
Identification and Overidentification of
Linear Structural Equation Models

Bryant Chen
University of California, Los Angeles

Computer Science Department
Los Angeles, CA, 90095-1596, USA

Algorithm 1 HT-ID(G,Σ, IDEdges)

Initialize: EdgeSets← all connected edge sets in G
repeat

for each ES in EdgeSets do
v ← He(ES)
for each E ⊂ ES such that E 6⊂ IDEdges do

AE ← Allowed(E, IDEdges, G)
YE ← MaxFlow(G,E,AE))
if |YE | = |Ta(E)| then

Identify E using Theorem 1
IDEdges← IDEdges ∪ E

end if
end for

end for
until All coefficients have been identified or no coefficients have been identified in the last iteration
return IDEdges

Theorem 1. If a g-HT-admissible set for directed edges Ev with head v exists then Ev is identifiable.
Further, let YEv

= {y1, ..., yk} be a g-HT-admissible set for Ev, Ta(Ev) = {p1, ..., pk}, and Σ be
the covariance matrix of the model variables. Define A as

Aij =


[(I − Λ)T Σ]yipj

, yi ∈ htr(v) or yi connected

to Pa(v) \ Ta(Ev),

Σyipj , yi /∈ htr(v)

(1)

and b as

bi =


[(I − Λ)T Σ]yiv, yi ∈ htr(v) or yi connected

to Pa(v) \ Ta(Ev),

Σyiv, yi /∈ htr(v)

(2)

Then A is an invertible matrix and A · ΛTa(Ev),V = b.

Proof. The proof for this theorem is similar to the proof of Theorem 1 in Foygel et al. (2012). Rather
than giving a complete proof, we simply explain why our changes are valid. The g-HTC identifies
arbitrary sets of directed edges belonging to a node rather than all of the directed edges belonging to
a node. It is able to do this because of two changes. First, sets that contain nodes that are connected
to Pa(v) \ Ta(E) via half-treks cannot be half-trek admissible for E (see Definition 6). As a
result, the paths from half-trek admissible set, YE , to v travel only through coefficients of E and
no other coefficients of E. This ensures that A · ΛTa(E),v = b. Second, nodes that are connected
to Pa(v) \ Ta(E) are not allowed unless their coefficients that lie on paths to Pa(v) \ Ta(E) are
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identified. Likewise, nodes that are half-trek reachable from v are not allowed unless their coefficients
that lie on the half-treks from v are identified. This ensures that A and b are computable. Other
coefficients need not be identified because they will vanish from A and b during the computations,
((I − Λ)T · Σ)yipj

and ((I − Λ)T · Σ)yiv , due to zeroes in the matrix Σ.

Theorem 2. Let YE be a set of maximal size that satisfies conditions (ii)-(iv) of the g-HTC for a set
of edges, E, with head v. If there exists a node w such that

(i) there exists a half-trek from w to Ta(E),

(ii) w /∈ (v ∪ Sib(v)), and

(iii) w is g-HT-allowed for E,

then we obtain the equality constraint, awA−1rightb = bw, where A−1right is the right inverse of A.

Proof. As long as conditions (ii) and (iii) of the g-HTC are satisfied by Ye, the rows of A are linearly
independent and A · ΛTa(e),v = b. (See the proof of Theorem 1 in (Foygel et al., 2012).) Similarly,
if w satisfies the above conditions then aw · ΛTa(e),v = bw. Additionally, since YE is a maximal
set for which there exists a system of half-treks from YE to Ta(E) with no sided intersection, there
does not exist a system of half-treks from YE ∪ {w} to Ta(E) with no sided intersection. According
to Foygel et al. (2012), this implies that aw = dT · A and bw = dT · b for some vector d. In
other words, the equation aw · ΛTa(e),v = bw is a linear combination of the equations represented by
A · ΛTa(e),v = b. As a result, we obtain the constraint awA−1rightb = bw.

Algorithm 2 can be used to identify coefficients and find HT-constraints given a graph of the model,
G. Like Algorithm 1, it iterates through each connected edge set, attempting to identify it. However,
after finding a maximal set that satisfies (ii)-(iv) of the g-HTC using MaxFlow, it looks for a node
w that satisfies the conditions of Theorem 2 in order to obtain a HT-constraint. Prior to recursive
decomposition, if a node z is d-separated from a node v, we trivially obtain the constraint that
Σzv = 0. However, when we introduce recursive decomposition, we will see that the independence
constraint on the sub-model corresponds to a non-conditional independence constraint in the joint
distribution, P (V ). As a result, Algorithm 2 also outputs when variables are d-separated from one
another given the empty set.

Algorithm 2 HT-Constraints(G,Σ, IDEdges)

Initialize: EdgeSets← all connected edge sets in G
repeat

for each ES in EdgeSets do
for each E ⊂ ES such that E 6⊂ IDEdges do

AE ← Allowed(E, IDEdges, G)
YE ← MaxFlow(G,E,AE))
if |YE | = |Ta(E)| then

Identify E using Theorem 1
IDEdges← IDEdges ∪ E

end if
for each w in AE \ YE do

if v ∈ htr(w) then
Output constraint: bw = aw ·A−1Right · b

else if w /∈ htr(v) then
Output constraint: Σwv = 0

end if
end for

end for
end for

until one iteration after all edges are identified or no new edges have been identified in the last
iteration return IDEdges
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Algorithm 3 decomposes the graph according to its c-components and then applies Algorithm 2
to each sub-model. If there are still unidentified coefficients, then it removes descendant sets and
decomposes again. The whole process is repeated until one iteration after every coefficient is identified
or no new coefficients are identified in an iteration. ΣPSi

is the covariance matrix of PSi
, where Si is

a c-component. ΣV \Di
is the covariance matrix after marginalizing Di from Σ. Finally, GV \Di

is
the graph with the set Di removed.

Algorithm 3 Decomp-HT(G,Σ)

Initialize: IDEdges← ∅
repeat

IDEdges← IDEdges∪Rec-Decomp(G,Σ, IDEdges)
until One iteration after all coefficients have been identified or no coefficients have been identified
return IDEdges

Algorithm 4 Rec-Decomp(G,Σ, IDEdges)

V ← vertices in G
Edges← all edges in G
for each c-component, Si, in G do

IDEdges = IDEdges∪ HT-Constraints(GSi ,ΣSi , IDEdges)
end for
if IDEdges = Edges then

Return IDEdges
else

for each descendant set, Di, in G do
IDEdges← IDEdges∪Rec-Decomp(GV \Di

,ΣV \Di
, IDEdges)

end for
end if
return IDEdges

Theorem 3. Let M be a linear SEM with variables V . Let M
′

be a non-parametric SEM with
identical structure to M . If the direct effect of x on x for x, y ∈ V is identified in M

′
then the

coefficient Λxy in M is g-HTC identifiable and can be identified using Algorithm 3.

Proof. Let G be the causal graph of M and M
′
. Suppose the direct effect of x on y is identified in

M
′
. Then according to Theorem 3 of (Shpitser, 2008), there does not exist a subgraph of G that is

a y-rooted c-tree (Shpitser, 2008). This implies that MACS(y) = y. By recursively decomposing
the graph into c-components and marginalizing descendant sets, we can obtain a graph where only
MACS(y) and its parents remain in the graph. Since MACS(Y ) = y, the parents of y in this graph
represent a g-HT admissible set that allows the identification of all coefficients of y.

Theorem 4. Any Q-constraint, QS ⊥ Z, in a linear SEM, has an equivalent set of HT-constraints
that can be discovered using Algorithm 3.

Proof. Consider a Q-constraint, QS is not a function of Z. This constraint is obtained through
some sequence of c-component decomposition and marginalization of descendant sets. In the last
step, QS is identified from QS∪W for some W such that Z ⊂ W ∪ Pa(W ). Let G

′
= GS∪W .

Now QS is not a function of Z implies that Z |= G′S|Pa(S) since Z must be ordered before S and,
therefore, Z /∈ De(S). Similarly, Z |= G′S|Pa(S) implies that QS is not a function of Z. As a
result, the Q-constraint is obtained if and only if Z |= G′S|Pa(S), where Z is ordered before S, and a
Q-constraint is equivalent to a conditional independence constraint in the distribution, PS∪W .

Since pairwise independence implies independence in normal distributions, the constraint
Z |= S|Pa(S) is equivalent to the set of conditional independences, {zi |= S|Pa(S)}, where zi ∈ Z.
We now show that there exists an equivalent HT-constraint for each conditional independence,
zi |= S|Pa(S) in the distribution PS∪W . G

′
is obtainable from recursive c-component decomposition,
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and, in G
′
, Pa(S) satisfies conditions (i)-(iii) of the g-HTC for the edges from Pa(S) to S. Addi-

tionally, zi is not half-trek reachable from S and either has a half-trek to S or is separated entirely
from S. In both cases, we obtain a HT-constraint that is equivalent to the conditional independence
constraint Z ⊥ S|Pa(S) in the distribution, PS∪W .

If zi is separated entirely from S then the constraint is that zi is independent of s. In Algorithm 2,
this is exactly the constraint that is outputted. If zi is separated from S by Pa(S), then Algorithm 2
outputs a constraint that is equivalent to zi is independent of S given Pa(S). One way to see this is
that the conditional covariance matrix of {z} ∪ S given Pa(S) in PS∪W is the Schur complement of
Σ{z}∪S in Σ, where Σ is the covariance matrix of {z}∪S∪Pa(S) in PS∪W and Σz∪S is the entries of
Σ for {z}∪S. If we rearrange the constraint outputted by Algorithm 2 to read bw−aw∗A−1right∗b = 0,
then we see that it is simply stating the conditional independence constraint.

Lemma 3. Any dormant independence, x |= y|w, do(Z), with x and y singletons has an equivalent
Q-constraint.

Proof. Let MACS(Z) denote the maximal ancestral confounded set of Z (Shpitser and Pearl,
2008), the maximal set in which MACS(Z) = Anc(Z)G(MACS(Z)) = C(Z)G(MACS(Z)), where
G(MACS(Z)) is the subgraph of G containing only the variables in MACS(Z) and C(Z) is the
c-component of Z.

According to Theorem 6 of Shpitser and Pearl (2008), there exists a dormant independence be-
tween singletons, x and y, if and only if x is not a parent of MACS(y), y is not a parent of
MACS(x), and there is no bidirected arc between MACS(x) and MACS(y). In this case,
x |= y|do(Pa(MACS(x) ∪MACS(y)), (MACS(x) ∪ (MACS(y) \ {x, y}. Now, it is not hard
to show using results from (Tian, 2002) that QMACS(y) is identifiable. Further, since there is no
bidirected arc between MACS(x) and MACS(y), it is possible to identify QMACS(y) without
marginalizing over x. Finally, we know that x /∈ Pa(MACS(y)) so we obtain the Q-constraint,
QMACS(y) is not a function of x.

Now, we will show that the Q-constraint, QMACS(y) ⊥ x also implies the dormant independence,
x |= y|do(Pa(MACS(x) ∪MACS(y)), (MACS(x) ∪ (MACS(y) \ {x, y}. In proving Theorem
5, we showed that QMACS(y) ⊥ x implies that y |= x|Pa(S) in some distribution, QS∪W , where
y ∈ S and x ∈ W . Recalling that a Q-factor is just an interventional distribution, we have a
dormant independence between x and y. Since Theorem 6 of (Shpitser and Pearl, 2008) gives a
necessary and sufficient condition for dormant independence between x and y, we also have that
x |= y|do(Pa(MACS(x) ∪MACS(y)), (MACS(x) ∪ (MACS(y) \ {x, y}.
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