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Abstract

Controlling for selection and confounding biases are
two of the most challenging problems that appear in
data analysis in the empirical sciences as well as in
artificial intelligence tasks. The combination of previ-
ously studied methods for each of these biases in iso-
lation is not directly applicable to certain non-trivial
cases in which selection and confounding biases are
simultaneously present. In this paper, we tackle these
instances non-parametrically and in full generality. We
provide graphical and algorithmic conditions for recov-
erability of interventional distributions for when selec-
tion and confounding biases are both present. Our treat-
ment completely characterizes the class of causal effects
that are recoverable in Markovian models, and is suffi-
cient for Semi-Markovian models.

Introduction
Computing the effects of interventions is one of the funda-
mental problems in the empirical sciences. Whenever data
collection is performed, the goal is almost invariably to eval-
uate causal effect relationships – for instance, what is the im-
pact of a new taxation program, how should a robot react to
unanticipated situations, will a new advertisement campaign
change the propensity of users buying a product, or what is
the effect of a new drug for curing cancer?

The first challenge that needs to be addressed when com-
puting these effects is to control for confounding bias, which
may arise when randomized experiments are infeasible to
conduct due to costs, ethical, or technical considerations.
This implies that the data is collected under an observational
regime, where the population follows its natural tendency.
Our goal, however, is to compute how the population re-
acts when its undergoes a change (intervention), following a
new, compulsory protocol. For instance, one is not interested
in estimating the correlation between smoking and cancer,
which follows a process of self-selection (associational), but
whether the incidence of cancer would decrease if smoking
were banned in this population (interventional).

More formally, the identifiability problem is concerned
with determining the effect of a treatment (X) on an out-
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come (Y), P(y|do(x)), whenever only an observational, non-
experimental distribution P(v) is available (where V repre-
sents all observable variables). This is not always possible,
however, and the difference between P(y|do(x)) and its prob-
abilistic counterpart, P(y|x), is known as confounding bias
(Pearl 2000, Ch. 3; pp. 202-212). In Fig. 1(a), for example,
the effect P(y|do(x)) can be computed by cutting the incom-
ing arrows towards X to simulate the intervention, but if the
probabilistic estimate P(y|x) is considered, the path going
through the backdoor X ← Z → Y will also be present in
the estimand yielding bias – the variable Z generates extra-
neous variations of the outcome that are not due to X. There
is a well-known method for removing confounding bias in
examples of this kind, which is given by the expression

P(y|do(x)) =
∑

z

P(y|x,Z = z)P(Z = z). (1)

This identity is known as the “adjustment formula” or “back-
door formula” (Pearl 1995) and represents a special case in
which a mapping from P(v) to P(y|do(x)) exists.

The problem of confounding has been broadly studied in
the literature and a number of conditions for non-parametric
identification had emerged, for instance (Spirtes, Glymour,
and Scheines 1993; Galles and Pearl 1995; Pearl and Robins
1995; Halpern 1998; Kuroki and Miyakawa 1999). A gen-
eral mathematical treatment was given in (Pearl 1995) and
culminated in the do-calculus, which was shown to be com-
plete (Tian and Pearl 2002a; Huang and Valtorta 2006;
Shpitser and Pearl 2006; Bareinboim and Pearl 2012a).

Another major challenge that needs to be addressed when
evaluating the effect of interventions is the problem of selec-
tion bias, which arises due to the preferential exclusion of
units from the sample. For instance, in a typical study of the
effect of training program on earnings, subjects achieving
higher incomes tend to report their earnings more frequently
than those who earn less. The data-gathering process in this
case will reflect this distortion in the sample proportions and,
since the sample is no longer a faithful representation of the
population, biased estimates will be produced regardless of
how many samples were collected.

It is instructive to depict this phenomenon graphically, so
consider the model in Fig. 1(b) in which X represents a treat-
ment, Y represents an outcome, and S represents a binary
indicator of entry into the data pool (S = 1 indicates that
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the unit is in the sample, S = 0 otherwise). In this case, se-
lection is affected by the outcome as represented by the ar-
row Y → S (e.g., achievers of higher incomes have a higher
chance of reporting their earnings). (If, instead, a random
sample of the population is taken, S will be independent of
all variables in the analysis.) If our goal is to compute the ef-
fect P(y|do(x)) but the samples are collected preferentially,
then only P(y, x|S = 1) is accessible for use. Given that con-
founding bias is not present in the example in Fig. 1(b), the
effect of X on Y is the same as the corresponding conditional
distribution (i.e., P(y|do(x)) = P(y|x)). The natural question
to ask is under what conditions P(y|do(x)) (=P(y|x)) can be
recovered from data drawn from P(y, x|S = 1), since in prin-
ciple these two distributions are just loosely connected.

The selection bias problem has been studied in a wide
range of scenarios, for instance, in several tasks in AI
(Cooper 1995; Elkan 2001; Zadrozny 2004; Cortes et al.
2008), statistics (Whittemore 1978; Little and Rubin 1986;
Jewell 1991; Kuroki and Cai 2006) as well as in the empir-
ical sciences (e.g., genetics (Pirinen, Donnelly, and Spencer
2012; Mefford and Witte 2012), economics (Heckman 1979;
Angrist 1997), and epidemiology (Robins 2001; Glymour
and Greenland 2008)). These works lead to a complete treat-
ment for recoverability of the odds ratio in (Bareinboim and
Pearl 2012b), and culminated in a complete treatment for
non-parametric recoverability of conditional distributions in
(Bareinboim, Tian, and Pearl 2014).

The biases arising from confounding and selection are
fundamentally different, though both constitute threats to the
validity of causal inferences. The former bias is the result of
treatment X and outcome Y being affected by common an-
cestral variables, such as Z in Fig. 1(a), while the latter is
due to treatment X or outcome Y (or ancestors) affecting the
inclusion of the subject in the sample, such as Y in Fig. 1(b).
In both cases, we have extraneous “flow” of information be-
tween treatment and outcome, which falls under the rubric
of “spurious correlation,” since it is not what we seek to es-
timate. These problems constitute a “basis” for causal anal-
ysis, and one might appear without the other. For instance,
confounding bias might still exist even when a perfect ran-
dom sample of the population is drawn, while selection bias
may also exist even when the treatment assignment is per-
fectly randomized.

The combined treatment of these biases was not discussed
in its full generality until now in the literature, and in this pa-
per we show non-trivial instances in which previous meth-
ods are not directly applicable, so no method is known to
date. Building on the previous conditions developed for in-
dependently controlling these biases, this paper provides a
systematic treatment for the problem of simultaneous selec-
tion and confounding, more specifically:
• We provide a necessary and sufficient graphical and al-

gorithmic condition for recoverability from simultaneous
selection and confounding in models without latent vari-
ables (i.e., Markovian);

• We construct a general algorithm and sufficient condition
for recoverability from selection and confounding biases
in models with latent variables (i.e., semi-Markovian);
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Figure 1: Simplest examples of confounding bias (a) and se-
lection bias (b,c). The effect Q = Px(y) is recoverable from
confounding through adjustment in (a), and it is not recov-
erable from selection in (b), but is in (c).

Models, Causal Effects, and Recoverability
We first introduce some basic machinery used throughout
the paper. The basic semantical framework in our analy-
sis rests on structural causal models as defined in (Pearl
2000, pp. 205), also called data-generating models. In the
structural causal framework (Pearl 2000, Ch. 7), actions
are modifications of functional relationships, and each ac-
tion do(x) on a causal model M produces a new model
Mx = 〈U,V,Fx, P(U)〉, where V is the set of observable
variables, U is the set of unobservable variables, and Fx is
obtained after replacing fX ∈ F for every X ∈ X with a new
function that outputs a constant value x given by do(x).

We follow the conventions given in (Pearl 2000) denot-
ing variables by capital letters and their realized values by
small letters. We use the typical graph-theoretic terminol-
ogy with the corresponding abbreviations Pa(C) and An(C),
which will denote the union of C and respectively the par-
ents and ancestors of C. Finally, for any set C ⊆ V , let GC
denote the subgraph of G composed only of variables in C.

Key to the analysis in this paper is the notion of “identi-
fiability” (Pearl 2000, pp. 77), which expresses the require-
ment that causal effects are computable from a combination
of data and assumptions embodied in a causal graph G:

Definition 1 (Causal Effects Identifiability) The causal
effect of an action do(T = t) on a set of variables R is said
to be identifiable from P in G if Pt(r) is uniquely computable
from P(v) in any model that induces G.

Another important element used in our analysis is the notion
of recoverability, which expresses the requirement that ef-
fects are computable from the available (biased) data and
assumption embodied in an augmented causal graph Gs
(Bareinboim and Pearl 2012b):

Definition 2 (Recoverability from Selection Bias) Given
a causal graph Gs augmented with a node S encoding the
selection mechanism, the distribution Q = Pt(r) is said to be
recoverable from selection biased data in Gs if the assump-
tions embedded in the causal model renders Q expressible in
terms of the distribution under selection bias P(v | S = 1).
Formally, for every two probability distributions P1 and P2
compatible with Gs, PM1 (v | S = 1) = PM2 (v | S = 1) > 0
implies PM1

t (r) = PM2
t (r).

In this paper, the analysis will basically focus on determin-
ing whether these two conditions can be simultaneously sat-
isfied, which we will call recoverability for short.
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Recoverability in Markovian Models
It is known that a causal effect Pt(r) is always identifi-
able in terms of the distribution P(v) in Markovian mod-
els (i.e., when all variables are observed) (Pearl 2000;
Tian and Pearl 2002a). Further, a complete condition for re-
covering conditional probabilities from selection biased data
has been given in (Bareinboim, Tian, and Pearl 2014) and
read as follows:
Theorem 1 The conditional distribution P(y|t) is recover-
able (as P(y|t, S = 1)) if and only if (Y ⊥⊥ S |T ).

In Fig. 1(c), consider the recoverability of Px(y). We can
combine this result with a do-calculus reduction 1 and write

Px(y) = P(y|x) (2)
= P(y|x, S = 1), (3)

where the first equality follows from the second rule of the
do-calculus (since X and Y are unconfounded), and the sec-
ond equality follows from Theorem 1. Eq. (3) states that the
effect of X on Y is equal to the conditional distribution of Y
given X estimated from the selected biased data.

Based on this derivation, it is now immediate to state the
following result that combines recoverability of conditional
distributions with identifiability using the do-calculus:
Corollary 1 The causal effect Q = Pt(r) is recoverable from
selection biased data if using the rules of the do-calculus, Q
is reducible to an expression in which no do-operator ap-
pears, and recoverability is determined by Theorem 1.

We want to recover Q = Px(y) in Fig. 1(b), and the same rea-
soning used in Eq. (2) applies here yielding Px(y) = P(y|x).
Based on Theorem 1, the distribution P(y|x) is marked as not
recoverable, which indeed implies that Q is not recoverable
in this case (formally shown in Theorem 1).

Based on this result, one might surmise that determining
Pt(r) by first expressing it in terms of probabilities over the
observables and using Theorem 1 to determine the recover-
ability of each factor in the resultant expression is not only
valid, but also a necessary condition for controlling both se-
lection and confounding biases. However, this approach is
somewhat misleading, because there usually exist equivalent
expressions for the effect Pt(r) in terms of the probability
over the observables, and while each expression is equally
sound for controlling confounding bias, they appear to en-
tail different conclusions for the problem of recoverability.

To understand this subtlety, note that the effect Px(y) of a
singleton X is always identifiable through adjustment for its
direct causes (Pearl 2000, Theorem 3.2.2),

Px(y) =
∑
pax

P(y|x, pax)P(pax). (4)

Following the strategy of Corollary 1, one would need to
check the recoverability of the factors P(y|x, pax) and P(pax)
using Theorem 1 to determine the recoverability of Px(y),
which does not always work as shown in the graph in Fig-
ure 2(a). To witness, note that we can obtain using Eq. (4) the

1For more on the do-calculus, see Appendix 1 (supplemental
material) or (Pearl 2000, Ch. 3).
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Figure 2: (a) Causal model in which the effect Q = Px(y) is
identifiable with sets {W1,W2} and {Z}, but recoverable just
with {Z}; Q is recoverable in (b) but not recoverable in (c),
due to the existence of W (common ancestor of S and Y).

following expression (equivalently, through the back-door
criterion with {W1,W2} as the covariate set),

Px(y) =
∑

w1,w2

P(y|x,w1,w2)P(w1,w2). (5)

It may appear now that Px(y) is not recoverable since de-
spite the fact that P(y|x,w1,w2) is recoverable by Theorem 1,
the second factor P(w1,w2) is not. However, we can use the
back-door criterion with {Z} as the covariate set and obtain:

Px(y) =
∑

z

P(y|x, z)P(z). (6)

Eq. (6) constitutes another expression witnessing the identi-
fiability of Px(y) 2, but in this case recoverable – the factors
P(y|x, z) and P(z) are both recoverable by Theorem 1.

We see from this example that, after expressing Pt(r) in
terms of the observational distribution, while it is straightfor-
ward to determine Pt(r) to be recoverable if all probabilities
involved are recoverable, in general it is not easy to deter-
mine whether Pt(r) is recoverable when some probabilities
involved are not recoverable.

It can be computationally difficult to find a set satisfying
the conditions of recoverability and identifiability simulta-
neously since this could imply a search over an exponen-
tially large number of subsets. Next we reduce this problem
to a more tractable case and show that the recoverability of
Pt(r) can be determined by expressing it in a “canonical”
form in terms of the Markovian factors P(vi|pai) (i.e., prob-
ability of Vi given its parents). We then derive a complete
condition for recovering Pt(r) from selection biased data.
First, we give a complete condition for recovering the fac-
tors P(vi|pai) from selection biased data.
Lemma 1 The distribution P(vi|pai) for i = 1, . . . , n is re-
coverable if and only if Vi is not an ancestor of S . When
recoverable, P(vi|pai) = P(vi|pai, S = 1).
Proof. This follows from Theorem 1 since Vi is indepen-
dent of S given Pai if and only if Vi is not an ancestor of S . �

We present next a complete condition for recovering Pt(r)
from selection biased data.

2Note that both the expressions in (5) and (6) can be obtained
using the back-door criterion. The two sets {W1,W2} and {Z} are
called c-equivalent (Pearl and Paz 2014).
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Theorem 2 The causal effect Pt(r), where T and R are ar-
bitrary disjoint subsets of V, is recoverable if and only if for
every Vi ∈ D where D = An(R)GV\T , Vi is not an ancestor of
S . When recoverable, Pt(r) is given by

Pt(r) =
∑
D\R

∏
{i:Vi∈D}

P(vi|pai, S = 1). (7)

Proof. (if) Let T ′ = V \ T . We have

Pt(r) =
∑
T ′\R

Pt(t′) =
∑
T ′\R

∏
{i:Vi∈T ′}

P(vi|pai). (8)

All the factors P(vi|pai) in (8) for which Vi < D (i.e., Vi is
not an ancestor of R) will be summed out and we obtain

Pt(r) =
∑
D\R

∏
{i:Vi∈D}

P(vi|pai). (9)

If for every Vi ∈ D, Vi is not an ancestor of S , then the
corresponding P(vi|pai) is recovered as P(vi|pai, S = 1) by
Lemma 1. Therefore Pt(r) is recoverable.

(only if sketch – see Appendix 2 in the supplemental ma-
terial) We show that whenever there exists Vi ∈ D such that
Vi is an ancestor of S , two distributions P1, P2 compatible
with the causal model can be constructed such that they
agree in the probability distribution under selection bias,
P1(v | S = 1) = P2(v | S = 1), and disagree in the target
effect Q = P(y | do(x)), i.e., P1(y | do(x)) , P2(y | do(x)).

Let P1 be compatible with the graph G1 = Gs, and
P2 with the subgraph G2 where the edges pointing to S
are removed (see (Tian 2002, Lemma 8)). Notice that P2
harbors an additional independence relative (V ⊥⊥ S )P2 ,
where V represents all variables in Gs but the selection
mechanism S . We will set the parameters of P1 through its
factors and then compute the parameters of P2 by enforcing
P2(v | S = 1) = P1(v | S = 1). Since P2(v|S = 1) = P2(v),
we will have P1(v|S = 1) = P2(v). We will exploit this
symmetry throughout the proof. We partition how S can be
connected to Y in four topological relations, and then show
that for each one of these equality in distribution under
selection bias and inequality of the causal effects will follow
(see Appendix 2, supplemental material). �

We demonstrate the application of Theorem 2 with a few
examples. In Figure 2(a), D = {Y,Z} and so {W1,W2} can be
ignored, and Px(y) is recoverable as given by Eq. (6). In Fig-
ure 2(b), note that D = {Y} is not an ancestor of S , so Px(y)
is recoverable and given by Px(y) = P(y|x, S = 1). In Fig-
ure 2(c), we have D = {W,Y} and Px(y) =

∑
w P(y|w, x, S =

1)P(w), which is not recoverable due to the fact that P(w) is
not recoverable since W is an ancestor of S .

Recoverability in Semi-Markovian Models
Some relevant confounders are difficult to measure in many
real-world applications (e.g., intention, mood, dna muta-
tion), which leads to the need of modelling explicitly latent
variables that affect more than one observed variable in the
system3. These scenarios can be encoded formally as Semi-
Markovian models.

In Markovian models identifiability is always attainable,
and the challenge addressed in the previous section was to
search through the space of admissible sets testing for recov-
erability from selection. The challenge in Semi-Markovian
models arises due to the fact that parents of X as well as
possibly other variables might not be observed, which im-
plies that identifiability is not achievable in all experimen-
tal designs. The evaluation of identifiability itself usually
goes through a non-trivial algebraic process known as the
do-calculus (Pearl 2000). Recoverability then becomes more
involved since the evaluation of the feasibility of identifying
a quantity needs to be coupled with the search for sets yield-
ing recoverability from selection bias.

In order to visualize the difference between recoverabil-
ity in Markovian and semi-Markovian models, let us con-
sider the simple example depicted in Fig. 3(a). Our goal is
to evaluate the effect Q = Px(y) assuming the availability of
selected biased data. If we apply the direct adjustment given
in Eq. (4) (using the set of parents of X, {W2}), we obtain

Px(y) =
∑
w2

P(y|x,w2)P(w2). (10)

In this case, however, none of the factors in Eq. (10) are
recoverable by Theorem 1. If we enlarge our criterion to
consider arbitrary back-door admissible sets, it is also the
case that neither the empty set nor {W1} are admissible for
back-door adjustment – there exists a back-door path pass-
ing through W2 that needs to be closed (and in general,
Px(y) , P(y|x)). Furthermore, if we decide to include this
set and try to adjust for {W1,W2}, the back-door path is in-
deed closed but Q is still not recoverable.

One might be tempted to believe, when taking the Marko-
vian perspective, that there exists no set yielding recover-
ability of the target Q, which turns out to not be the case.
To witness, invoke the first rule of the do-calculus noticing
that S is independent of Y in the mutilated graph when the
incoming arrow to X is cut (Fig. 3(b)), (S ⊥⊥ Y |X)GX

, which
implies the equality Px(y) = Px(y|S = 1). Perhaps surpris-
ingly to some 4, this can be coupled with traditional adjust-
ment by the parent set, which yields

Px(y) =
∑
w2

P(y|x,w2, S = 1)P(w2|S = 1) (11)

Note that Eqs. (10) and (11) are essentially the same except
for the conditioning variable S , and the critical step leading

3Following the convention (Pearl 2000), the unobserved com-
mon causes are encoded implicitly in the dashed bidirected arrows.

4This conclusion follows organically from the logic of struc-
tural causality (Pearl 2000), but this condition is missing in other
attempts for treating the selection bias problem (Angrist 1997).
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to recoverability was to realize that despite the fact that The-
orem 1 does not apply to neither of the sub-factors in any of
the possible adjustment sets, the independence (S ⊥⊥ Y |X)GX
in the mutilated graph should first be evaluated, and the ad-
justment step should be considered after that.

Given that our goal is to find a systematic procedure for
deciding recoverability, we would expect that a positive test
for separability of S , similarly to the derivation culminating
in Eq. (11), combined with the identification test of the target
quantity should be enough to yield recoverability. Still, this
strategy does not work if applied in a naive fashion. To wit-
ness, consider the recoverability of Q = Px(y) in Fig. 3(c).
We first mutilate the graph cutting the incoming arrows go-
ing towards X (Fig. 3(d)), so we have Px(y) = Px(y|S = 1).
The challenge here is that after adding S to the expression,
our ability of applying the third rule of the do-calculus and
obtaining the desired expression is curtailed. Despite the fact
that the effect of X on Y is zero (i.e., the equality Px(y) =
P(y) holds), it it not the case that Px(y|S = 1) = P(y|S = 1)
is true. In fact, what follows from the analysis is the equality
Px(y|S = 1) = P(y), which does not represent a viable map-
ping from the biased data to the target expression Q (note
that the target does not appear in this equality. 5 After all,
we note that even when the effect Q is identifiable and S is
separable from Y in the mutilated graph, it might still be the
case that the target quantity Q is not recoverable.

We next state some useful lemmas combining the under-
standing acquired through these examples. Following the
notation in (Tian and Pearl 2002a), for any set C ⊆ V , we
define the quantity Q[C](v) to denote the following function

Q[C](v) = Pv\c(c) =
∑

u

∏
{i|Vi∈C}

P(vi|pai, ui)P(u). (12)

In particular, we have Q[V](v) = P(v). For convenience, we
will often write Q[C](v) as Q[C]. The set of variables V can
be partitioned into so-called c-components by assigning two
variables to the same c-component if and only if they are
connected by a path composed entirely of bidirected edges.
The following lemma is from (Tian and Pearl 2002b):
Lemma 2 Let H ⊆ V, and assume that H is partitioned into
c-components H1, . . . ,Hl in the subgraph GH . Then we have

(i) Q[H] decomposes as

Q[H] =
∏

i

Q[Hi]. (13)

(ii) Let a topological order of the variables in H be
Vh1 < · · · < Vhk in GH . Let H≤i = {Vh1 , . . . ,Vhi } be the
set of variables in H ordered before Vhi (including Vhi ), and
H>i = H \ H≤i for i = 1, . . . , k, and H≤0 = ∅. Then each
Q[H j], j = 1, . . . , l, is computable from Q[H] and given by

Q[H j] =
∏

{i|Vhi∈H j}

Q[H≤i]
Q[H≤i−1]

, (14)

5This exemplifies a more fundamental matter, which is that the
syntactic goal of recoverability is different than that of conditional
identifiability. In the latter, the do-operator needs to be removed,
and the conditioning set is not constrained in any fashion; in the
former, the do-operator also needs to be removed, but this is con-
tingent on the existence of the S -node in the final expression.
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Figure 3: (a,b) Diagram and respective mutilated graph in
which the effect Q = Px(y) is recoverable despite the inapli-
cability of directly using Theorem 1 followed by adjustment.
(c, d) Model with mutilated graph showing insufficiency of
evaluating recoverability and identifiability independently.

where each Q[H≤i], i = 0, 1, . . . , k, is given by

Q[H≤i] =
∑
h>i

Q[H]. (15)

So, we can generalize Q-decompositions for functions of
the joint distribution (including the selection distribution):
Lemma 3 Let H ⊆ V, and assume that H is partitioned into
c-components H1, . . . ,Hl in the subgraph GH . If

f (P(v|S = 1)) =
P(S = 1|paS )

P(S = 1)
Q[H], (16)

where f (P(v|S = 1)) is some recoverable quantity, then for
j = 1, . . . , l, Q[H j] is recoverable if H j ∩ An(S ) = ∅, that is,
H j contains no ancestors of S .
Proof. Let Vh1 < · · · < Vhk be a topological order in GH such
that An(S ) < H \ An(S ). Q[H j] is given by Eqs. (14) and
(15) by Lemma 2, and from Eq. (16) Q[H] is given by

Q[H] =
P(S = 1)

P(S = 1|paS )
f (P(v|S = 1)). (17)

If H j contains no ancestors of S , then all the variables in
H j are ordered after the variables in An(S ), then for each
Vhi ∈ H j, h>i ∪ {Vhi } contains no variables in PaS . We obtain

Q[H≤i] =
∑
h>i

P(S = 1)
P(S = 1|paS )

f (P(v|S = 1))

=
P(S = 1)

P(S = 1|paS )

∑
h>i

f (P(v|S = 1)), (18)

Q[H≤i−1] =
P(S = 1)

P(S = 1|paS )

∑
h>i,vhi

f (P(v|S = 1)), (19)

and finally

Q[H≤i]
Q[H≤i−1]

=

∑
h>i f (P(v|S = 1))∑

h>i,vhi
f (P(v|S = 1))

. (20)

Therefore, Q[H j] given by Eqs. (14) is recoverable. �

Note that a special case of Lemma 2 and 3 is when H = V
and we have the decomposition P(v) =

∏
i Q[Hi]. We next

present a procedure for determining the recoverability of the
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Function RC(D, P,G)
INPUT: D a set with GD being a c-component, P a distribu-
tion, G a causal diagram over V and S node.
OUTPUT: Expression for Q[D] in terms of P or FAIL

1. If V \ (An(D) ∪ An(S )) , ∅,
return RC(D,

∑
V\(An(D)∪An(S )) P,GAn(D)∪An(S ))

2. Let C1, . . . ,Ck be the c-components of G that contains no
ancestors of S , and let C = ∪Ci.

3. If there exists no such c-component (i.e., C = ∅), return
FAIL.

4. If D is a subset of some Ci, return Identify(D,Ci,Q[Ci]).
5. Return RC(D, P∏

i Q[Ci]
,GV\C).

Figure 4: Algorithm based on c-components capable of si-
multaneously identifying and recovering causal effects.

causal effect Pt(r), where T and R are arbitrary subsets of V .
Let T ′ = V \ T , and D = An(R)GT ′ . We have

Pt(r) =
∑
T ′\R

Pt(t′) =
∑
T ′\R

Q[T ′] =
∑
D\R

Q[D] (21)

=
∑
D\R

∏
i

Q[Di], (22)

where D1, . . . ,Dl are the set of c-components of the sub-
graph GD. Now we call RC(Di, P(v|S = 1),G) for each Di
to determine the recoverability of Q[Di].
Theorem 3 Function RC(D, P(v|S = 1),G) is correct.

Proof. We have

P(v|S = 1) =
P(S = 1|paS )

P(S = 1)
P(v). (23)

The nonancestors of D ∪ S can be summed out from both
sides without influencing the recoverability results.

P(An(D) ∪ An(S )|S = 1) =
P(S = 1|paS )

P(S = 1)
P(An(D) ∪ An(S )).

(24)

Now assume that nonancestors of D∪S have been summed
out, now P(v) can be decomposed into product:

P(v|S = 1) =
P(S = 1|paS )

P(S = 1)
Q[V \C]

∏
i

Q[Ci]. (25)

From Lemma 3, if a component Ci contains no ancestors of
S , then Q[Ci] is recoverable. If D is a subset of some Ci, it
is known that Q[D] is identifiable if and only if it is identi-
fiable from Q[Ci] by the Identify(D,Ci,Q[Ci]) algorithm in
(Huang and Valtorta 2006). Therefore, if Q[D] is not iden-
tifiable, it is not recoverable; if Q[D] is identifiable from a
recoverable Q[Ci], then it is recoverable. If none of the re-
coverable c-components Ci contain D, then moving recover-
able quantity

∏
i Q[Ci] to the l.h.s. of the Eq. (25) we obtain

P(v|S = 1)∏
i Q[Ci]

=
P(S = 1|paS )

P(S = 1)
Q[V \C] (26)
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Figure 5: Non-trivial scenarios involving intrincate relation-
ship of the counfounded structure and the S -nodes; Q =
Px(y) is not recoverable in (a) but is in (b) and (c).

Now the problem of recovering Q[D] is reduced to a prob-
lem of recovering Q[D] in the subgraph GV\C with distribu-
tion P(v|S = 1)/

∏
i Q[Ci]. �

Our procedure returns FAIL to recover Q[Y] if there is a
subgraph GC that contains Y such that: all nodes in GC are
ancestors of S or Y , and every c-component of GC contains
an ancestor of S .

We demonstrate the application of our procedure
RC(D, P,G) using a few examples. Remarkably, some of
these quantities are non-trivial to derive manually. In Fig-
ure 5(a), Px(y) = Q[Y], and RC({Y}, P(v|S = 1),G) will
return FAIL because all the nodes are ancestors of Y or
S and neither c-components are recoverable by Lemma 3
(line 3). In the model in Figure 5(b), Px(y) = Q[Y], Y
is in the c-component {Y, X,W1} which is recoverable by
Lemma 3, and therefore Px(y) is recoverable (line 4). In
Figure 5(c), Px(y) = Q[Y], the c-components are {X} and
C′ = {Y,W1,W2}, and Q[{X}] is recoverable by Lemma 3
as Q[{X}] = P(x|w1,w2, S = 1) where Q[C′] is not.
The problem is reduced to recovering Q[Y] in the sub-
graph GC′ by calling RC(Y, P(v|S = 1)/P(x|w1,w2, S =
1),GC′ ) (line 5). In GC′ , W1 is not an ancestor of Y
or S and can be summed out (line 1), which reduce
the problem to RC(Y,

∑
w1

P(v|S = 1)/P(x|w1,w2, S =
1),G{Y,W2}). In G{Y,W2}, Y is a c-component and is recover-
able using Lemma 3 as

∑
w1

P(v|S = 1)/P(x|w1,w2, S =
1)/
∑

w1,y P(v|S = 1)/P(x|w1,w2, S = 1).

Conclusions
We provide conditions for recoverability from selection and
confounding biases applicable for arbitrary structures in
non-parametric settings. Theorem 2 provides a complete
characterization of recoverability in Markovian models. Fig-
ure 4 (combined with Theorem 3) provides the most gen-
eral procedure known to date for recoverability in semi-
Markovian models. Verifying the conditions given in these
theorems takes polynomial time and could be used to de-
cide what measurements are needed for recoverability. Since
confounding and selection biases are common problems
across many disciplines, the methods developed in this pa-
per should help to understand, formalize, and alleviate this
problem in a broad range of data-intensive applications.

This paper complements recent work on transportability
(Pearl and Bareinboim 2014; Bareinboim and Pearl 2013),
which deals with transferring causal information across dis-
parate, heterogeneous environments.
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