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Abstract

Among the many peculiarities that were dubbed “paradoxes” by well meaning
statisticians, the one reported by Frederic M. Lord in 1967 has earned a special status.
Although it can be viewed, formally, as a version of Simpson’s paradox (Arah, 2008;
Tu et al., 2008; Pearl, 2014b) its reputation has gone much worse. Unlike Simpson’s
reversal, Lord’s is easier to state, harder to disentangle (Wainer and Brown, 2007) and,
for some reason, it has been lingering for almost four decades, under several interpre-
tations and re-interpretations (Holland and Rubin, 1983), and it keeps coming up in
new situations and under new lights (van Breukelen, 2013; Senn, 2006; Eriksson and
Häggström, 2014). Most peculiar yet, while some of its variants has received a satis-
factory resolution (Glymour, 2006; Hernández-Dı́az et al., 2006), the original version
presented by Lord, to the best of my knowledge, has not been given a proper treatment,
not to mention a resolution.

The purpose of this paper is to trace back Lord’s paradox from its original formu-
lation, resolve it using modern tools of causal analysis, explain why it resisted prior
attempts at resolution and, finally, address the general methodological issue of whether
adjustments for pre-existing conditions is justified in group comparison applications.

1 Lord’s original dilemma

Any attempt to describe Lord’s paradox in words other than those used by Lord himself can
only do injustice to the clarity and freshness with which it was first enunciated in 1967. We
will begin therefore by listening to Lord’s own words.

“A large university is interested in investigating the effects on the students of
the diet provided in the university dining halls and any sex difference in these
effects. Various types of data are gathered. In particular, the weight of each
student at the time of his arrival in September and his weight the following June
are recorded.
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Figure 1: Lord’s method of displaying no change in average gain (WF −WI) co-habitating
with an increase in adjusted weight.

At the end of the school year, the data are independently examined by two
statisticians. Both statisticians divide the students according to sex. The first
statistician examines the mean weight of the girls at the beginning of the year and
at the end of the year and finds these to be identical. On further investigation,
he finds that the frequency distribution of weight for the girls at the end of the
year is actually the same as it was at the beginning.

He finds the same to be true for the boys. Although the weight of individual
boys and girls has usually changed during the course of the year, perhaps by a
considerable amount, the group of girls considered as a whole has not changed
in weight, nor has the group of boys. A sort of dynamic equilibrium has been
maintained during the year.

The whole situation is shown by the solid lines in the diagram [Fig. 1]. Here
the two ellipses represent separate scatter-plots for the boys and the girls. The
frequency distributions of initial weight are indicated at the top of the diagram
and the identical distributions of final weight are indicated on the left side. People
falling on the solid 45◦ line through the origin are people whose initial and final
weight are identical. The fact that the center of each ellipse lies on this 45◦ line
represents the fact that there is no mean gain for either sex.

The first statistician concludes that as far as these data are concerned, there is
no evidence of any interesting effect of the school diet (or of anything else) on
student. In particular, there is no evidence of any differential effect on the two
sexes, since neither group shows any systematic change.

The second statistician, working independently, decides to do an analysis of co-
variance. After some necessary preliminaries, he determines that the slope of
the regression line of final weight on initial weight is essentially the same for
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the two sexes. This is fortunate since it makes possible a fruitful comparison of
the intercepts of the regression lines. (The two regression lines are shown in the
diagram as dotted lines. The figure is accurately drawn, so that these regression
lines have the appropriate mathematical relationships to the ellipses and to the
45◦ line through the origin.) He finds that the difference between the intercepts
is statistically highly significant.

The second statistician concludes, as is customary in such cases, that the boys
showed significantly more gain in weight than the girls when proper allowance
is made for differences in initial weight between the two sexes. When pressed to
explain the meaning of this conclusion in more precise terms, he points out the
following: If one selects on the basis of initial weight a subgroup of boys and a
subgroup of girls having identical frequency distributions of initial weight, the
relative position of the regression lines shows that the subgroup of boys is going
to gain substantially more during the year than the subgroup of girls.

The college dietician is having some difficulty reconciling the conclusions of the
two statisticians. The first statistician asserts that there is no evidence of any
trend or change during the year for either boys or girls, and consequently, a
fortiori, no evidence of a differential change between the sexes. The data clearly
support the first statistician since the distribution of weight has not changed for
either sex.

The second statistician insists that wherever boys and girls start with the same
initial weight, it is visually (as well as statistically) obvious from the scatter-plot
that the subgroup of boys gains more than the subgroup of girls.

It seems to the present writer that if the dietician had only one statistician,
she would reach very different conclusions depending on whether this were the
first statistician or the second. On the other hand, granted the usual linearity
assumptions of the analysis of covariance, the conclusions of each statistician are
visibly correct.

This paradox seems to impose a difficult interpretative task on those who wish
to make similar studies of preformed groups. It seems likely that confused inter-
pretations may arise from such studies.

What is the “explanation” of the paradox? There are as many different expla-
nations as there are explainers.

In the writer’s opinion, the explanation is that with the data usually available
for such studies, there simply is no logical or statistical procedure that can be
counted on to make proper allowances for uncontrolled preexisting differences
between groups. The researcher wants to know how the groups would have
compared if there had been no preexisting uncontrolled differences. The usual
research study of this type is attempting to answer a question that simply cannot
be answered in any rigorous way on the basis of available data.” (Lord, 1967)

These pessimistic words conclude Lord’s narrative, and became a challenge to almost half
a century of speculations and interpretations. Most worthy of attention is his counterfactual
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definition of the research problem: “The researcher wants to know how the groups would
have compared if there had been no preexisting uncontrolled differences.”

2 Interpretation

Before attempting to cast Lord’s story in a formal setting, let us examine whether his
dilemma is expressed convincingly.

Since no description is given nor data taken under the old diet, the dilemma faced cannot
focus on a comparison between the two diets, old and new. Rather, the new diet must
be taken as a given condition, which, together with time, metabolism and natural growth
has brought about weight changes in some individuals, from their initial weight (WI) in
September, to their final weight (WF ) in June. The research question at hand is whether
the weight change process (under a fixed diet condition) is the same for the two sexes. In
other words, the question is whether the distinct metabolism of boys has a different effect
on their growth pattern than that of girls, under the given diet. Indeed, differential gain
is the main concern of both statisticians: the first concludes that “there is no evidence of
any differential effect on the two sexes,” and the second insists that “whether boys and girls
start with the same initial weight, . . . the subgroup of boys gains more that the subgroup of
girls.” The issue of assessing differential gain “under the same initial conditions” is further
emphasized in Lord’s last paragraph, stating: “The researcher wants to know how the groups
would have compared if there were no preexisting uncontrolled differences.” Here the use of
the counterfactual expression “if there were no preexisting differences” leaves no doubt that
it is the effect of gender on weight gain that is the center of investigation while diet, since it
is common to all subjects, should be treated as a fixed background condition.

With this understanding of the research question, what is the difference between the two
statisticians? Both were asked to determine if there is a differential gain among the sexes
but they came back with a different answer. Statistician-1 simply compared the weight gain
distributions of the two groups and concluded that there is no change. The perfect overlap
of the two ellipses on the 45◦ line indicates that there is no difference in growth rate of the
two sexes.

Statistician-2 however noticed that the initial weight of boys is higher (on average) than
that of girls and, moreover, since the difference in initial weight can plausibly be attributed
to their gender difference, he decides to “make proper allowance” for this difference and
adjust for WI , so as to compare the groups on the basis of gender alone. Here, he finds that
Boys gain more than girl in every stratum of WI so, naturally, he concludes that boys gain
more than girls on the average, contrary to statistician-1.

Thus, the paradox which we need to address is: Why should a greater weight gain (for
men) which is found in every stratum of the initial weight WI suddenly disappear when
averaged over the group as a whole. In other words, we expect the finding of statistician-2
to constrain the finding of statistician-1. We feel that they should comply with the “Sure
Thing Principle” (Savage, 1962; Pearl, 2016), which states (loosely): “A relation that holds
in every subpopulation should not disappear or reverse sign when applied to the population
as a whole.” Violation of this principle is behind Simpson’s paradox (“good for men, good
for women yet bad for people”) and it is this violation that must have triggered Lord’s
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astonishment as to why the two statisticians do not arrive at the same conclusion.
Note that this astonishment haunts us regardless of what takes place under the old diet;

the data generated under the new diet (Figure 1) is sufficient to make us wonder why it is
that generalizing what statistician-2 finds in every stratum of WI (i.e., and increase gain for
males) contradicts what statistician-1 finds in the population as a whole (i.e., no increase
overall).

The resolution of the paradox is the same as the resolution of Simpson’s paradox: The
sure thing principle does not forbid reversal (or disappearance) of local associations upon
aggregation, it forbids only reversal of causal effects when the subpopulations remains of
the same size. In our case, the subpopulations characterized by each stratum of WI do nor
remain constant as we move from males to females, girls populate the underweight strata
much more than boys.

The clearest way to see that association reversal should not betray our intuition (nor the
sure thing principle) is to view gender as the treatment variable and examine its effect on
weight gain.

With this understanding of the research question, we are facing a mediation problem in
which the initial weight mediates the causal process between gender and the final weight. The
first statistician estimated the total effect (of gender on gain) while the second statisticians
estimated the direct effect, adjusting for the mediator, WI .

1

Put in these terms, it should come as no surprise that the two statisticians came up with
different, but hardly contradictory, answers. Cases where total and direct effects differ in
sign and magnitude are commonplace. For example, we are not at all surprised when small-
pox inoculation carries risks of fatal reaction, yet reduces overall mortality by iradicating
smallpox. The direct effect (fatal reaction) in this case is negative for every stratum of the
population, yet the total effect (on mortality) is positive for the population as a whole.

Thus, Lord’s pessimistic conclusions were rather premature. It is not the case that “there
simply is no logical or statistical procedure that can be counted on to make proper allowances
for uncontrolled preexisting differences between groups.” On the contrary, such procedures,
though not available in Lord’s time, are now well developed in the causal mediation literature
(Robins and Greenland, 1992; Pearl, 2001; Imai et al., 2010; Valeri and VanderWeele, 2013).
They require only that researchers specify in advance whether it is the direct or total effect
that is the target of their investigations. Both statisticians were in fact correct, though each
estimated a different effect. statistician-1 aimed at estimating the total effect (of gender on
weight gain) and, based on the data available properly concluded that there is no gender
difference. The second statistician aimed at estimating the direct effect of gender on weight
gain, unmediated by the initial weight and, after properly adjusting for the initial weight (i.e.,
the mediator) rightly concluded that there is significant gender difference, as seen through
the displaced ellipses.

In the next section we provide a formal analysis for these two research questions.

1Readers who feel uncomfortable treating gender as a cause can think of the make up of gender-specific
hormones as the causal variable; it causes differences in initial weight, and may also have direct effect on
how a student responds to the new diet.
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3 The paradox in a formal setting

The diagram in Fig. 2 describes Lord’s dilemma as interpreted in the previous section. In
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Figure 2: (a) Lord’s model, showing Initial Weight (WI) as a mediator between Sex (S) and
Final Weight (WF ). (b) A linear version of (a).

this model S stands for Sex, WI for the initial weight, WF for the final weight and Y for the
gain WF −WI . As the diagram shows, the initial weight WI is affected by Sex and affects
the final weight. It is thus a mediator between S and WF as well as between S and the gain
Y .

Assuming no confounding,2 the nonparametric mediation model for Fig. 2(a) lends itself
to simple analysis; both the total effect and direct effect are estimable from the data (Pearl,
2001). In particular, the total effect is given by the regression

TE = E(Y |S = 1)− E(Y |S = 0),

while the direct effect is given by

DE =
∑
w

[E(Y |S = 1,WI = w)− E(Y |S = 0,WI = w)]P (WI = w|S = 0).

Here we take S = 1 to represent boys and S = 0 to represent girls.3

Clearly these two expressions are quite different; there is no wonder therefore that
they give different estimates. In Lord’s example, the total effect is zero, as confirmed by
statistician-1’s observation that the two ellipses map into identical projections onto the
45◦ line, and the direct effect (with the baseline WI as mediator) is non-zero, as seen by
statistician-2, who observed the displaced ellipses for every stratum WI = w.

An algebraic way of seeing how these results can come about is provided by the linear
version of the model, shown in Fig. 2(b). Assuming standardized variables, the total effect is

2Since Sex is an exogenous variable, it acts “as if randomized,” and its total effect is not confounded; it
can be estimated by regression. However, the WI → WF relationship may be confounded by unobserved
common causes of the two, which might distort the direct effect. We discuss this situation in Section 6; here
we assume no such confounding.

3Readers will recognize the expression for DE as the “Natural Direct Effect” (Pearl, 2001) or the “Me-
diation Formula” which has become standard in mediation analysis (VanderWeele, 2009; Imai et al., 2010).
(See Pearl (2014a) for identification conditions.)
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given by the sum of the products of all coefficients along paths from S to Y (Wright, 1921;
Pearl, 2013),

TE = (b + ac)− a = b− a(1− c)

while the direct effect skips the paths going through WI , and gives

DE = b.

The observed condition of zero total effect can easily be realized by setting b = a(1−c), which
accounts for the observations shown in Fig. 1. We see that the total effect TE vanishes due
to cancelation of the three paths leading from S to Y ; the direct effect is positive (b), while
the indirect effect is equal and negative, resulting in zero total effect. Translated, whereas
on average a boy gains more than a girl of equal initial weight, the fact that sex differences
produce more heavy-weight boys than girls and that we subtract a portion of this difference,
renders the overall gain for boys equal to that of girls.

4 Other versions of Lord’s paradox

Early efforts to resolve Lord’s paradox were made by Bock (1975, pp. 490–496), Judd and
Kenny (1981b); Cox and McCullagh (1982), and Holland and Rubin (1983). Since no data
was given on the old-diet, authors had to assume a model of weight gain under old-diet
conditions and concluded, almost uniformly, that both statisticians were in fact correct, de-
pending on the model assumed and on the precise questions that the statisticians attempted
to answer. Bock, for example, sees no contradiction between the two statisticians. The first
statistician asks: “Is there a difference in the average gain in weight of the population?”
and correctly answered: “No!” The second statistician asks: “Is a man expected to show
a greater weight gain than a woman, given that they are initially of the same weight?”
and answers it correctly: “Yes!” (Bock, 1975, p. 491). Bock does not explain why the two
conclusions are noncontradictory given the the first is merely generalization of the second.

Cox and McCullagh (1982) computed the causal effect of the new diet by assuming that,
under the old diet, the final weight of every individual will remain the same as the initial
weight. Accordingly, they found that statistician-1 is correct, the average causal effect (ACE)
of the new diet on weight gain is zero for both men and women. Based on the same model,
they found that statistician-2 is also correct, though he simply asks a different question,
concerning the behavior of individual units within each population. Here statistician-2 finds
that individual units are affected differently; initially overweight individuals tend to lose
weight, and initially underweight individuals tend to gain weight. Naturally, then, comparing
boys and girls at the same initial weight would show boys losing more weight than girls.
Again, what Cox and McCullagh left unanswered is why the two findings – differential gain
on every stratum and equal gain on the average – should not contradict the “sure thing”
principle.

Holland and Rubin assumed several different models for the old-diet and showed that,
in contrast to the Cox and McCullagh’s model, the gender specific causal effects of the
diet may be non-zero for both men and women, and their difference can be either positive
or negative depending on the parameters of the assumed model. Thus, conclude Holland
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and Rubin, neither statistician is correct or incorrect; it all depends on which model one
assumes for the old diet weight gain. What Holland and Rubin did not explain is what in
the new-diet data gave Lord’s the unmistaken impression that statisticians 1 and 2 reach
conflicting conclusions, namely, why their findings should not be constrained by the Sure
Thing Principle.

Another question left unanswered by early interpreters is Lord’s appeal for a general
strategy of “allowing” for initial group differences. “The researcher wants to know how the
groups would have compared if there had been no preexisting uncontrolled differences.” In
other words, is there a general criterion for deciding whether controlling for pre-treatment
differences is a valid thing to do, in case we wish to compare group behavior that is free from
the influence of those differences.

Such a general criterion is provided by the graphical analysis presented in the previous
section. The criterion coincides with the answer to the question of whether adjustment for
covariates (in our case, WI) is appropriate for estimating total and direct effects. It is based
on the graph structure alone, free of parametric assumptions that renders the analysis of
Holland and Rubin undecisive.

Holland and Rubin did not attempt to interpret the problem in terms of the effect of
gender, as we did in the previous section, because gender, being unmanipulable, cannot
have a causal effect according to Holland and Rubin’s doctrine of “no causation without
manipulation” (Holland, 1986). let us apply it to a model proposed by Wainer and Brown
(2007), where the target quantity is the effect of diet, not of gender. Wainer and Brown
simplified Lord’s original problem and interpreted the two ellipses of Fig. 1 to represent two
different diets, or two dining halls, each serving a different diet. They further removed gender
from consideration and obtained the two data sets seen in Fig. 3 [their Figure 9]. Since the
choice of dining tables is manipulable, causal effects are well defined, and they presented
Lord’s dilemma as choosing between two methods of estimating the causal effect of dining
room on weight gain. In their words:

“The first statistician calculated the difference between each student’s weight in
June and in September, and found that the average weight gain in each dining
room was zero. This result is depicted graphically in Fig. 3 [their Figure 9]. with
the bivariate dispersion within each dining hall shown as an oval. Note how the
distribution of differences is symmetric around the 45◦ line (the principal axis for
both groups) that is shown graphically by the distribution curve reflecting the
statistician’s findings of no differential effect of dining room.

The second statistician covaried out each student’s weight in September from
his/her weight in June and discovered that the average weight gain was greater
in Dining Room B than in Dining Room A. This result is depicted graphically
in Fig. 4 [their Figure 10]. In this figure the two drawn-in lines represent the
regression lines associated with each dining hall. They are not the same as
the principal axes because the relationship between September and June is not
perfect. Note how the distribution of adjusted weights in June is symmetric
around each of the two different regression lines.4 From this result the second

4The regression line is the line along which the distribution of final weight, achieves its maximum value,
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Fig. 9. A graphical depiction of Lord’s Paradox showing the bivariate distribution of weights in two dining
rooms at the beginning and end of each year augmented by the 45◦ line (the principal axis).

dining hall shown as an oval. Note how the distribution of differences is symmetric
around the 45◦ line (the principal axis for both groups) that is shown graphically by the
distribution curve reflecting the statistician’s findings of no differential effect of dining
room.

The second statistician covaried out each student’s weight in September from his/her
weight in June and discovered that the average weight gain was greater in Dining Room
B than Dining Room A. This result is depicted graphically in Figure 10. In this figure the
two drawn-in lines represent the regression lines associated with each dining hall. They
are not the same as the principal axes because the relationship between September and
June is not perfect. Note how the distribution of adjusted weights in June is symmetric
around each of the two different regression lines. From this result the second statistician
concluded that there was a differential effect of dining room, and that the average size
of the effect was the distance between the two regression lines.

So, the first statistician concluded that there was no effect of dining room on weight
gain and the second concluded there was. Who was right? Should we use change scores
or an analysis of covariance? To decide which of Lord’s two statistician’s had the correct
answer requires that we make clear exactly what was the question being asked. The most
plausible question is causal, “What was the causal effect of eating in Dining Room B?”
But causal questions are always comparative6 and the decision of how to estimate the
standard of comparison is what differentiates Lord’s two statisticians. Each statistician
made an untestable assumption about the subjunctive situation of what would have been
a student’s weight in June had that student not been in the dining room of interest. This
devolves directly from the notion of a causal effect being the difference between what
happened under the treatment condition vs. what happened under the control condition.

6 The comedian Henny Youngman’s signature joke about causal inference grew from his reply to “How’s
your wife?” He would then quip, “Compared to what?”

Figure 3: A scatter plot of a simplified Lord’s Paradox showing the bivariate distribution of
weights in two dining rooms at the beginning and end of each year [after Wainer and Brown,
2007].

statistician concluded that there was a differential effect of dining room, and that
the average size of the effect was the distance between the two regression lines.

So, the first statistician concluded that there was no effect of dining room on
weight gain and the second concluded there was. Who was right? Should we
use change scores or an analysis of covariance? To decide which of Lord’s two
statistician’s had the correct answer requires that we make clear exactly what
was the question being asked. The most plausible question is causal, ‘What was
the causal effect of eating in Dining Room B?’ ” (Wainer and Brown, 2007)

Wainer and Brown’s model is depicted in Fig. 5. Here, the initial weight is no longer
treatment dependent for it was measured prior to treatment. It is in fact a confounder since,
as shown in the data of Fig. 3 [their Figure 9], overweight students seem more inclined to
choose Dining Room B, compared with underweight students. So, WI affects both diet (D)
and final weight (W ).

It is clear from the graph of Fig. 5 that, regardless of whether one aims at estimating
the effect of diet on the final weight WF or on the weight gain (Y ) adjustment for the initial
weight WI is necessary. Thus, statistician-2, who adjusted for WI (ANCOVA) was correct,
while statistician-1, who was charmed by the equality of average weight gain under the two
diets was flatly wrong. This equality reflects no change in expected weight gain predicated
upon finding a subject in Dining Room A as compared to B; it does not represent equality
of gains due to a change from Dining Room A to dining room B. Confounders need to

for any given initial weight.
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Fig. 10. A graphical depiction of Lord’s Paradox showing the bivariate distribution of weights in two dining
rooms at the beginning and end of each year augmented by the regression lines for each group.

The fundamental difficulty with causal inference is that we can never observe both
situations. Thus we must make some sort of assumption about what would have hap-
pened had the person been in the other group. In practice we get hints of what such a
number would be through averaging and random assignment. This allows us to safely
assume that, on average, the experimental and control groups are the same.

In Lord’s set-up the explication is reasonably complex. To draw his conclusion the
first statistician makes the implicit assumption that a student’s control diet (whatever
that might be) would have left the student with the same weight in June as he had
in September. This is entirely untestable. The second statistician’s conclusions are de-
pendent on an allied, but different, untestable assumption. This assumption is that the
student’s weight in June, under the unadministered control condition, is a linear func-
tion of his weight in September. Further, that the same linear function must apply to all
students in the same dining room.

How does this approach help us to untangle the conflicting estimates for the relative
value of medical school for the two racial groups? To do this requires a little notation
and some algebra.

The elements of the model7 are:

1. A population of units, P .
2. An “experimental manipulation,” with levels T and C and its associated indicator

variable, S.
3. A subpopulation indicator, G.
4. An outcome variable, Y .
5. A concomitant variable, X.

7 This section borrows heavily from Holland and Rubin (1983, pp. 5–8) and uses their words as well as
their ideas.

Figure 4: A graphical depiction of Lord’s Paradox showing the bivariate distribution of
weights in two dining rooms at the beginning and end of each year augmented by the regres-
sion lines for each group [after Wainer and Brown, 2007].

be “controlled for” when causal effects are estimated, and failure to do so leads to biased
results. The right answer, therefore, lies with statistician-2, who concluded that diet A led to
significantly more gain in weight than diet B when proper allowance is made for differences
in initial weight between the two groups. This also explains why the Sure Thing Principle
need not constrain the predictions of the two statistician; the principle applies to causal
effects, not to statistical predictions (Pearl, 2016).

Interestingly, Wainer and Brown did not reach this conclusion. Instead, they concluded
that the two statisticians were right, but made different assumptions. In their words:

“To draw his conclusion the first statistician makes the implicit assumption that a
student’s control diet (whatever that might be) would have left the student with
the same weight in June as he had in September. This is entirely untestable.
The second statistician’s conclusions are dependent on an allied, but different,
untestable assumption. This assumption is that the student’s weight in June,
under the unadministered control condition, is a linear function of his weight in
September. Further, that the same linear function must apply to all students in
the same dining room.”

I differ from Wainer and Brown in this conclusion. There is no need for the assump-
tion of linearity to justify the correctness of statistician-2’s insistence on using ANCOVA.
Simultaneously, no assumption whatsoever would justify statistician-1 conclusion. Failure to
control for confounding cannot be remedied by linearity, and proper control for confounder
works both in linear and nonlinear models.

It is worth re-emphasizing at this point that our analysis relies, of course, upon the
assumption of no unobserved confounders. When latent confounders are present, the ma-
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Figure 5: Graphical representation of Wainer and Brown’s scenario in which the initial weight
(WI) is a determiner of diet (D), and the effect of Diet on gain requires an adjustment for
WI .

chinery of do-calculus (Pearl, 1994; Shpitser and Pearl, 2008) need be invoked to decide if the
target effects are estimable or not. If not, then both statisticians are wrong, none of the two
methods would result in unbiased estimate, and Lord’s despair is perhaps justified: “The
usual research study of this type is attempting to answer a question that simply cannot be
answered in any rigorous way on the bases of available data.”

However, the need to invoke causal assumptions, beyond the available data (e.g., no
unmeasured confounding) applies to ALL tasks of causal inference (in observational studies),
so there is nothing special to Lord’s paradox. The unique challenge that Lord’s paradox
presented to the research community was to decide, from a rudimentary qualitative model of
reality, whether allowance for preexisting differences should be made and, if so, how. We have
seen that in the case of Lord’s original story (Fig. 1) as well as in the dining rooms variant
of the story (Fig. 3) such determination could be made using plausible qualitative models,
without making any assumptions about the functional form of the relationship between a
treatment and its outcomes.5

In the first story, both statisticians were right, each aiming at a different effect. In the
second story, one was right (ANCOVA) and one was wrong. But in no case did we face a
predicament like the one that triggered Lord’s curiosity: two seemingly legitimate methods
giving two different answers to the same research question. Lord gave in to the clash, and
declared surrender. But he shouldn’t have; whether we can estimate a given effect or not
(for a given scenario) is a mathematical question with a yes/no answer, and should not be
shaken by a clash of intuitions.

5In all fairness to Holland and Rubin, one should mention that the facility to make this determination
(i.e., for any qualitative model, regardless how complex), was not available in 1983; it was developed a decade
later and was kept relatively unknown in potential outcome circles (Pearl, 1993; Rubin, 2004; Pearl, 2009b;
Rubin, 2009). It is also worth noting that the adjusted method used by statistician-2 is not always correct;
examples are abundant where the unadjusted method used by statistician-1 gives the correct result (Pearl,
2009b; Shrier, 2009). The correct criterion for proper choice of covariates for adjustment is given by the
back-door condition (Pearl, 1993) and is the same as that deployed in the resolution of Simpson’s paradox
(Pearl, 2014b).
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5 From Weight Gain to Birth Weight

The problem of managing differential base-rates is pervasive in all the empirical sciences.
Whenever the responses of two or more groups to a treatment or a stimulus are compared,
it is essential to adjust (or allow) for initial differences among those groups. The merits of
adjusting for such differences were noted as far back as Fisher (1935)

“For example, in a feeding experiment with animals, where we are concerned to
measure their response to a number of different rations or diets, . . . it may well be
that the differences in initial weight constitute an uncontrolled cause of variation
among the responses to treatment, which will sensibly diminish the precision of
the comparisons” (Fisher, 1935, p. 168).

“They may, however constitute an element of error which it is desirable, and
possibly, to eliminate. The possibility arises from the fact that, without being
equalised, these differences of initial weight may none the less be measured. Their
effects upon our final results may approximately be estimated, and the results
adjusted in accordance with the estimated effects, so as to afford a final preci-
sion, in many cases, almost as great as though complete equalisation had been
possible” (Fisher, 1935, pp. 168–169).

In modern data analysis, the problem continued to haunt researchers across many disci-
plines. For example, in studying the effect of stimulus on the heart rates of rats of different
ages, researchers found that the effect was different for young rats than for older rats. But
their baseline heart rates were also quite different. They asked, “How are we to adjust
heart-rate data obtained after an experimental treatment, for differences among animals in
their base rates” (Wainer, 1991). Likewise, in studying the differential effect of schooling on
white and black students, the question arises whether one should adjust for the difference
of admission test scores between black and white students (Wainer and Brown, 2007). Lord
himself recognized the generality of the problem as it surfaced in educational testing:

“For example, a group of underprivileged students is to be compared with a con-
trol group on freshman grade-point average (y). The underprivileged group has
a considerably lower mean grade-point average than the control group. However,
the underprivileged group started college with a considerably lower mean apti-
tude score (x) than did the control group. Is the observed difference between
the groups on y attributable to initial differences on x? Or shall we conclude
that the two groups achieve differently even after allowing for initial differences
in measured aptitude?” (Lord, 1969, p. 336)

Lord specifically chose x (aptitude score) and y (grade point average) to be two different
variables, measured on different scales, to prevent the temptations to focus on their difference,
y − x, as the target of interest (as statistician-1 did in the weight gain example.) In his
examples, y and x can be arbitrary variables, and still, “the investigator wishes to make an
“adjustment” to cancel out the effect of preexisting differences between the two groups on
some other variable x” (Lord, 1969, p. 336).

Lord also raised the methodological question as to why anyone would wish “to cancel
out the effect” on x. His answer was that, in certain situations we may be in possession
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of practical means of suppressing the differences in x, and we wish to know if the group
difference in itself would produce differences in y. His example was an agricultural experiment
in which a given treatment shows an effect on yield (y) but also on other conditions (e.g.,
plant height) that can be controlled physically (e.g, by a certain fertilizer). The question then
is whether the effort and expense associated with such physical control would be justified,
given what we know from the data at hand. These decision-theoretic considerations have
indeed been cited as the core of causal mediation analysis (Pearl, 2001, 2014b), where the
value of estimating the indirect effect is tied to our ability to suppress it (or suppress the
direct effect).

As mentioned earlier, the generic problem posed by Lord’s paradox was initially addressed
by researchers following the potential outcome framework (Holland and Rubin, 1983; Wainer,
1991; Holland, 2005; Wainer and Brown, 2007). However, lacking graphical tools for guid-
ance, these analyses left Lord’s challenge in a state of stalemate and indecision, concluding
merely that the choice between the two methods of analysis depends on untestable assump-
tions; the problem of deciding this choice in cases where qualitative models are available
remained open.

The challenge has more recently been picked up in the health sciences, where graphical
tools are deployed to great advantage (Glymour, 2006; Arah, 2008; Tu et al., 2008). Here,
Lord’s paradox has surfaced through a variant named the Birth Weight paradox, which
presents a new twist. Whereas in Lord’s setup we faced a clash between two, seemingly
legitimate methods of analysis, in the Birth Weight paradox we face a clash between a valid
method of analysis (ANCOVA) and the scientific plausibility of its conclusion.

6 The Birth Weight Paradox

The birth-weight paradox concerns the relationship between the birth weight and mortality
rate of children born to tobacco smoking mothers. It is dubbed a “paradox” because, contrary
to expectations, low birth-weight children born to smoking mothers have a lower infant
mortality rate than the low birth weight children of non-smokers (Wilcox, 2006).

Traditionally, low birth weight babies have a significantly higher mortality rate than
others (it is in fact 100-fold higher). Research also shows that children of smoking mothers
are more likely to be of low birth weight than children of non-smoking mothers. Thus, by
extension the child mortality rate should be higher among children of smoking mothers. Yet
real-world observation shows that low birth weight babies of smoking mothers have a lower
child mortality than low birth weight babies of non-smokers.

At first sight these findings seemed to suggest that, at least for some babies, having a
smoking mother might be beneficial to one’s health. However, this is not necessarily the
case; the paradox can be explained as an instance of “collider bias” (Cole et al., 2010) or
“explain away” effect (Kim and Pearl, 1983).6 The reasoning goes as follows: smoking may
be harmful in that it contributes to low birth weight, but other causes of low birth weight

6Other names for this effect are “Berkson paradox,” or “Berkson fallacy” (Berkson, 1946), which char-
acterizes the general phenomenon whereby two independent causes become dependent upon observing their
common effect. This phenomenon is the basis of the d-separation criterion in graphical models (Pearl, 1988,
2009a).
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are generally more harmful. Now consider a low weight baby. The reason for its low weight
can be either a smoking mother or those other causes. However, finding that the mother
smokes “explains away” the low weight and reduces the likelihood that those “other causes”
are present. This reduces the mortality rate due those other causes; smoking remains the
likely cause of mortality, which is less dangerous. The net result being a lower mortality rate
among low weight babies whose mother smokes, compared with with those whose mother
does not smoke (Hernández-Dı́az et al., 2006).

This phenomenon can easily be seen in the model of Fig. 6. We can explain it from

Smoking

Other causes

BW Death

Figure 6: Showing birth weight (BW ) as a “collider” affected by two independent causes:
“Smoking” and “Other causes.” Observing one cause (e.g., Smoking) explains away the
other and reduces its probability.

two perspectives. First, we can ask for the causal effect of birth weight on death. In this
context, we see that the desired effect is confounded by both Smoking and Other causes, and
if we control for Smoking, it still leaves the other confounder uncontrolled, resulting in bias.
Moreover, controlling for Smoking changes the probability of “Other causes” (through the
collider at BW ) in any stratum of BW . In particular, for underweight babies, BW = Low,
if we compare smoking with non-smoking mothers, we would be comparing babies for which
“Other causes” are rare with those for which “Other causes” are likely to occur (in order
to explain the low birth weight condition.) Now, since those “Other causes” may be more
dangerous to survival, we get the illusion that mortality rate increases for non-smoking
mothers.

The second perspective places the birth weight example in the context of Lord’s para-
dox and asks for the effect of smoking on mortality, discounting its effect on birth weight.
Paraphrased in Lord’s counterfactual language, “The researcher wants to know” how the
mortality rate of babies of smoking mothers would have compared to that of non-smoking
mothers, if there had been no preexisting uncontrolled differences in birth weight.” Note
that this question turns the problem into a mediation exercise, as in Lord’s original problem
(Fig. 2) and our task is to estimate the direct effect of Smoking on Death, unmediated by
Birth Weight.

There is however a structural difference between the mediation model of Fig. 2 and the
one in Fig. 6. Whereas in Fig. 2 we assumed no hidden confounders, such confounders are
present in Fig. 6, labeled “Other causes.” This makes a qualitative difference in our ability
to estimate the direct effect. Adjusting for the mediator (BW ) no longer severs all paths
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traversing the mediators, it actually opens a new path:

Smoking → BW ← Other causes→ Death,

by conditioning on the collider at BW . This path is spurious (i.e., non causal) and hence
produces bias.

A simple way of seeing this is to recall that conditioning on the event BW = Low does
not physically prevent BW from changing; it merely filters out from the analysis all babies
except those with BW = Low. Therefore, as we compare smoking with non-smoking mothers
for babies of equal birth weight we are actually comparing babies with no “Other causes”
to babies for whom “Other causes” are present. This of course will create an illusionary
increase in mortality rates for babies of non-smoking mothers, thus explaining the Birth
Weight paradox.

The fallibility of estimating direct effects by conditioning on (or “co-varying away”) the
mediator has been noted for quite some time (Robins and Greenland, 1992; Pearl, 1998;
Cole and Hernán, 2002) and has led to modern definitions of direct and indirect effects
based on counterfactual, rather than statistical conditioning (Robins and Greenland, 1992;
Pearl, 2001; VanderWeele, 2009). Fisher himself is reported to have failed on this question by
recommending the use of ANCOVA (conditioning) to “allow” for variations in the mediator
(Fisher, 1935, p. 165; Rubin, 2005). Fisher’s blunder led Rubin to conclude that “the
concepts of direct and indirect causal effects are generally ill-defined and often more deceptive
than helpful to clear statistical thinking” (Rubin, 2004). As a result, Frangakis and Rubin
(2002) proposed alternative definitions of direct and indirect effects based on “principal
strata” which, ironically, suffer from at least as many problems as Fisher’s (Pearl, 2011;
VanderWeele, 2011).

The Birth Weight paradox was instrumental in bringing this controversy to a resolution.
First, it has persuaded most epidemiologists that collider bias is a real phenomenon that
needs to be reckoned with (Cole et al., 2010). Second, it drove researchers to abandon
traditional mediation analysis (usually connected with Judd and Kenny (1981a) and Baron
and Kenny (1986)) in which mediation is define by statistical conditioning (or “statistical
control,” in which the mediator is “partialled out”), and replace it with causally defined
mediation analysis based on counterfactual conditioning (VanderWeele, 2009; Imai et al.,
2010; Pearl, 2012; Valeri and VanderWeele, 2013; Pearl, 2014a; Muthén, 2014). I believe
Frederic Lord would be mighty satisfied today with the development that his 1967 observation
has spawned.
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