents selection. Since S is not separable from Y, Pðy j doðxÞÞ is not recoverable from the data
Pðx; y j S ¼ 1Þ. (For intuition, imagine the confounder L being sex, in a study that excludes girls from
participation. Surely, the average treatment effect is not recoverable from male-only data.) Assume more-
over that only few cases drop from the study, i.e. PðS ¼ 0Þ is small and estimable. We can then write

Pðy j doðxÞÞ ¼ Pðy j doðxÞ; S ¼ 1ÞPðS ¼ 1 j doðxÞÞ þ Pðy j doðxÞ; S ¼ 0ÞPðS ¼ 0 j doðxÞÞ

and obtain a lower bound

Pðy j doðxÞÞ � Pðy j doðxÞ; S ¼ 1ÞPðS ¼ 1 j doðxÞÞ

Two points are worth noting (1): the lower bound has the form of Qdo : Pðy j doðxÞ; zÞ and (2) the lower
bound is estimable from the data available, giving Pðy j xÞPðS ¼ 1 j doðxÞÞ.

This bounding method does not work for the graph X ! Y ! S. Writing:

Pðy j doðxÞÞ >Pðy j doðxÞ; S ¼ 1ÞPðS ¼ 1 j doðxÞÞ;

we see that, even if we are given the last term, PðS ¼ 1 j doðxÞÞ, we cannot estimate the first.
It is important to note that, if we set out to estimate this bound, our target of identification would be a

Qdo-type expression Pðy j doðxÞ; S ¼ 1Þ where S is a descendant of X and we could unleash the full power of
do-calculus, ignoring the fact that we are only in possession of biased data, conditioned on S ¼ 1.

Conclusions

Rule-2 of do-calculus is valid for both pre-treatment and post-treatment variables. The rule may appear as
violating traditional warnings against conditioning on post-treatment variables, but such warnings apply
only to stronger claims, not the one made by Rule-2. The stronger claims are (1): the identification of causal
effects by adjustment and (2) the identification of unit-specific effects through counterfactual independence
(i.e. ‘‘ignorability’’). The assumptions needed for these two tasks are satisfied by the back-door criterion and
that is where the special handling of post-treatment covariates becomes necessary.
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Appendix

 

(appended

 

to

 

the

 

published

 

version)

To show explicitly that conditional ignorability does not hold in G3 (see footnote 3) we consider a linear

model:

G3 : X
α→ Z

β→ Y

and show that E[Yx|Z = z,X = x′] depends on x′.

Using the counterfactual formula in Causality (p. 389)

E[Yx|e] = E[Y |e] + τ [x− E(X|e)]

we insert e = {Z = z,X = x′}, and obtain

E[Yx|Z = z,X = x′] = E[Y |z, x′] + τ(x− E[X|z], x′)

= βz + αβ(x− x′).

We see that E[Yx|Z = z,X = x′] depends on x′, hence Y 6⊥⊥ X|Z.
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