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sexes. This is fortunate since it makes possible a fruitful comparison of the intercepts of the regression lines. (The two
regression lines are shown in the diagram as dotted lines. The figure is accurately drawn, so that these regression lines
have the appropriate mathematical relationships to the ellipses and to the 45° line through the origin.) He finds that the
difference between the intercepts is statistically highly significant.

The second statistician concludes, as is customary in such cases, that the boys showed significantlymore gain inweight than the
girls when proper allowance is made for differences in initial weight between the two sexes. When pressed to explain the
meaning of this conclusion in more precise terms, he points out the following: If one selects on the basis of initial weight a
subgroup of boys and a subgroup of girls having identical frequency distributions of initial weight, the relative position of the
regression lines shows that the subgroup of boys is going to gain substantially more during the year than the subgroup of girls.

The college dietician is having some difficulty reconciling the conclusions of the two statisticians. The first statistician
asserts that there is no evidence of any trend or change during the year for either boys or girls, and consequently, a fortiori,
no evidence of a differential change between the sexes. The data clearly support the first statistician since the distribution
of weight has not changed for either sex.

The second statistician insists that wherever boys and girls start with the same initial weight, it is visually (as well as
statistically) obvious from the scatter-plot that the subgroup of boys gains more than the subgroup of girls.

It seems to the present writer that if the dietician had only one statistician, she would reach very different conclusions
depending on whether this were the first statistician or the second. On the other hand, granted the usual linearity
assumptions of the analysis of covariance, the conclusions of each statistician are visibly correct.

This paradox seems to impose a difficult interpretative task on those who wish to make similar studies of preformed
groups. It seems likely that confused interpretations may arise from such studies.

What is the ‘explanation’ of the paradox? There are as many different explanations as there are explainers.

In the writer’s opinion, the explanation is that with the data usually available for such studies, there simply is no logical or
statistical procedure that can be counted on to make proper allowances for uncontrolled preexisting differences between
groups. The researcher wants to know how the groups would have compared if there had been no preexisting uncontrolled
differences. The usual research study of this type is attempting to answer a question that simply cannot be answered in any
rigorous way on the basis of available data.” [1]

These pessimistic words conclude Lord’s narrative, and became a challenge to almost half a century of
speculations and interpretations. Most worthy of attention is his counterfactual definition of the research
problem: “The researcher wants to know how the groups would have compared if there had been no
preexisting uncontrolled differences.”

Although Lord’s paradox can be viewed, formally, as a version of Simpson’s paradox [2–4], Lord’s is
easier to state, since the clash between the two statistician is demonstrated qualitatively, without appealing
to specific numerical information. Additionally, Lord’s paradox touches on a universal problem, how to
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Figure 1: Lord’s method of displaying no change in average gain ðWF � WIÞ co-habitating with an increase in adjusted weight.
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subpopulations characterized by each stratum of WI do not remain constant as we move from males to
females, girls populate the underweight strata much more than boys.

The clearest way to see that association reversal should not betray our intuition (nor the sure thing
principle) is to view gender as the treatment variable and examine its effect on weight gain.

With this understanding of the research question, we are facing a mediation problem in which the
initial weight mediates the causal process between gender and the final weight. The first statistician
estimated the total effect (of gender on gain) while the second statisticians estimated the direct effect,
adjusting for the mediator, WI .

1 Put in these terms, it should come as no surprise that the two statisticians
came up with different, but hardly contradictory, answers. Cases where total and direct effects differ in sign
and magnitude are commonplace. For example, we are not at all surprised when smallpox inoculation
carries risks of fatal reaction, yet reduces overall mortality by iradicating smallpox. The direct effect (fatal
reaction) in this case is negative for every stratum of the population, yet the total effect (on mortality) is
positive for the population as a whole.

Thus, Lord’s pessimistic conclusions were rather premature. It is not the case that “there simply is no
logical or statistical procedure that can be counted on to make proper allowances for uncontrolled preexisting
differences between groups.” On the contrary, such procedures, though not available in Lord’s time, are now
well developed in the causal mediation literature [10–13]. They require only that researchers specify in
advance whether it is the direct or total effect that is the target of their investigations. Both statisticians
were in fact correct, though each estimated a different effect. Statistician-1 aimed at estimating the total effect
(of gender on weight gain) and, based on the data available properly concluded that there is no gender
difference. The second statistician aimed at estimating the direct effect of gender on weight gain, unmediated
by the initial weight and, after properly adjusting for the initial weight (i. e., the mediator) rightly concluded
that there is significant gender difference, as seen through the displaced ellipses.

In the next section we provide a formal analysis for these two research questions.

3 The paradox in a formal setting

The diagram in Figure 2 describes Lord’s dilemma as interpreted in the previous section. In this model S
stands for Sex, WI for the initial weight, WF for the final weight and Y for the gain WF −WI . As the diagram
shows, the initial weight WI is affected by Sex and affects the final weight. It is thus a mediator between S
and WF as well as between S and the gain Y.
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Figure 2: (a) Lord’s model, showing Initial Weight ðWIÞ as a mediator between Sex (S) and Final Weight ðWFÞ. (b) A linear version
of (a).

1 Readers who feel uncomfortable treating gender as a cause can think of the make up of gender-specific hormones as the
causal variable; it causes differences in initial weight, and may also have direct effect on how a student responds to the new
diet.
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Assuming no confounding,2 the nonparametric mediation model for Figure 2(a) lends itself to simple
analysis; both the total effect and direct effect are estimable from the data [12]. In particular, the total
effect is given by the regression

TE=EðYjS= 1Þ−EðYjS=0Þ, (1)

while the direct effect is given by

DE=
X

w

½EðYjS= 1,WI =wÞ−EðYjS=0,WI =wÞ�PðWI =wjS=0Þ. (2)

Here we take S= 1 to represent boys and S=0 to represent girls.3

Clearly these two expressions are quite different; there is no wonder therefore that they give different
estimates. In Lord’s example, the total effect is zero, as confirmed by statistician-1’s observation that the two
ellipses map into identical projections onto the 45° line, and the direct effect (with the baseline WI as
mediator) is non-zero, as seen by statistician-2, who observed the displaced ellipses for every stratum WI =w.

An algebraic way of seeing how these results can come about is provided by the linear version of the
model, shown in Figure 2(b). Assuming standardized variables, the total effect is given by the sum of the
products of all coefficients along paths from S to Y [14, 15],

TE= ðb+acÞ−a= b−að1− cÞ (3)

while the direct effect skips the paths going through WI , and gives

DE= b. (4)

The observed condition of zero total effect can easily be realized by setting b=að1− cÞ, which accounts
for the observations shown in Figure 1. We see that the total effect TE vanishes due to cancelation of the
three paths leading from S to Y; the direct effect is positive (b), while the indirect effect is equal and
negative, resulting in zero total effect. Translated, whereas on average a boy gains more than a girl of equal
initial weight, the fact that sex differences produce more heavy-weight boys than girls and that we subtract
a portion of this difference, renders the overall gain for boys equal to that of girls.

4 Other versions of Lord’s paradox

Early efforts to resolve Lord’s paradox were made by Bock [16], Judd and Kenny [17], Cox and McCullagh [18],
and Holland and Rubin [19]. Since no data was given on the old-diet, authors had to assume a model of
weight gain under old-diet conditions and concluded, almost uniformly, that both statisticians were in fact
correct, depending on the model assumed and on the precise questions that the statisticians attempted to
answer. Bock, for example, sees no contradiction between the two statisticians. The first statistician asks: “Is
there a difference in the average gain in weight of the population?” and correctly answered: “No!” The second
statistician asks: “Is a man expected to show a greater weight gain than a woman, given that they are initially
of the same weight?” and answers it correctly: “Yes!” [[16], p. 491]. Bock does not explain why the two
conclusions are noncontradictory given that the first question is merely a weighted average of the second.

Cox and McCullagh [18], computed the causal effect of the new diet by assuming that, under the old
diet, the final weight of every individual will remain the same as the initial weight. Accordingly, they found
that statistician-1 is correct, the average causal effect (ACE) of the new diet on weight gain is zero for both

2 Since Sex is an exogenous variable, it acts “as if randomized,” and its total effect is not confounded; it can be estimated by
regression. However, the WI !WF relationship may be confounded by unobserved common causes of the two, which might
distort the direct effect. We discuss this situation in Section 6; here we assume no such confounding.
3 Readers will recognize the expression for DE as the “Natural Direct Effect” [12] or the “Mediation Formula” which has become
standard in mediation analysis [10, 20]. (See [21], for identification conditions.)
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men and women. Based on the same model, they found that statistician-2 is also correct, though he simply
asks a different question, concerning the behavior of individual units within each population. Here
statistician-2 finds that individual units are affected differently; initially overweight individuals tend to
lose weight, and initially underweight individuals tend to gain weight. Naturally, then, comparing boys and
girls at the same initial weight would show boys losing more weight than girls. Again, what Cox and
McCullagh left unanswered is why the two findings – differential gain on every stratum and equal gain on
the average – should not contradict the “sure thing” principle.

Holland and Rubin [19] assumed several different models for the old-diet and showed that, in contrast to
the Cox and McCullagh’s model, the gender specific causal effects of the diet may be non-zero for both men
and women, and their difference can be either positive or negative depending on the parameters of the
assumed model. Thus, conclude Holland and Rubin, neither statistician is correct or incorrect; it all depends
on which model one assumes for the old diet weight gain. What Holland and Rubin did not explain is what in
the new-diet data alone gave Lord’s the unmistaken impression that statisticians 1 and 2 reach conflicting
conclusions, namely, why their findings should not be constrained by the Sure Thing Principle.

Another question left unanswered by early interpreters is Lord’s appeal for a general strategy of
“allowing” for initial group differences. “The researcher wants to know how the groups would have
compared if there had been no preexisting uncontrolled differences.” In other words, is there a general
criterion for deciding whether controlling for pre-treatment differences is a valid thing to do, in case we
wish to compare group behavior that is free from the influence of those differences.

Such a general criterion is provided by the graphical analysis presented in the previous section. The
criterion coincides with the answer to the question of whether adjustment for covariates (in our case, WI ) is
appropriate for estimating total and direct effects. It is based on the graph structure alone, free of
parametric assumptions that renders the analysis of Holland and Rubin undecisive.

Holland and Rubin did not attempt to interpret the problem in terms of the effect of gender, as we did in
the previous section, because gender, being unmanipulable, cannot have a causal effect according to
Holland and Rubin’s doctrine of “no causation without manipulation” [22]. To demonstrate its generability,
let us apply the graphical method to a model proposed by Wainer and Brown [23], where the target quantity
is the effect of diet, not of gender. Wainer and Brown simplified Lord’s original problem and interpreted the
two ellipses of Figure 1 to represent two different diets, or two dining halls, each serving a different diet.
They further removed gender from consideration and obtained the two data sets seen in Figure 3 [their

Figure 3: A scatter plot of a simplified Lord’s Paradox showing the bivariate distribution of weights in two dining rooms at the
beginning and end of each year [from [23]].
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In the first story, both statisticians were right, each aiming at a different effect. In the second story, one
was right (ANCOVA) and one was wrong. But in no case did we face a predicament like the one that
triggered Lord’s curiosity: two seemingly legitimate methods giving two different answers to the same
research question. Lord gave in to the clash, and declared surrender. But he shouldn’t have; whether we
can estimate a given effect or not (for a given scenario) is a mathematical question with a yes/no answer,
and should not be shaken by a clash of intuitions.

5 From weight gain to birth weight

The problem of managing differential base-rates is pervasive in all the empirical sciences. Whenever the
responses of two or more groups to a treatment or a stimulus are compared, it is essential to adjust (or
allow) for initial differences among those groups. The merits of adjusting for such differences were noted as
far back as Fisher [31]:

“For example, in a feeding experiment with animals, where we are concerned to measure their response to a number of
different rations or diets, … it may well be that the differences in initial weight constitute an uncontrolled cause of variation
among the responses to treatment, which will sensibly diminish the precision of the comparisons.” [[31], p. 168]

“They may, however constitute an element of error which it is desirable, and possibly, to eliminate. The possibility arises from
the fact that, without being equalised, these differences of initial weight may none the less be measured. Their effects upon our
final results may approximately be estimated, and the results adjusted in accordance with the estimated effects, so as to afford
a final precision, in many cases, almost as great as though complete equalisation had been possible.” [[31], pp. 168–169]

In modern data analysis, the problem continued to haunt researchers across many disciplines. For
example, in studying the effect of stimulus on the heart rates of rats of different ages, researchers found
that the effect was different for young rats than for older rats. But their baseline heart rates were also quite
different. They asked, “How are we to adjust heart-rate data obtained after an experimental treatment, for
differences among animals in their base rates” [32]. Likewise, in studying the differential effect of schooling on
white and black students, the question arises whether one should adjust for the difference of admission test
scores between black and white students [23]. Lord himself recognized the generality of the problem as it
surfaced in educational testing:

“For example, a group of underprivileged students is to be compared with a control group on freshman grade-point
average (y). The underprivileged group has a considerably lower mean grade-point average than the control group.
However, the underprivileged group started college with a considerably lower mean aptitude score (x) than did the
control group. Is the observed difference between the groups on y attributable to initial differences on x? Or shall we
conclude that the two groups achieve differently even after allowing for initial differences in measured aptitude?” [[33],
p. 336]

Lord specifically chose x (aptitude score) and y (grade point average) to be two different variables,
measured on different scales, to prevent the temptations to focus on their difference, y− x, as the target of
interest (as statistician-1 did in the weight gain example.) In his examples, y and x can be arbitrary
variables, and still, “the investigator wishes to make an ‘adjustment’ to cancel out the effect of preexisting
differences between the two groups on some other variable x” [[33], p. 336].

Lord also raised the methodological question as to why anyone would wish “to cancel out the effect” on
x. His answer was that, in certain situations we may be in possession of practical means of suppressing the
differences in x, and we wish to know if the group difference in itself would produce differences in y. His
example was an agricultural experiment in which a given treatment shows an effect on yield (y) but also on
other conditions (e. g., plant height) that can be controlled physically (e. g, by a certain fertilizer). The
question then is whether the effort and expense associated with such physical control would be justified,
given what we know from the data at hand. These decision-theoretic considerations have indeed been cited
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as the core of causal mediation analysis [2, 12], where the value of estimating the indirect effect is tied to our
ability to suppress it (or suppress the direct effect).

As mentioned earlier, the generic problem posed by Lord’s paradox was initially addressed by
researchers following the potential outcome framework [19, 23, 32, 34]. However, lacking graphical tools
for guidance, these analyses left Lord’s challenge in a state of stalemate and indecision, concluding merely
that the choice between the two methods of analysis depends on untestable assumptions about the old diet;
the problem of deciding this choice in cases where qualitative models are available remained open.

The challenge has more recently been picked up in the health sciences, where graphical tools are
deployed to great advantage [3, 4, 35, 36]. Here, Lord’s paradox has surfaced through a variant named the
Birth Weight paradox, which presents a new twist. Whereas in Lord’s setup we faced a clash between two,
seemingly legitimate methods of analysis, in the Birth Weight paradox we face a clash between a valid
method of analysis (ANCOVA) and the scientific plausibility of its conclusion.

6 The birth weight paradox

The birth-weight paradox concerns the relationship between the birth weight and mortality rate of children
born to tobacco smoking mothers. It is dubbed a “paradox” because, contrary to expectations, low birth-
weight children born to smoking mothers have a lower infant mortality rate than the low birth weight
children of non-smokers [37].

Traditionally, low birth weight babies have a significantly higher mortality rate than others (it is in fact
100-fold higher). Research also shows that children of smoking mothers are more likely to be of low birth
weight than children of non-smoking mothers. Thus, by extension the child mortality rate should be higher
among children of smoking mothers. Yet real-world observation shows that low birth weight babies of
smoking mothers have a lower child mortality than low birth weight babies of non-smokers.

At first sight these findings seemed to suggest that, at least for some babies, having a smoking mother
might be beneficial to one’s health. However, this is not necessarily the case; the paradox can be explained
as an instance of “collider bias” [38] or “explain away” effect [39].6 The reasoning goes as follows: smoking
may be harmful in that it contributes to low birth weight, but other causes of low birth weight are generally
more harmful. Now consider a low weight baby. The reason for its low weight can be either a smoking
mother or those other causes. However, finding that the mother smokes “explains away” the low weight
and reduces the likelihood that those “other causes” are present. This reduces the mortality rate due those
other causes; smoking remains the likely cause of mortality, which is less dangerous. The net result being a
lower mortality rate among low weight babies whose mother smokes, compared with with those whose
mother does not smoke [36].

This phenomenon can easily be seen in the model of Figure 6. We can explain it from two perspectives.
First, we can ask for the causal effect of birth weight on death. In this context, we see that the desired effect
is confounded by both Smoking and Other causes, and if we control for Smoking, it still leaves the other
confounder uncontrolled, resulting in bias. Moreover, controlling for Smoking changes the probability of
“Other causes” (through the collider at BW) in any stratum of BW. In particular, for underweight babies,
BW= Low, if we compare smoking with non-smoking mothers, we would be comparing babies for which
“Other causes” are rare with those for which “Other causes” are likely to occur (in order to explain the low
birth weight condition.) Now, since those “Other causes” may be more dangerous to survival, we get the
illusion that mortality rate increases for non-smoking mothers.

6 Other names for this effect are “Berkson paradox,” or “Berkson fallacy” [40], which characterizes the general phenomenon
whereby two independent causes become dependent upon observing their common effect. This phenomenon is the basis of the
d-separation criterion in graphical models [41, 42].
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The second perspective places the birth weight example in the context of Lord’s paradox and asks for the effect
of smoking on mortality, discounting its effect on birth weight. Paraphrased in Lord’s counterfactual language,
“The researcher wants to know” how the mortality rate of babies of smoking mothers would have compared to
that of non-smoking mothers, if there had been no preexisting uncontrolled differences in birth weight.” Note
that this question turns the problem into a mediation exercise, as in Lord’s original problem (Figure 2) and our
task is to estimate the direct effect of Smoking on Death, unmediated by Birth Weight.

There is however a structural difference between the mediation model of Figure 2 and the one in Figure 6.
Whereas in Figure 2 we assumed no hidden confounders, such confounders are present in Figure 6, labeled
“Other causes.” This makes a qualitative difference in our ability to estimate the direct effect. Adjusting for the
mediator (BW) no longer severs all paths traversing the mediators, it actually opens a new path:

Smoking! BW Othercauses! Death, (5)

by conditioning on the collider at BW. This path is spurious (i. e., non causal) and hence produces bias.
A simple way of seeing this is to recall that conditioning on the event BW= Low does not physically

prevent BW from changing; it merely filters out from the analysis all babies except those with BW= Low.
Therefore, as we compare smoking with non-smoking mothers for babies of equal birth weight we are
actually comparing babies with no “Other causes” to babies for whom “Other causes” are present. This of
course will create an illusionary increase in mortality rates for babies of non-smoking mothers, thus
explaining the Birth Weight paradox.

The fallibility of estimating direct effects by conditioning on (or “co-varying away”) the mediator has
been noted for quite some time [11, 43, 44] and has led to modern definitions of direct and indirect effects
based on counterfactual, rather than statistical conditioning [11, 12, 20]. Fisher himself is reported to have
failed on this question by recommending the use of ANCOVA (conditioning) to “allow” for variations in the
mediator [[31], p. 165; [45]]. Fisher’s blunder led Rubin to conclude that “the concepts of direct and indirect
causal effects are generally ill-defined and often more deceptive than helpful to clear statistical thinking”
[27]. As a result, Frangakis and Rubin [46], proposed alternative definitions of direct and indirect effects
based on “principal strata” which, ironically, suffer from at least as many problems as Fisher’s [47, 48].

The Birth Weight paradox was instrumental in bringing this controversy to a resolution. First, it has
persuaded most epidemiologists that collider bias is a real phenomenon that needs to be reckoned with
[38]. Second, it drove researchers to abandon traditional mediation analysis (usually connected with [49,
50]) in which mediation is define by statistical conditioning (or “statistical control,” in which the mediator
is “partialled out”), and replace it with causally defined mediation analysis based on counterfactual
conditioning [10, 13, 20, 21, 51, 52]. I believe Frederic Lord would be mighty satisfied today with the
development that his 1967 observation has spawned.
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Figure 6: Showing birth weight (BW) as a “collider” affected by two independent causes: “Smoking” and “Other causes.”
Observing one cause (e. g., Smoking) explains away the other and reduces its probability.
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