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Abstract

This paper summarizes methods that were found useful in estimat-
ing the probability that one event was a necessary cause of another, as
interpreted by law makers. We show that the fusion of observational
and experimental data can yield informative bounds which, under cer-
tain circumstances, meet legal criteria of causation. We further in-
vestigate the circumstances under which such bounds can emerge, and
the philosophical dilemma associated with determining individual cases
from statistical data.

1 Introduction

In many areas of the physical and social sciences interest focuses on identify-
ing causes of effect (CoE) rather than predicting effects of causes (EoC). This
distinction assumes critical importance in legal settings where individual cases
are to be decided, and population behavior is of secondary importance. The
fact that standard statistics deals with inference from population data, not
with individual cases has led some to speculate that the problem of deciding

∗This paper was motivated by anachronistic claims made by Dawid et al. (2014a) which
were brought to my attention by Nicholas Jewell. I subsequently wrote two rebuttals (Pearl,
2014a) and (Pearl, 2014b) which were based on chapter 9 of my book (Pearl, 2000a) and
additional analyses presented in sections 5 and 6 of this paper. This paper is a self-contained
summary of what I consider to be the state of the art in this important problem of Causes
of Effect.
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causes of effects may reside beyond the realm of statistical inference, perhaps
even beyond the province of the empirical sciences (Dawid, 2000; Shafer, 2000;
Rubin, 2014). A recent article by Dawid, Faigman, and Fienberg (2014a) reit-
erates those speculations, and attempts to revive old doubts as to the ability
of principled scientific methods to ever provide answers to CoE questions, such
as those raised in legal settings.

My aim in this paper is to share with readers a progress report on what has
been accomplished on the question of “causes of effects,” CoE, how far we have
come in using population data to decide individual cases, and how well we can
answer questions that law makers ask about individual’s guilt or innocence.
I hope this account convinces readers that the analysis of “causes of effects,”
CoE, has not lagged behind that of EoC. Both modes of reasoning enjoy a solid
mathematical basis, endowed with powerful tools of analysis, and researchers
on both fronts now possess solid understanding of applications, identification
conditions, and estimation techniques.

I begin this account with a brief exposition of counterfactuals, what they
stand for, how they are computed, how they are assigned probabilities and
how they are estimated from a scientific model of reality (Section 2). Next
(Section 3), I discuss a simple example of a law suit in which a legal require-
ment demands the estimation the probability of the counterfactual sentence:
“Mr. A would have been alive had he not taken this drug,” and I cite a few
theoretical results that permit us to bound this “probability of necessity” from
a combination of experimental and observational data. Section 4, illustrates
the use of these bounds on fictitious data and shows that, under certain cir-
cumstances, data may dictate unexpected conclusions, for instance, that the
defendant is guilty “with probability one.” Motivated by such extreme cases,
Section 5 uncovers general laws that govern necessary causation and how it
is informed by empirical findings. In particular, we show that, regardless of
confounding, the gap between the upper and lower bounds is estimable from
one statistical parameter – the ratio of non-responses to responses in similar
situations. In Section 6 we describe how bounds on the probability of necessity
emerge from a specific data-generating process, and what model parameters
affect the resulting bounds. Finally, Section 7 discusses the legal and cogni-
tive question of whether juries can/should be persuaded to heed to statistical
evidence in single case settings, how they should interpret such evidence, and
whether arguments for such extreme findings as “guilty with probability one”
could ever be convincing.
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2 The Logic of Counterfactuals

A good place to start is the mathematization of counterfactuals, a develop-
ment that is responsible, at least partially, for legitimizing counterfactuals in
scientific discourse,1 and which has reduced the quest for “causes of effects”
to an exercise in logic.

At the center of this logic lies a model, M , consisting of a set of equa-
tions similar to those used by physicists, geneticists (Wright, 1921) economists
(Haavelmo, 1943) and social scientists (Duncan, 1975) to articulate scientific
knowledge in their respective domains. M consists of two sets of variables, U
and V , and a set F of equations that determine how values are assigned to
each variable Vi ∈ V . Thus for example, the equation

vi = fi(v, u)

describes a physical process by which Nature examines the current values, v
and u, of all variables in V and U and, accordingly, assigns variable Vi the value
vi = fi(v, u). The variables in U are considered “exogenous,” namely, back-
ground conditions for which no explanatory mechanism is encoded in model
M . Every instantiation U = u of the exogenous variables corresponds to defin-
ing a “unit,” or a “situation” in the model, and uniquely determines the values
of all variables in V . Therefore, if we assign a probability P (u) to U , it defines
a probability function P (v) on V . The probabilities on U and V can best be
interpreted as the proportion of the population with a particular combination
of values on U and/or V .

The basic counterfactual entity in structural models is the sentence: “Y
would be y had X been x in situation U = u,” denoted Yx(u) = y, where Y and
X are any variables in V . The key to interpreting counterfactuals is to treat
the subjunctive phrase “had X been x” as an instruction to make a minimal
modification in the current model, so as to ensure the antecedent condition
X = x. Such a minimal modification amounts to replacing the equation for X
by a constant x, which may be thought of as an external action do(X = x),
not necessarily by a human experimenter, that imposes the condition X = x.
This replacement permits the constant x to differ from the actual value of X
(namely fx(v, u)) without rendering the system of equations inconsistent, thus
allowing all variables, exogenous as well as endogenous, to serve as antecedents.

Letting Mx stand for a modified version of M , with the equation(s) of X
replaced by X = x, the formal definition of the counterfactual Yx(u) reads

1DFF’s article makes generous use of counterfactuals, which attests to the impact of this
development. For discussions concerning the place of counterfactuals in science, including
their role in defining “causes of effects” see (Dawid, 2000; Pearl, 2000b).
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(Balke and Pearl, 1994a,b):

Yx(u)
∆
= YMx(u). (1)

In words: The counterfactual Yx(u) in model M is defined as the solution for
Y in the “surgically modified” submodel Mx. Galles and Pearl (1998) and
Halpern (1998) have given a complete axiomatization of structural counter-
factuals, embracing both recursive and non-recursive models. (see also Pearl,
2009, Chapter 7). They showed that the axioms governing recursive structural
counterfactuals are identical to those used in the potential outcomes frame-
work, hence the two systems are logically identical – a theorem in one is a
theorem in the other. This means that relying on structural models as a basis
for counterfactuals does not impose additional assumptions beyond those rou-
tinely invoked by potential outcome practitioners. Consequently, going from
effects to causes does not require extra mathematical machinery beyond that
used in going from causes to effects.

Since our model M consists of a set of structural equations, it is possible
to calculate probabilities that might at first appear nonsensical. As noted
above the probability distribution on U , P (u), induces a well defined proba-
bility distribution on V , P (v). As such, it not only defines the probability of
any single counterfactual, Yx = y, but also the joint distribution of all coun-
terfactuals. As also noted above these probabilities refer to the proportion
of individuals in the population with specific counterfactual values that may
or may not be observed. Thus the probability of the Boolean combination,
“Yx = y AND Zx′ = z” for variables Y and Z in V and two different values
of X, x and x′, is well-defined even though it is impossible for both outcomes
to be simultaneously observed as X = x and X = x′ cannot be concurrently
true.

To answer CoE type questions, such as “if X were x1 would Y be y1 for
individuals for whom in fact X is x0 and Y is yo” we need to compute the
conditional probability P (Yx1 = y1|Y = y0, X = x0). This probability, that
is the proportion of the population with this combination of counterfactual
values, is well-defined once the structural equations and the distribution of
exogenous variables, U , is known.

In general, the probability of the counterfactual sentence P (Yx = y|e),
where e is any information about an individual, can be computed by the 3-
step process:

Step 1 (abduction): Update the probability P (u) to obtain P (u|e).

Step 2 (action): Replace the equations corresponding to variables in set X
by the equations X = x.
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Step 3 (prediction): Use the modified model to compute the probability of
Y = y.

In temporal metaphors, Step 1 explains the past (U) in light of the current
evidence e; Step 2 bends the course of history (minimally) to comply with the
hypothetical antecedent X = x; finally, Step 3 predicts the future (Y ) based
on our new understanding of the past and our newly established condition,
X = x.

Pearl (2000a, pp. 296–299; 2012) gives several examples illustrating the
simplicity of this computation and how CoE-type questions can be answered
when the model M is known. If M is not known, but is assumed to take a
parametric form, one can use population data to estimate the parameters and,
subsequently, all counterfactual queries can be answered, including those that
pertain to causes of individual cases (Pearl, 2009, pp. 389–391; 2012). Thus
the challenge of reasoning from group data to individual cases has been met.

When the model M is not known, we can prove that, in general, proba-
bilities of causes are not identifiable from experimental, or observational data.
However, by combining experimental and observational group data with obser-
vations about an individual, tight bounds can be derived, which can be quite
informative, often satisfying legal criteria for CoE.

We will illustrate these bounds it an example taken from judicial context
similar to the one considered by DFF.

3 Legal Responsibility from Experimental and

Nonexperimental Data

A lawsuit is filed against the manufacturer of drug x, charging that the drug
is likely to have caused the death of Mr. A, who took the drug to relieve back
pains. The manufacturer claims that experimental data on patients with back
pains show conclusively that drug x may have only minor effect on death rates.
However, the plaintiff argues that the experimental study is of little relevance
to this case because it represents average effects on all patients in the study,
not on patients like Mr. A who did not participate in the study. In particular,
argues the plaintiff, Mr. A is unique in that he used the drug on his own voli-
tion, unlike subjects in the experimental study who took the drug to comply
with experimental protocols. To support this argument, the plaintiff furnishes
nonexperimental data on patients who, like Mr. A, chose drug x to relieve
back pains, but were not part of any experiment. The court must now de-
cide, based on both the experimental and nonexperimental studies, whether it
is “more probable than not” that drug x was in fact the cause of Mr. A’s death.
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This example falls under the category of “causes of effects” because it
concerns situation in which we observe both the effect, Y = y, and the putative
cause X = x and we are asked to assess, counterfactually, whether the former
would have occurred absent the latter.

Assuming binary events, with X = x and Y = y representing treatment
and outcome, respectively, and X = x′, Y = y′ their negations, our target
quantity can be formulated directly from the English sentence:

“Find the probability that if X had been x′, Y would be y′, given
that, in reality, X is x and Y is y.”

to give:
PN(x, y) = P (Yx′ = y′|X = x, Y = y) (2)

This counterfactual quantity, which Robins and Greenland (1989) named
“probability of causation” and Pearl (2000a, p. 296) named “probability of
necessity” (PN), to be distinguished from two other nuances of “causation,”
captures the “but for” criterion according to which judgment in favor of a
plaintiff should be made if and only if it is “more probable than not” that the
damage would not have occurred but for the defendant’s action (Robertson,
1997). In contrast, the “probability of causation” (PC) measure proposed by
Dawid, Fienberg, and Faigman:

PC = P (Yx′ = y′|Yx = y)

represents the probability that a person who took the drug under experimental
conditions and died, Yx = y, would be alive had he not been assigned the drug,
Yx′ = y′. It thus represents the probability that the drug was the cause of death
of a subject who died in the experimental setup. Very few court cases deal with
deaths under experimental circumstances; most deal with deaths, damage, or
injuries that took place under natural, every day conditions, for which the
DFF’s measure is inapplicable.2

Having written a formal expression for PN, Eq. (2), we can move on to the
identification phase and ask what assumptions would permit us to identify PN
from empirical studies, be they observational, experimental or a combination
thereof.

This problem was analyzed in Pearl (2000a, Chapter 9) and yielded the
following results:

2For additional discussions of DFF’s proposal, see footnote 4, Appendix A, and Pearl
(2014b).
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Theorem 1 If Y is monotonic relative to X, i.e., Y1(u) ≥ Y0(u), then PN is
identifiable whenever the causal effect P (y|do(x)) is identifiable and, moreover,

PN =
P (y)− P (y|do(x′))

P (x, y)
(3)

or,3

PN =
P (y|x)− P (y|x′)

P (y|x)
+
P (y|x′)− P (y|do(x′))

P (x, y)
. (4)

The first term on the r.h.s. of (4) is the familiar excess risk ratio (ERR)
that epidemiologists have been using as a surrogate for PN in court cases
(Cole, 1997; Greenland, 1999; Robins and Greenland, 1989). The second
term represents a correction needed to account for confounding bias, that is,
P (y|do(x′)) 6= P (y|x′) or, put in words, when the proportion of population for
whom Y = y when X is set to x′ for everyone is not the same as the proportion
of the population for whom Y = y among those observed to acquire the value
X = x′.

Equation (4) thus provides a more refined measure of causation, which
can be used for monotonic Yx(u) whenever the causal effect P (y|do(x)) can
be estimated, from either randomized trials or graph-assisted observational
studies (e.g., through the back-door criterion (Pearl, 1993) or the do-calculus).
More significantly, it has also been shown (Tian and Pearl, 2000) that the
expression in (3) provides a lower bound for PN in the general, nonmonotonic
case. In particular, the tight upper and lower bounds on PN are given by:

max

{
0,
P (y)− P (y|do(x′))

P (x, y)

}
≤ PN ≤ min

{
1,
P (y′|do(x′))− P (x′, y′)

P (x, y)

}
(5)

In drug-related litigation, it is not uncommon to obtain data from both
experimental and observational studies. The former is usually available at
the manufacturer or the agency that approved the drug for distribution (e.g.,
FDA), while the latter is easy to obtain by random surveys of the population. If
it is the case that the experimental and survey data have been drawn at random
from the same population, then the experimental data can be used to estimate
the counterfactuals of interest, e.g., P (Yx = y) for the observational as well as
experimental sampled populations. In such cases, the standard lower bound
used by epidemiologists to establish legal responsibility, the Excess Risk Ratio,

3Equation (4) is obtained from (3) by writing P (y) = P (y|x)P (x) + P (y|x′)(1− P (x)).
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can be improved substantially using the corrective term of Eq. (4). Likewise,
the upper bound of Eq. (5) can be used to exonerate drug-makers from legal
responsibility. Cai and Kuroki (2006) analyzed the finite-sample properties of
PN. Yamamoto (2012) used instrumental variables to derive similar bounds
for subpopulations permitting effect identification.

4 Numerical Example

To illustrate the usefulness of the bounds in Eq. (5), consider the (hypothetical)
data associated with the two studies shown in Table 1. (In the analyses below,
we ignore sampling variability, that is, we assume that our population is of
infinite size.)

Experimental Nonexperimental
do(x) do(x′) x x′

Deaths (y) 16 14 2 28
Survivals (y′) 984 986 998 972

Table 1:

The experimental data provide the estimates

P (y|do(x)) = 16/1000 = 0.016, (6)

P (y|do(x′)) = 14/1000 = 0.014; (7)

while the nonexperimental data provide the estimates

P (y) = 30/2000 = 0.015, (8)

P (y, x) = 2/2000 = 0.001, (9)

P (y|x) = 2/1000 = 0.002, (10)

P (y|x′) = 28/1000 = 0.028. (11)

Assuming that drug x can only cause (but never prevent) death, mono-
tonicity holds and Theorem 1 (Eq. 4) yields

PN =
P (y|x)− P (y|x′)

P (y|x)
+
P (y|x′)− P (y|do(x′))

P (x, y)
=

=
0.002− 0.028

P (y|x)
+

0.028− 0.014

0.001
= −13 + 14 = 1 (12)
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We see that while the observational excess risk ratio ERR is negative (−13),
giving the impression that the drug is actually preventing deaths, the bias-
correction term (+14) rectifies this impression and sets the probability of ne-
cessity (PN) to unity. Moreover, since the lower bound of Eq. (5) becomes 1,
we conclude that PN = 1.00 even without assuming monotonicity. Thus, the
plaintiff was correct; barring sampling errors, the data provide us with 100%
assurance that drug x was in fact responsible for the death of Mr. A. Note
that DFF’s proposal of using the experimental excess risk ratio would yield a
much lower result:

P (y|do(x))− P (y|do(x′))
P (y|do(x))

=
0.016− 0.014

0.016
= 0.125. (13)

which does not meet the “more probable than not” requirement.4

What the experimental study does not reveal is that, given a choice, termi-
nal patients tend to avoid drug x. That is, the 14 patients in the experimental
study who did not take the drug and died anyway would have avoided the
drug if they were in the nonexperimental study. In fact, as our analysis above
shows, there are no terminal patients who would choose x (given the choice).
If there were terminal patients that would choose x, given the choice, then by
randomization some of these patients (50% in our example) would be in the
control group in the experimental data. As a result, the proportion of deaths
in the control group in the experimental data, P (yx′) would be higher than
the proportion of terminal patients in the nonexperimental data, P (y, x′).
However, examining the data in our hypothetical example, we observe that
P (yx′) = P (y, x′) = .0014 implying that there are no terminal patients in the
nonexperimental data who choose the treatment condition. As such, any indi-
vidual in the nonexperimental data who choose the treatment and died, must
have died because of the treatment as they were not terminal.

The numbers in Table 1 were obviously contrived to represent an extreme
case and so facilitate a qualitative explanation of the validity of (12). Never-
theless, it illustrates decisively that a combination of experimental and nonex-
perimental studies may unravel what experimental studies alone will not reveal

4The difference between DFF’s PC and PN represents not merely an improvement of
bounds but a profound conceptual difference in what the correct question is for CoE. Using
DFF’s notation we have PC = Pr(R0 = 0|R1 = 1) and PN = Pr(R0 = 0|A = 1, R = 1).
PC is the wrong measure to use in legal context because the conditioning event R1 = 1 does
not imply that the action A = 1 was actually executed. Moreover, PC does not take into
account the possibility that plaintiffs who chose the treatment voluntarily are more likely
to be in need of such treatment, as well as more capable of obtaining it. The same goes
for personal decision making; PC does not take into account the fact that, if I took aspirin
and my headache is gone, I am the type of person who expects aspirin to help my headache.
Formally, while A = 1 and R = 1 imply R1 = 1 the converse does not hold; the former is
the more specific reference class.

9



and, in addition, that such combination may provide a necessary test for the
adequacy of the experimental procedures. For example, if the frequencies in
Table 1 were slightly different, they could easily yield a PN value greater than
unity in (12), thus violating consistency, P (y|do(x)) ≥ P (x, y). Such violation
must be due to incompatibility of experimental and nonexperimental groups,
or an improperly conducted experiment.

This last point may warrant a word of explanation, lest the reader wonder
why two data sets—taken from two separate groups under different exper-
imental conditions—should constrain one another. The explanation is that
certain quantities in the two subpopulations are expected to remain invariant
to all these differences, provided that the two subpopulations were sampled
randomly from the population at large. These invariant quantities are simply
the causal effects probabilities, P (y|do(x′)) and P (y|do(x)). Although these
probabilities were not measured in the observational group, they must nev-
ertheless be the same as those measured in the experimental group (ignoring
differences due to sampling variability). The invariance of these quantities
implies the inequalities of (5).

The example of Table 1 shows that combining data from experimental and
observational studies which, taken separately, may indicate no causal relations
between X and Y , can nevertheless bring the lower bound of Eq. (5) to unity,
thus implying causation with probability approaching one.

Such extreme results demonstrate that a counterfactual quantity PN which
at first glance appears to be hypothetical, ill-defined, untestable and, hence,
unworthy of scientific analysis is nevertheless definable, testable and, in certain
cases, e.g., when monotonicity holds, even identifiable. Moreover, the fact that,
under certain combinations of data, and making no assumptions whatsoever,
an important legal claim such as “the plaintiff would be alive had he not taken
the drug” can be ascertained with probability approaching one, is a remarkable
tribute to formal analysis.5

5Another counterfactual quantity that has been tamed by analysis is the Effect of Treat-
ment on the Treated (ETT): ETT = P (Yx′ = y|X = x). Shpitser and Pearl (2009) have
shown that despite its blatant counterfactual character (e.g., “I just took an aspirin, perhaps
I shouldn’t have?”), ETT can be evaluated from experimental studies in many, though not
all cases. It can also be evaluated from observational studies whenever a sufficient set of
covariates can be measured that satisfies the back-door criterion and, more generally, in a
wide class of graphs that permit the identification of conditional interventions. Numerical
examples of these cases, and the philosophical question they evoke, are discussed in (Pearl,
2013).
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5 How informative are the PN bounds?

To see how informative the bounds are, and how sensitive they are to variations
in the experimental and observational data, let us express the bounds in Eq. (5)
in terms of more familial parameters, as they apply to the unit square.

A few algebraic steps allow us to express the lower bound (LB) and upper
bound (UB) as:

LB = ERR + CF

UB = ERR + q + CF (14)

where ERR, CF, and Q are defined as follows:

CF
∆
= [P (y|x′)− P (yx′)]/P (x, y) (15)

ERR
∆
= 1− 1/RR = 1− P (y|x′)/P (y|x) (16)

q
∆
= P (y′|x)]/P (y|x) (17)

Here, CF (termed “confounding factor”) represents the normalized degree of
confounding among the unexposed (X = x′), ERR is the “excess risk ratio”
and q is the ratio of negative to positive outcomes among the exposed.

Figures 1(a,b) depicts these bounds as a function of ERR, and reveals three
rather insightful observations. First, regardless of confounding the interval
UB − LB remains constant and depends on only one observable parameter,
P (y′|x)/P (y|x). Second, when confounding is present, the lower bound may
rise to meet the PN > 1

2
criterion. Lastly, the amount of rise is given by

CF , which is the only estimate needed from the experimental data; the causal
effect P (yx)− P (yx′) is not needed.

Theorem 1 further assures us that, if monotonicity can be assumed, the
upper and lower bounds coincide, and the gap collapses entirely, as shown in
Fig. 1(b).

We thus conclude that confounding can be a blessing; it may boost the
lower bound (when CF > 0) or lower the upper found (when CF < 0),
and thus assist in passing or failing the “more probable than not” criterion.
Confounding is in fact the only mechanism through which the idiosyncratic
behavioral of an individual can be excavated from population data, assuming
of course that no other information is available about the specific individual.

How does confounding provide information about PN? To answer this
question, we will now examine a specific data-generating model, and trace the
way our three data parameters, ERR, CF and q are determined by the model
parameters. It is important to emphasize, however, that contrary to prevailing
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Figure 1: (a) Showing how probabilities of necessity (PN) are bounded, as a
function of the Excess Risk Ratio (ERR) and the Confounding Factor (CF)
(Eq. 14); (b) Showing how PN is identified when monotonicity is assumed
(Theorem 1).

opinions, these bounds do not require knowledge of the data-generating model;
population data from observational and experimental studies are all that is
needed.

6 How the PN bounds are generated?

Consider the following example. Assume that the population of patients con-
tains a fraction r of individuals who suffer from a certain death-causing syn-
drome Z, which simultaneously makes it uncomfortable for them to take the
drug. Referring to Fig. 2, let Z = z1 and Z = z0 represent, respectively, the
presence and absence of the syndrome, Y = y1 and Y = y0 represent death and
survival, respectively and X = x1 and X = x0, represent taking and not taking
the drug. Assume that patients carrying the syndrome, Z = z1, are terminal
cases, for whom death occurs with probability 1, regardless of whether they
take the drug. Patients not carrying the syndrome, on the other hand, incur
death with probability p2 if they take the drug and with probability p1 if the
don’t. We will further assume p2 > p1 so that the drug appears to be a risk
factor for ordinary patients, and that patients having the syndrome are more
likely to avoid the drug; that is, q2 < q1 where q1 = P (x1|z0) and q2 = p(x1|z1).
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X Y

Z

(Treatment)

(Syndrome)

(Outcome)

Figure 2: Model generating the experimental and observational data of Eqs.
(20) and (21). Z represents an unobserved confounder affecting both treatment
(X) and outcome (Y ).

Based on this model, we can compute the causal effect of the drug on death
using:

P (y|do(x)) =
∑
z

P (y|x, z)P (z) for all y and x (18)

and the joint distribution P (x, y) using:

P (y, x) =
∑
z

P (y|x, z)P (x|z)P (z) for all y, x (19)

Substituting the model’s parameters and assuming r = 1/2 gives:

P (y1|do(x)) =

{
(1 + p2)/2 for x = x1

(1 + p1)/2 for x = x0
(20)

P (y, x) =


(q2 + p2q1)/2 for x = x1 y = y1

[1− q2 + p1(1− q1)] /2 for x = x0 y = y1

(1− p2)q1/2 for x = x1 y = y0

(1− p1)(1− q1)/2 for x = x0 y = y0

(21)

Accordingly, the bounds of Eq. (5) become:

(p2 − p1)/(p2 + q2/q1) ≤ PN ≤ (1− p1)/(p2 + q2/q1) (22)

Equating the upper and lower bounds in (22) reveals that PN is identified
if and only if q1(1− p2) = 0, namely, if patients carrying the syndrome either
do not take the drug or do not survive if they do. For intermediate value of p2

and q1, PN is constrained to an interval that depends on all four parameters.
Figure 3 displays the lower bound (red curve) as a function of the pa-

rameter β = q2/q1p2, for p1 = 0 and the upper bounds (green curves) for
p2 = 1.00, 0.5, 0.33, 0.25. We see that lower bound approaches 1 when q2 ap-
proaches zero, while the upper bounds are situated a factor 1/p2 above the
lower bound.
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Figure 3: Showing the lower bound of PN for p1 = 1 (red curve) and several
upper bounds (blue curves).

It is important to emphasize at this point that the bounds shown in Fig. 3
are subsumed by the universal bounds shown in Fig. 1. In other words, re-
gardless of the structure of the data-generating model shown in Fig. 2, and
regardless of the parameters used in this model, PN is guarantees to fall be-
tween the bounds given in Eqs. (15)–(17). This means that, if one were to
simulate the observed data on a computer, then, regardless of the structure
of the simulator, the PN associated with that simulator will fall within the
bounds shown in Fig.1.6 If we further imagine that the simulator stands for
Nature (or, say the anatomy of the injured) the argument can be interpreted
to mean that there is no way for Nature to have generated the data while
entailing a probability of necessity outside the LB and UP bounds. Whether
juries can be persuaded by such nature-minded arguments will be discussed in
the next section.

6Note that with every simulator defines a unique PN, though the model specified in Fig. 2
has no unique PN, because it is defined probabilistically, not functionally.
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7 Is “Guilty with Probability One” ever pos-

sible?

People tend to disbelieve this possibility for two puzzling aspects of the prob-
lem:

1. that a hypothetical, generally untestable quantity can be ascertained
with probability one under certain conditions;

2. that a property of an untested individual can be assigned a probability
one, on the basis of data taken from sampled population.

The first puzzle is not really surprising for students of science who take seri-
ously the benefits of logic and mathematics. Once we give a quantity formal
semantics we essentially define its relation to the data, and it not inconceivable
that data obtained under certain conditions would sufficiently constrain that
quantity, to a point where it can be determined exactly.

The second puzzle is the one that gives most people a shock of disbelief.
For a statistician, in particular, it is a rare case to be able to say anything
certain about a specific individual who was not tested directly. This emanates
from two factors. First, statisticians normally deal with finite samples, the
variability of which rules out certainty in any claim, not merely about an indi-
vidual but also about any property of the underlying distribution. This factor,
however, should not enter into our discussion, for we have been assuming infi-
nite samples throughout. (Readers should imagine that the numbers in Table
1 stand for millions.)

The second factor emanates from the fact that, even when we know a
distribution precisely, we cannot assign a definite probabilistic estimate to a
property of a specific individual drawn from that distribution. The reason is, so
the argument goes, that we never know, let alone measure, all the anatomical
and psychological variables that determine an individual’s behavior, and, even
if we knew, we would not be able to represent them in the crude categories
provided by the distribution at hand. Thus, because of this inherent crudeness,
the sentence “Mr. A would be dead” can never be assigned a probability one
(or, in fact, any definite probability).

This argument, advanced by Freedman and Stark (1999) is incompati-
ble with the way probability statements are used in ordinary discourse, for
it implies that every probability statement about an individual must be a
statement about a restricted subpopulation that shares all the individual’s
characteristics. Taken to extreme, such restrictive interpretation would insist
on characterizing the plaintiff to minute detail, and would reduce the “but for”
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probability to zero or one when all relevant details are accounted for. It is in-
conceivable that this interpretation underlies the intent of judicial standards.
By using the wording “more probable than not,” law makers have instructed
us to ignore specific features which are either irrelevant or for which data are
not likely to be available, and to base our determination on the most specific
yet essential features for which data is expected to be available. In our ex-
ample, two properties of Mr. A were noted: (1) that he died and (2) that he
chose to use the drug; these are essential and were properly taken into account
in bounding PN. In certain court cases, additional characteristics of Mr. A
would be deemed essential. For example, it is quite reasonable that, in the
case of Mr. A, the court may deem his medical record to be essential, in which
case, the analysis should proceed by restricting the reference class to subjects
with medical history similar to that of Mr. A. However, having satisfied such
specific requirements, and knowing in advance that we will never be able to
match all the idiosyncratic properties of Mr. A, the law makers’ intent must
be interpreted relative to the probability bounds provided by PN.

Conclusions

While reasoning from EoC to CoE involve the challenge of reasoning from
group data to individual cases, the logical gulf between the two is no longer a
hindrance to systematic analysis. It has been bridged by the structural seman-
tics of counterfactuals (Balke and Pearl, 1994a,b) and now yields a coherent
framework of fusing experimental and observational data to decide individual
cases of all kinds, EoC included.

Glenn Shafer (2000) made an interesting observation in his essay on coun-
terfactuals:

“Even Laplace’s vision of determinism, in which a superior but
human-like intelligence can predict the future states of the world
from knowledge of the present state and a small number of laws,
demands only the possibility of prediction for states in which the
world is actually found. If causal laws predict everything, they
predict that the physician will undertake the operation. Thus the
Laplacean vision does not require that the superior intelligence
should be able to make a prediction about what would happen if
the operation is not undertaken.”

I believe Laplace would be surprised, and mighty gratified to know that his
superior intelligence should be able to predict, not only what would happen
if past actions were not undertaken, but doing so from statistical data on
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past actions, without knowing the present state of the world nor the “small
number of laws” that govern that world. This superior intelligence need only
take seriously the Laplacean model and the counterfactual logic that it entails.
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Appendix A

This Appendix contrasts the results reported in this paper with the opinions
expressed in Dawid et al. (2014a). For a more detailed comparison see (Pearl,
2014b).

DFF present the problem of CoE as a newly discovered challenge “for which
the statistical literature is only of limited help.” To remedy this neglect, they
offer to “provide an alternative framing of the “CoE” that differ substantially
from that found in the bulk of the scientific literature.”

As part of this alternative framing, they propose PC = P (R0 = 0|R1 = 1)
as the parameter that need to be estimated for answering CoE questions. In
their words:

“To address the issue of whether taking the aspirin caused the
observed recovery, we might ask: What is the probability that the
(necessarily unobserved) potential response R0, which would have
been observed had I not taken aspirin (A = 0), would have been
different (R0 = 0) from that actually observed (R1 = 1).”

The inappropriateness of PC as a measure of CoE was demonstrated in
footnote 4. Here we simply note that the response “actually observed” is not
R1 = 1, but R = 1, and this flaw of formulation has had several repercussions
on DFF conclusions.

In a discussion following DFF’s paper, Nicholas Jewell alerted the authors
to the “more relevant” interpretation of “but for” in terms of PN, to the exten-
sive work done on CoE under this and other interpretations and, in particular,
to the tight bounds derived by Tian and Pearl (2000) under a variety of as-
sumptions, using both observational and experimental data (Jewell, 2014). In
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their rejoinder (Dawid et al., 2014b), DFF explained their choice of the PC
measure in these words:

Jewell notes the close connection with earlier work of Robins and
Greenland (1989; Greenland and Robins, 2000), and of Pearl and
his collaborator Tian (Pearl, 2009; Tian and Pearl, 2000). We were
aware of this work, having referenced it in earlier articles, and were
remiss in not including discussion of it here. Robins and Greenland,
using different notation and statistical formalisms, focus on what
we and they call the PC although without the potential outcome
labels, and they present the same lower bound, which come from
the standard Fréchet bounds for 2 × 2 tables. They also address
the assigned shares approach to interpreting the role of the relative
risk used by the courts to address the CoE.

Jewell suggests that we should have focused on P (R0 = 1|R1 = 1
and A = 1) where A denotes the observed exposure condition–
which is Pearl’s Probability of Necessity (PN).This was in fact the
way in which the CoE problem was initially formulated by Dawid
(2011), the simplification to Pr(R0 = 1|R1 = 1) being based on the
“(questionable) assumption that the decision to take aspirin was
unrelated to the (then hidden) values of the potential responses.”
Now this additional assumption is unreasonable unless the joint
probability distribution being manipulated can be regarded as that
fully specific to the given individual; and, to the extent that knowl-
edge of this individual distribution is informed by EoC-type data,
it will be essential that probabilities estimated from these data are
computed relative to a suitably refined reference class. Without
this requirement, focusing on bounds for P (R0 = 1|R1 = 1 and
A = 1) will not be the right thing to do.

We also note that the difference in the condition for our PC and
Pearl’s is what led to the upper bound in Pearl’s work with Tian,
which is not necessarily 1 for PN. Moreover, the work of Pearl and
others to sharpen these bounds and to identify PN rests on heroic
assumptions that we deem inappropriate for the present discussion,
especially when they ignore the distinctions between populations
and samples, and observational and experimental data. Dawid
et al. (2014b) do provide a more general treatment than the one
we do in our article, which does allow for an upper bound that can
differ from 1, but again it differs from that of Tian and Pearl for
the reasons given previously.
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In (Pearl, 2014b), I analyze the inconsistencies of these paragraphs, as well
as the reasons why the “more general” analysis of Dawid et al. (2014b) has
not produced the simple and informative bounds presented in Section 5 of this
paper. Here we merely list the major opportunities missed in Dawid et al.
(2014b).

1. Dawid et al. (2014b) failed to realize that fusing observational and ex-
perimental data can provide information that each study in isolation
cannot, and that the fusion may produce a solution to the CoE problem.

2. Dawid et al. (2014b) failed to realize that confounding can be a blessing
in that it may raise the lower bound (when CF > 0) and lower the upper
bound (when CF < 0) (as shown in Figs. 1(a,b)).

3. Dawid et al. (2014b) treat the PN bounds as an evidence that CoE is a
hard, if not metaphysical problem. They fail to appreciate the validity of
claims based on these bounds. In particular, if the lower bound is above
50% then, the “more probable than not” criterion is met, and no further
assumption (beyond the suitability of the reference class) is needed to
substantiate this claim.

References

Balke, A. and Pearl, J. (1994a). Counterfactual probabilities: Compu-
tational methods, bounds, and applications. In Uncertainty in Artificial
Intelligence 10 (R. L. de Mantaras and D. Poole, eds.). Morgan Kaufmann,
San Mateo, CA, 46–54.

Balke, A. and Pearl, J. (1994b). Probabilistic evaluation of counterfactual
queries. In Proceedings of the Twelfth National Conference on Artificial
Intelligence, vol. I. MIT Press, Menlo Park, CA, 230–237.

Cai, Z. and Kuroki, M. (2006). Variance estimators for three ‘probabilities
of causation’. Risk Analysis 25 1611–1620.

Cole, P. (1997). Causality in epidemiology, health policy, and law. Journal
of Marketing Research 27 10279–10285.

Dawid, A. (2000). Causal inference without counterfactuals (with comments
and rejoinder). Journal of the American Statistical Association 95 407–448.

Dawid, A. (2011). The role of scientific and statistical evidence in assessing
causality. In Perspectives on Causation (R. Goldberg, ed.). Hart Publishing,
Oxford, England, 133–147.

19



Dawid, A., Fienberg, S. and Faigman, D. (2014a). Fitting science into
legal contexts: Assessing effects of causes or causes of effects? Sociological
Methods and Research 43 359–390.

Dawid, A., Musio, M. and Fienberg, S. (2014b). From statistical evidence
to evidence of causality. Tech. rep., Statistical Laboratory, University of
Cambridge, UK. Submitted to Bayesian Analysis. ArXiv: 1311.7513.

Duncan, O. (1975). Introduction to Structural Equation Models. Academic
Press, New York.

Freedman, D. A. and Stark, P. B. (1999). The swine flu vaccine and
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