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Abstract

In causal inference, all methods of model learning rely on
testable implications, namely, properties of the joint distri-
bution that are dictated by the model structure. These con-
straints, if not satisfied in the data, allow us to reject or mod-
ify the model. Most common methods of testing a linear
structural equation model (SEM) rely on the likelihood ra-
tio or chi-square test which simultaneously tests all of the
restrictions implied by the model. Local constraints, on the
other hand, offer increased power (Bollen and Pearl 2013;
McDonald 2002) and, in the case of failure, provide the mod-
eler with insight for revising the model specification. One
strategy of uncovering local constraints in linear SEMs is to
search for overidentified path coefficients. While these overi-
dentifying constraints are well known, no method has been
given for systematically discovering them. In this paper, we
extend the half-trek criterion of (Foygel, Draisma, and Drton
2012) to identify a larger set of structural coefficients and use
it to systematically discover overidentifying constraints. Still
open is the question of whether our algorithm is complete.

Introduction
Many researchers, particularly in economics, psychology,
and the social sciences, use structural equation models
(SEMs) to describe the causal and statistical relationships
between a set of variables, predict the effects of interven-
tions and policies, and to estimate parameters of interest.
This qualitative causal information (i.e. exclusion and inde-
pendence restrictions (Pearl 2009)), which can be encoded
using a graph, imply a set of constraints on the probability
distribution over the underlying variables. These constraints
can be used to test the model and reject it when they are not
consistent with data.

In the case of linear SEMs, the most common method
of testing a model is a likelihood ratio or chi-square test
that compares the covariance matrix implied by the model
to that of the population covariance matrix (Bollen 1989;
Shipley 1997). While this test simultaneously tests all of
the restrictions implied by the model, failure does not pro-
vide the modeler with information about which aspect of the
model needs to be revised. Additionally, if the model is very
large and complex, it is possible that a global chi-square test

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

will not reject the model even when a crucial testable impli-
cation is violated. In contrast, if the testable implications are
enumerated and tested individually, the power of each test
is greater than that of a global test (Bollen and Pearl 2013;
McDonald 2002), and, in the case of failure, the researcher
knows exactly which constraint was violated. Finally, in
order to use the global chi-square test, it is necessary to
know the degrees of freedom. For models where all of
the free parameters are identifiable, the degrees of free-
dom is df = p(p+1)

2 − n where p is the number of vari-
ables and n is the number of free parameters (Bollen 1989;
Browne 1984). However, in cases where when one or more
free parameters are not identifiable (the model is underiden-
tified), this equation no longer holds. Instead, the degrees of
freedom is equivalent to the number of equality constraints
on the covariance matrix. (See discussion on SEMNET fo-
rum with subject heading, “On Degrees of Freedom”.) Bet-
ter understanding how to obtain and count these equality
constraints provides insights into the validity of the global
chi-square test.

There are a number of methods for discovering local
equality constraints that can be applied to a linear structural
equation model. It is well known that conditional indepen-
dence relationships can be easily read from the causal graph
using d-separation (Pearl 2009), and (Kang and Tian 2009)
gave a procedure that enumerates a set of conditional in-
dependences that imply all others. Additionally, a tetrad is
the difference in the product of pairs of covariances (e.g.
σ12σ34 − σ13σ24) and the structure of a linear SEM typi-
cally implies that some of the tetrads vanish while others do
not (Bollen and Pearl 2013; Spearman 1904).

Overidentifying constraints, the subject of this paper, rep-
resent another strategy for obtaining local constraints in lin-
ear models. These constraints are obtained when there are
at least two minimal sets of logically independent assump-
tions in the model that are sufficient for identifying a model
coefficient, and the identified expressions for the coefficient
are distinct functions of the covariance matrix (Pearl 2001;
2004). In this case, an equality constraint is obtained by
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equating the two identified expressions for the coefficient1,2.
When this constraint holds in the data, the overidentified
coefficient has the additional benefit of “robustness” (Pearl
2004). (Brito 2004) gave a sufficient condition for overi-
dentification. Additionally, some of the non-independence
constraints described by (McDonald 2002) are equivalent
to overidentifying constraints. Finally, the Sargan test, also
known as the Hansen or J-Test, relies on overidentification to
check the validity of an instrumental variable (Sargan 1958;
Hansen 1982). However, to our knowledge, no algorithm has
been given for the systematic listing of overidentifying con-
straints. With this goal in mind, we modify the identifiability
algorithm of (Foygel, Draisma, and Drton 2012) in order to
discover and list overidentifying constraints.

It is well known that Wright’s rules allow us to equate
the covariance of any two variables as a polynomial over the
model parameters (Wright 1921). (Brito and Pearl 2002a)
recognized that these polynomials are linear over a subset
of the coefficients, thereby reducing the problem of iden-
tification to analysis of a system of linear equations and
providing the basis for the “G-Criterion” of identifiability.
(Brito 2004) also noted that in some cases more linear equa-
tions could be obtained than needed for identification lead-
ing to the previously mentioned condition for overidentifi-
cation. (Foygel, Draisma, and Drton 2012) generalized the
G-Criterion, calling their condition the “half-trek criterion”
and gave an algorithm that determines whether a SEM, as
a whole, is identifiable. This algorithm can be modified in
a straightforward manner to give the identified expressions
for model coefficients. In this paper, we extend this (mod-
ified) half-trek algorithm to allow identification of possibly
more coefficients in underidentified models (models where
at least one coefficient is not identifiable)3 and use it to
list overidentifying constraints. These overidentifying con-
straints can then be used in conjunction with conditional in-
dependence constraints to test local aspects of the model’s
structure. Additionally, they could potentially be incorpo-
rated into constraint-based causal discovery algorithms.

Related Work
In addition to the work discussed in the introduction, the
identification problem has also been studied extensively by
econometricians and social scientists (Fisher 1966; Bow-
den and Turkington 1990; Bekker, Merckens, and Wansbeek
1994; Rigdon 1995). More recently, the problem has been

1Some authors use the term “overidentifying constraint” to de-
scribe any equality constraint implied by the model. We use it to
describe only cases when a model coefficient is overidentified.

2Parameters are often described as overidentified when they
have “more than one solution” (MacCallum 1995) or are “deter-
mined from [the covariance matrix] in different ways” (Jöreskog
et al. 1979). However, expressing a parameter in terms of the co-
variance matrix in more than one way does not necessarily mean
that equating the two expressions actually constrains the covariance
matrix. See (Pearl 2001) and (Pearl 2004) for additional explana-
tion and examples.

3Currently, state of the art SEM software like LISREL, EQS,
and MPlus are unable to identify any coefficients in underidentified
models.

addressed by the AI community using graphical modeling
techniques. The previously mentioned work by (Brito and
Pearl 2002a; Brito 2004; Foygel, Draisma, and Drton 2012)
as well as (Brito and Pearl ; 2002b) developed graphical cri-
teria for identification based on Wright’s equations, while
other work by (Tian 2005; 2007; 2009) used partial regres-
sion equations instead.

Non-conditional independence constraints have also been
explored by the AI community in the context of non-
parametric causal models. They were first noted by (Verma
and Pearl 1990) while (Tian and Pearl 2002) and (Shpitser
and Pearl 2008) developed algorithms for systematically dis-
covering such constraints using the causal graph.

Preliminaries
We will use rY X.Z to represent the regression coefficient of
Y onX given Z. Similarly, we will denote the covariance of
X on Y given Z as σY X.Z . Throughout the paper, we also
assume without loss of generality that model variables have
been standardized to mean zero and variance one.

A linear structural equation model consists of a set of
equations of the form,

xi = patiβi + εi

where pai (connoting parents) are the set of variables that
directly determine the value of Xi, βi is a vector of coef-
ficients that convey the strength of the causal relationships,
and εi represents errors due to omitted or latent variables.
We assume that εi is normally distributed.

We can also represent the equations in matrix form:

X = XtΛ + ε,

where X = [xi], Λ is a matrix containing the coefficients of
the model with Λij = 0 when Xi is not a cause of Xj , and
ε = [ε1, ε2, ..., εn]t.

The causal graph or path diagram of an SEM is a graph,
G = (V,D,B), where V are vertices, D directed edges,
and B bidirected edges. The vertices represent model vari-
ables. Edges represent the direction of causality, and for each
equation, xi = patiβi + εi, edges are drawn from the vari-
ables in pai to xi. Each edge, therefore, is associated with
a coefficient in the SEM, which we will often refer to as its
path coefficient. The error terms, εi, are not represented in
the graph. However, a bidirected edge between two variables
indicates that their corresponding error terms may be statisti-
cally dependent while the lack of a bidirected edge indicates
that the error terms are independent.

If an edge, called (X,Y ), exists from X to Y then we say
that X is a parent of Y . The set of parents of Y in a graph
G is denoted PaG(Y ). Additionally, we call Y the head of
(X,Y ) and X the tail. The set of tails for a set of edges, E,
is denoted Ta(E) while the set of heads is denoted He(E).
If there exists a sequence of directed edges fromX to Y then
we say that X is an ancestor of Y . The set of ancestors of Y
is denotedAnG(Y ). Finally, the set of nodes connected to Y
by a bidirected arc are called the siblings of Y or SibG(Y ).
In cases where the graph in question is obvious, we may
omit the subscript G.
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Figure 1: SEM Graph

A path from X to Y is a sequence of edges connecting
the two vertices. A path may go either along or against the
direction of the edges. A non-endpoint vertex W on a path
is said to be a collider if the edges preceding and following
W on the path both point to W , that is,→W ←,↔W ←,
→ W ↔, or ↔ W ↔. A vertex that is not a collider is a
non-collider.

A path between X and Y is said to be unblocked given a
set Z (possibly empty), with X,Y /∈ Z if:

1. every noncollider on the path is not in Z
2. every collider on the path is in An(Z) (Pearl 2009)

If there is no unblocked path between X and Y given Z,
then X and Y are said to be d-separated given Z (Pearl
2009). In this case, the model dictates that X and Y are in-
dependent given Z.

Obtaining Constraints via Overidentification
of Path Coefficients

The correlation between two variables in an SEM can be eas-
ily expressed in terms of the path coefficients using the asso-
ciated graph and Wright’s path-tracing rules (Wright 1921;
Pearl 2013). These expressions can then be used to identify
path coefficients in terms of the covariance matrix when the
coefficients are identifiable. Consider the following model
and its associated graph (Figure 1):

V1 = ε1

V2 = aV1 + ε2
V3 = bV2 + ε3
V4 = cV3 + ε4

Cov[ε2, ε4] = d

Using the single-door criterion criterion (Pearl 2009) and
Wright’s path-tracing rules, we identify two distinct expres-
sions for c in terms of the covariance matrix: c = r43.2 =
σ43.2

1−σ2
32

and c = abc
ab = σ41

σ31
, where rY X.Z is the regression

coefficient of Y on X given Z and σXY.Z is the covariance
of X and Y given Z. As a result, we obtain the following
constraint: σ43.2

1−σ2
32

= σ41

σ21σ32
.

If violated, this constraint calls into question the lack of
edge between V1 and V4.

Finding Constraints using an Extended
Half-Trek Criterion

Identification
The half-trek criterion is a graphical condition that can be
used to identify structural coefficients in an SEM, both

Figure 2: Half-Trek Criterion Example

recursive and non-recursive (Foygel, Draisma, and Drton
2012). In this section, we will paraphrase some prelimi-
nary definitions from (Foygel, Draisma, and Drton 2012)
and present a generalization of the half-trek criterion that
allows identifiability of potentially more coefficients in un-
deridentified models.
Definition 1. (Foygel, Draisma, and Drton 2012) A half-
trek, π, fromX to Y is a path fromX to Y that either begins
with a bidirected arc and then continues with directed edges
towards Y or is simply a directed path from X to Y .

If there exists a half-trek from X to Y we say that Y is
half-trek reachable from X . We denote the set of nodes that
are reachable by half-trek from X , htr(X).
Definition 2. (Foygel, Draisma, and Drton 2012) For any
half-trek, π, let Right(π) be the set of vertices in π that have
an outgoing directed edge in π (as opposed to bidirected
edge) union the last vertex in the trek. In other words, if
the trek is a directed path then every vertex in the path is a
member of Right(π). If the trek begins with a bidirected edge
then every vertex other than the first vertex is a member of
Right(π).
Definition 3. (Foygel, Draisma, and Drton 2012) A sys-
tem of half-treks, π1, ..., πn, has no sided intersection if for
all πi = {πi1, ..., πik}, πj = {πj1, ..., πjm}, πi1 6= πj1 and
Right(πi)∩Right(πj)= ∅.

The half-trek criterion is a sufficient graphical condition
for identifiability of the path coefficients of a variable, v.
If satisfied, we can obtain a set of linear equalities among
the covariance matrix and the coefficients of v. Further, this
set of equations is linearly independent with respect to the
coefficients of v, and we can therefore use standard methods
for solving a set of linearly independent equations to identify
the expressions for coefficients of v. Here, we modify the
half-trek criterion to identify connected edge sets (defined
below), which are subsets of a variable’s coefficients, rather
than all of the variable’s coefficients at once. As a result, an
unidentifiable edge will inhibit identification of the edges in
its connected edge set only and not all of v’s coefficients.
In this way, we increase the granularity of the criterion to
determine identifiability of some variable coefficients even
when they are not all identifiable.
Definition 4. Let Pa1, Pa2, ..., Pak be the unique partition
of Pa(v) such that any two parents are placed in the same
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subset, Pai, whenever they are connected by an unblocked
path. A connected edge set with head v is a set of edges from
Pai to v for some i ∈ {1, 2, ..., k}.

In Figure 2, there are two connected edge sets with head
V7. One is {(V4, V7)} and the other is {(V5, V7), (V6, V7)}.
V4 has no path to other parents of V7 while V5 and V6 are
connected by a bidirected arc.
Definition 5. (Edge Set Half-Trek Criterion) LetE be a con-
nected edge set with head v. A set of variables Y satisfies the
half-trek criterion with respect to E, if

(i) |Y | = |E|
(ii) Y ∩ (v ∪ Sib(v)) = ∅ and

(iii) There is a system of half-treks with no sided intersec-
tion from Y to Ta(E).

When it is clear from the context, we will simply refer to
the edge set half-trek criterion as the half-trek criterion. An
edge set, E, is identifiable if there exists a set, YE , that sat-
isfies the half-trek criterion with respect to E. However, YE
must consist only of “allowed” nodes. Intuitively, a node, y,
is allowed for E if it is either not half-trek reachable from
He(E) or any of y’s coefficients that lie on an unblocked
path between He(E) ∪ Ta(E) and y are themselves identi-
fiable. We define this notion formally below.
Definition 6. Let ES be the set of connected edge sets in
the causal graph, G. We say that a is an HT-allowed node
for edge set Ev with head v if a is not half-trek reachable
from v or both of the following conditions are satisfied:

(i) There exists an ordering on ES, ≺, and a family of
subsets (YE), one subset for each E ≺ Ev , such that
YE satisfies the half-trek criterion with respect to E
and Ei ≺ Ej for Ei, Ej ≺ Ev whenever He(Ei) ⊆
htr(He(Ej))∩YEj and there exists an unblocked path
between Ta(Ei) and He(Ej) ∪ Ta(Ej).

(ii) The edge set of any edges belonging to a that lie on a
half-trek from v to a are ordered before Ev

Let CE(y,E) be the connected edge sets con-
taining edges belonging to y that lie on an un-
blocked path from y to He(E) ∪ Ta(E). Now, define
Allowed(E, IDEdgeSets, G), used in Algorithms 1 and 2,
as the set (V \htr(He(E)))∪{y|CE(y,E) ∈ IDEdgeSets}
for some set of connected edge sets, IDEdgeSets. In-
tuitively, Allowed(E, IDEdgeSets, G) contains the set of
nodes that have been determined to be allowable forE based
on the edge sets that have been identified by the algorithm
so far.

If Y is a set of allowed variables for E that satisfies the
half-trek criterion with respect to E, we will say that Y is an
HT-admissible set for E.
Theorem 1. If a HT-admissible set for edge setE with head
v exists then E is identifiable. Further, let YE = {y1, ..., yk}
be a HT-admissible set for E, Ta(E) = {p1, ..., pk}, and Σ
be the covariance matrix of the model variables. Define A
as

Aij =

{
[(I − Λ)TΣ]yi,pj , yi ∈ htr(v),

Σyi,pj , yi /∈ htr(v)

and b as

bi =

{
[(I − Λ)TΣ]yi,v, yi ∈ htr(v),

Σyi,v, yi /∈ htr(v)

Then A is an invertible matrix and A · ΛTa(E),v = b.

Proof. The proof for this theorem is similar to the proof of
Theorem 1 (HTC-identifiability) in (Foygel, Draisma, and
Drton 2012). Rather than giving the complete proof, we give
some brief explanation for why our changes are valid. We
made two significant changes to the half-trek criterion. First,
we identify connected edge sets rather than the entire vari-
able. Since different edge sets are unconnected, the paths
from a half-trek admissible set, YE , to v = He(E) travel
only through the coefficients of E and no other coefficients
of v. As a result, A · ΛTa(E),v = b is still valid. Addition-
ally, A is still invertible due to the lack of sided intersection
in YE .

Second, if y ∈ YE is half-trek reachable from v, we do
not require y to be fully identified but only the edges of y
that lie on paths between He(v) ∪ Ta(v) and y. Let Ey be
the edges of y and Echtr(v) ⊆ Ey be the set of y’s edges
that do not lie on any half-trek from v to y. With respect
to the matrix, A, (I−Λ)TΣ)y,Ta(E) is still obtainable since
ΣTa(Ec

htr(v)
),Ta(E) = 0. We do not need to identify the coef-

ficients of Echtr(v) since they will vanish from A. Similarly,
they vanish from b since ΣTa(Ec

htr(v)
),v = 0.

If a connected edge set E is identifiable using Theorem 1
then we say that E is HT-identifiable.

Using Figure 2 as an example, we consider the coeffi-
cients of the two connected edge sets with head V7, {d} and
{e, f}. The coefficients, e and f , are not HT-identifiable,
but d is. {V3} is an HT-admissible set for c even though
V3 ∈ htr(V7) since V3’s only coefficient, b, is identifiable
using {V2}. Therefore, each coefficient of V3 that is reach-
able from V7 is identifiable and it is allowed to be in the
set Yd. Since coefficients e and f are not HT-identifiable,
the half-trek criterion of (Foygel, Draisma, and Drton 2012)
simply states that the variable V7 is not identifiable and fails
to address the identifiability of d.

Finding a HT-admissible set for a connected edge set,
E, with head, v, from a set of allowed nodes, AE , can
be accomplished by modifying the max-flow algorithm de-
scribed in (Foygel, Draisma, and Drton 2012). First, we con-
struct a graph, Gf (E,A), with at most 2|V | + 2 nodes and
3|V |+ |D|+ |B| edges, where D is the set of directed edges
and B the set of bidirected edges in the original graph, G.
The graph, Gf (E,A), is constructed as follows:

First, Gf (E,A) is comprised of three types of nodes:

(i) a source s and a sink t

(ii) a “left-hand copy” L(a) for each a ∈ A
(iii) a “right-hand copy” R(w) for each w ∈ V

The edges of Gf (e,A) are given by the following:

(i) s→ L(a) and L(a)→ R(a) for each a ∈ A
(ii) L(a)→ R(w) for each a↔ w ∈ B
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(iii) R(w)→ R(u) for each w → u ∈ D

(iv) R(w)→ t for each w ∈ Ta(E)

Finally, all edges have capacity∞, the source, s, and sink,
t, have capacity∞, and all other nodes have capacity 1. In-
tuitively, a flow from source to sink represents a half-trek
in the original graph, G, while the node capacity of 1 en-
sures that there is no sided intersection. The only difference
between our construction and that of (Foygel, Draisma, and
Drton 2012) is that instead of attaching parents of v to the
sink node in the max-flow graph, we attach only nodes be-
longing to Ta(E) to the sink node.

Once the graph, Gf (E,A), is constructed, we then deter-
mine the maximum flow using any of the standard maximum
flow algorithms. The size of the maximum flow indicates the
number of variables that satisfy conditions (ii) and (iii) of
the Edge Set Half-Trek Criterion. Therefore, if the size of
the flow is equal to |E| then E is identifiable. Further, the
“left-hand copies” of the allowed nodes with non-zero flow
are the nodes that can be included in the HT-admissible set,
YE . Let MaxFlow(Gf (E,A)), to be used in Algorithms 1
and 2, return the “left-hand copies” of the allowed nodes
with non-zero flow.

Theorem 2. Given a causal graph, G = (V,D,B), a
connected edge set, E, and a subset of “allowed” nodes,
A ⊆ V \ ({v} ∪ sib(v)), there exists a set Y ⊆ A sat-
isfying the half-trek criterion with respect to E if and only
if the flow network Gf (E,A) has maximum flow equal to
|Ta(E)|. Further, the nodes in L(A) of the flow graph,
Gf (E,A) with non-zero flow satisfy conditions (ii) and (iii)
of the Edge Set Half-Trek Criterion, and therefore, comprise
a HT-admissible set for E if the maximum flow is equal to
|Ta(E)|.

The proof for this theorem is omitted since it is very sim-
ilar to the proof for Theorem 6 in (Foygel, Draisma, and
Drton 2012). Algorithm 1 gives a method for identifying co-
efficients in a linear SEM, even when the model is underi-
dentified4.

4For the case of acyclic graphs, the half-trek method can be
extended in scope by first decomposing the distribution by c-
components as described in (Tian 2005). As a result, if the graph is
acyclic then the distribution should first be decomposed before ap-
plying the half-trek method. For the sake of brevity, we will not dis-
cuss decomposition in detail and instead refer the reader to (Foygel,
Draisma, and Drton 2012) and (Tian 2005).

Algorithm 1 Identify
Input: G = (V,D,B), ES
Initialize: IDEdgeSets← ∅.
repeat

for each E in ES \ IDEdgeSets do
AE ← Allowed(E, IDEdgeSets, G)
YE ← MaxFlow(Gf (v,A))
if |YE | = |Ta(E)| then

Identify E using Theorem 1
IDEdgeSets← IDEdgeSets ∪ E

end if
end for

until IDEdgeSets = ES or no coefficients have been
identified in the last iteration

Overidentifying Constraints
Once we have identified a connected edge set, E, using the
half-trek criterion, we can obtain a constraint if there exists
an alternative HT-admissible set for E, Y

′

E 6= YE , since Y
′

E
can then be used to find distinct expressions for some of the
path coefficients associated with E. Further, these distinct
expressions are derived from different aspects of the model
structure and, therefore, are derived from logically indepen-
dent sets of assumptions specified by the model. As a result,
an equality constraint is obtained by setting both expressions
for a given coefficient equal to one another. The following
lemma provides a condition for when such a set exists.
Lemma 1. Let the vertex set, YE , be an HT-admissible set
for connected edge set, E, and let v be the head of E. An
alternative HT-admissible set forE, Y

′

E 6= YE , exists if there
exists a vertex, w /∈ YE , such that

1. there exists a half-trek from w to Ta(E),
2. w /∈ (v ∪ Sib(v)), and
3. if w ∈ htr(v), the connected edge sets containing edges

belonging tow that lie on unblocked paths betweenw and
He(E) ∪ Ta(E) are HT-identifiable.

Proof. Let π
′

w be any half-trek from w to Ta(E). Clearly,
{π′

w} ∪Π has a sided intersection since there are more half-
treks in {π′

w} ∪Π than vertices in Ta(E). Now, let π be the
first half-trek that π

′

w intersects and x be the first vertex that
they share. More precisely, if we order the vertices in π

′

w so
that w is the first vertex, t ∈ Ta(E) the last, and the remain-
ing vertices ordered according to the path from w to t then x
is the first vertex in the set (∪i|πi∈ΠRight(πi))∩Right(π

′

w)
and π is the half-trek in Π such that x ∈ Right(π). Note
that π is unique because Π has no sided intersection. Now,
let πw be the half-trek from w to Ta(E) that is the same as
π

′

w until vertex x after which it follows the path of π. πw is a
half-trek from w to v and Π

′
= Π\{π}∪{πw} has no sided

intersection. Now if we let z be the first vertex in π then it
follows that Y

′

E = YE \ {z} ∪ {w} satisfies the half-trek
criterion with respect to E.

Note that this proof also shows how to obtain the alter-
native set Y

′

E once a variable w that satisfies Lemma 1 is
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found. In Figure 1, (V3, V4) can be identified using either
Y = {V3}, which yields c = σ43.2 or Y

′
= {V1}, which

yields c = σ41

σ31
. Both sets satisfy the half trek criterion and

yield different expressions for c giving the same constraint
as before, σ43.2

1−σ2
32

= σ41

σ31
.

While overidentifying constraints can be obtained by
identifying the edge set E using different HT-admissible
sets, there is actually a more direct way to obtain the con-
straint. Let Ta(E) = {p1, ..., pk}, and Σ be the covariance
matrix of the model variables. Define aw as

aw =

{
[(I − Λ)TΣ]w,pj , w ∈ htr(v),

Σw,pj , w /∈ htr(v)

and bw as

bw =

{
[(I − Λ)TΣ]w,v, w ∈ htr(v),

Σw,v, w /∈ htr(v)

From Theorem 1, we have that A · ΛTa(E),v = b. Simi-
larly, awT · ΛTa(E),v = bw. Now, aw = dT ·A for some
vector of constants d since A has full rank. As a result,
bw = dT · b, giving us the constraint awTA−1b = bw.

Clearly, if we are able to find additional variables that sat-
isfy the conditions given above for w, we will obtain ad-
ditional constraints. Constraints obtained using the above
method may or may not be conditional independence con-
straints. We refer to constraints identified using the half-
trek criterion as HT-overidentifying constraints. Algorithm
2 gives a procedure for systematically discovering HT-
overidentifying constraints.

We use Figure 2 as an illustrative example of Algorithm
2. First, b is identifiable using Yb = {V2}, and V1 satisfies
the conditions of Lemma 1 giving the constraint σ23 = σ13

σ12
,

which is equivalent to the conditional independence con-
straint that V1 is independent of V3 given V2. Next, d is
identifiable using Yd = {V3}, which then allows a to be
identifiable using {V7}. Since a is identifiable, {V2} is HT-
admissible for c, allowing c to be identified. {V2} also satis-
fies the conditions of Lemma 1 for d giving the constraint:

−σ23σ27 + σ37

−σ23σ24 + σ34
=
−σ14σ23σ27−σ14σ37+σ17

σ24σ23σ27−σ24σ37+σ27
σ17 + σ27

−σ14σ23σ27−σ14σ37+σ17

σ24σ23σ27−σ24σ37+σ27
σ14 + σ24

.

Note that d is not identifiable using other known methods
and, as a result, this constraint is not obtainable using the
methods of (Brito 2004) or (McDonald 2002). Lastly, a is
also overidentified using {V4} yielding the constraint:

σ14σ23σ27 − σ14σ37 + σ17

σ24σ23σ27 − σ24σ37 + σ27
=
−cσ23 + σ24

−cσ13 + σ14

where

c =
−σ14σ23σ27+σ14σ37−σ17

σ24σ23σ27−σ24σ37+σ27
σ14 + σ24

−σ14σ23σ27+σ14σ37−σ17

σ24σ23σ27−σ24σ37+σ27
σ13 + σ23

Finally, suppose an overidentifying constraint is violated.
How can the modeler use this information to revise his or her

assumptions? Consider a connected edge set E with head
v and a HT-admissible set YE . If a variable w satisfies the
conditions of Lemma 1 then the set YE ∪ {w} must have at
least one variable that is not a parent of v. Let K = YE \
(Pa(v)∪{w}). If the overidentifying constraint, bw = aw ·
A−1 ·b, is violated then the modeler should consider adding
an edge, either directed, bidirected, or both, between K to v
since doing so eliminates the constraint.

Algorithm 2 Find Constraints
Input: G = (V,D,B), ES
Initialize: IDEdgeSets← ∅.
repeat

for each E ∈ ES do
AE ← Allowed(E, IDEdgeSets, G)
YE ← MaxFlow(Gf (E,A))
if |YE | = |Ta(E)| then

if E /∈ IDEdgeSets then
Identify E using Theorem 1
IDEdgeSets← IDEdgeSets ∪ E

end if
for each w in AE \ YE do

if v ∈ htr(w) then
Output constraint: bw = aw ·A−1 · b

end if
end for

end if
end for

until one iteration after all edges are identified or no new
edges have been identified in the last iteration

Conclusion
In this paper, we extend the half-trek criterion in order to
identify additional coefficients when the model is underiden-
tified. We then use our extended criterion to systematically
discover overidentifying constraints. These local constraints
can be used to test the model structure and potentially be
incorporated into constraint-based discovery methods.
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