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Abstract
Selection bias is caused by preferential exclusion of units
from the samples and represents a major obstacle to valid
causal and statistical inferences; it cannot be removed by
randomized experiments and can rarely be detected in ei-
ther experimental or observational studies. In this paper, we
provide complete graphical and algorithmic conditions for
recovering conditional probabilities from selection biased
data. We also provide graphical conditions for recoverabil-
ity when unbiased data is available over a subset of the vari-
ables. Finally, we provide a graphical condition that gener-
alizes the backdoor criterion and serves to recover causal ef-
fects when the data is collected under preferential selection.

Introduction
Selection bias is induced by preferential selection of units
for data analysis, usually governed by unknown factors in-
cluding treatment, outcome, and their consequences, and
represents a major obstacle to valid causal and statistical in-
ferences. It cannot be removed by randomized experiments
and can rarely be detected in either experimental or observa-
tional studies.1 For instance, in a typical study of the effect
of training program on earnings, subjects achieving higher
incomes tend to report their earnings more frequently than
those who earn less. The data-gathering process in this case
will reflect this distortion in the sample proportions and,
since the sample is no longer a faithful representation of the
population, biased estimates will be produced regardless of
how many samples were collected.

This preferential selection challenges the validity of in-
ferences in several tasks in AI (Cooper 1995; Elkan 2001;
Zadrozny 2004; Cortes et al. 2008) and Statistics (Whitte-
more 1978; Little and Rubin 1986; Jewell 1991; Kuroki and
Cai 2006) as well as in the empirical sciences (e.g., Genet-
ics (Pirinen, Donnelly, and Spencer 2012; Mefford and Witte
2012), Economics (Heckman 1979; Angrist 1997), and Epi-
demiology (Robins 2001; Glymour and Greenland 2008)).

To illuminate the nature of preferential selection, consider
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1Remarkably, there are special situations in which selection
bias can be detected even from observations, as in the form of a
non-chordal undirected component (Zhang 2008).

the data-generating model in Fig. 1(a) in whichX represents
an action, Y represents an outcome, and S represents a bi-
nary indicator of entry into the data pool (S = 1 means
that the unit is in the sample, S = 0 otherwise). If our goal
is to compute the population-level conditional distribution
P (y|x), and the samples available are collected under selec-
tion, onlyP (y, x|S = 1) is accessible for use. 2 Given that in
principle these two distributions are just loosely connected,
the natural question to ask is under what conditions P (y|x)
can be recovered from data coming from P (y, x|S = 1).
In this specific example, both action and outcome affect the
entry in the data pool, which will be shown not to be recov-
erable (see Corollary 1) – i.e., there is no method capable of
unbiasedly estimating the population-level distribution us-
ing data gathered under this selection process.

The bias arising from selection differs fundamentally
from the one due to confounding, though both constitute
threats to the validity of causal inferences. The former bias
is due to treatment or outcome (or ancestors) affecting the
inclusion of the subject in the sample (Fig. 1(a)), while the
latter is the result of treatment X and outcome Y being
affected by a common omitted variables U (Fig. 1(b)). In
both cases, we have unblocked extraneous “flow” of infor-
mation between treatment and outcome, which appear under
the rubric of “spurious correlation,” since it is not what we
seek to estimate.

It is instructive to understand selection graphically, as in
Fig. 1(a). The preferential selection that is encoded through
conditioning on S creates spurious association between X
and Y through two mechanisms. First, given that S is a
collider, conditioning on it induces spurious association be-
tween its parents, X and Y (Pearl 1988). Second, S is also
a descendant of a “virtual collider” Y , whose parents are X
and the error term UY (also called “hidden variable”) which
is always present, though often not shown in the diagram.3

Related work and Our contributions
There are three sets of assumptions that are enlightening to
acknowledge if we want to understand the procedures avail-

2In a typical AI task such as classification, we could have X
being a collection of features and Y the class to be predicted, and
P (y|x) would be the classifier that needs to be trained.

3See (Pearl 2000, pp. 339-341) and (Pearl 2013) for further ex-
planations of this bias mechanism.

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2410

AAAI-2014 Best Paper Award. 
 

TECHNICAL REPORT 
R-425 

July 2014



able in the literature for treating selection bias – qualitative
assumptions about the selection mechanism, parametric as-
sumptions regarding the data-generating model, and quanti-
tative assumptions about the selection process.

In the data-generating model in Fig. 1(c), the selection
of units to the sample is treatment-dependent, which means
that it is caused by X , but not Y . This case has been
studied in the literature and Q = P (y|x) is known to
be non-parametrically recoverable from selection (Green-
land and Pearl 2011). Alternatively, in the data-generating
model in Fig. 1(d), the selection is caused by Y (outcome-
dependent), and Q is not recoverable from selection (for-
mally shown later on), but is the odds ratio4 (Cornfield 1951;
Whittemore 1978; Geng 1992; Didelez, Kreiner, and Keid-
ing 2010). As mentioned earlier, Q is also not recoverable
in the graph in Fig. 1(a). By and large, the literature is con-
cerned with treatment-dependent or outcome-dependent se-
lection, but selection might be caused by multiple reasons
and embedded in more intricate realities. For instance, a
driver of the treatment Z (e.g., age, sex, socio-economic sta-
tus) may also be causing selection, see Fig. 1(e,f). As it turns
out, Q is recoverable in Fig 1(e) but not in (f), so different
qualitative assumptions need to be modelled explicitly since
each topology entails a different answer for recoverability.

The second assumption is related to the parametric form
used by recoverability procedures. For instance, one varia-
tion of the selection problem was studied in Econometrics,
and led to the celebrated method developed by James Heck-
man (Heckman 1979). His two-step procedure removes the
bias by leveraging the assumptions of linearity and normal-
ity of the data-generating model. A graph-based parametric
analysis of selection bias is given in (Pearl 2013).

The final assumption is about the probability of being se-
lected into the sample. In many settings in Machine learning
and Statistics (Elkan 2001; Zadrozny 2004; Smith and Elkan
2007; Storkey 2009; Hein 2009; Cortes et al. 2008), it is as-
sumed that this probability, P (S = 1|Pas), can be modelled
explicitly, which often is an unattainable requirement for the
practitioner (e.g., it might be infeasible to assess the differ-
ential rates of how salaries are reported).

Our treatment differs fundamentally from the current lit-
erature regarding these assumptions. First, we do not con-
strain the type of data-generating model as outcome- or
treatment-dependent, but we take arbitrary models (includ-
ing these two) as input, in which a node S indicates selec-
tion for sampling. Second, we do not make parametric as-
sumptions (e.g. linearity, normality, monotonicity) but op-
erate non-parametrically based on causal graphical models
(Pearl 2000), which is more robust, less prone to model mis-
specifications. Third, we do not rely on having the selec-
tion’s probability P (S = 1|Pas), which is not always avail-
able in practice. Our work hinges on exploiting the quali-
tative knowledge encoded in the data-generating model for
yielding recoverability. This knowledge is admittedly a de-
manding requirement for the scientist, but we now under-

4The odds ratio (OR) is a commonly used measure of associ-
ation and has the form

(
P (y|x)P (y|x)

)
/
(
P (y|x)P (y|x)

)
. The

symmetric form of the OR allows certain derivations.

; <

6

; <

=

; <

8
�D� �E� �F�

�G� �H� �I�

; <

6

6

; <

6

; <

= :

6

Figure 1: (a,b) Simplest examples of selection and con-
founding bias, respectively. (c,d) Treatment-dependent and
outcome-dependent studies under selection, Q = P (y|x) is
recoverable in (c) but not in (d). (e,f) Treatment-dependent
study where selection is also affected by driver of treatment
Z (e.g., age); Q is recoverable in (e) but not in (f).

stand formally its necessity for any approach to recoverabil-
ity – any procedure aiming for recoverability, implicitly or
explicitly, relies on this knowledge (Pearl 2000). 5

The analysis of selection bias requires a formal lan-
guage within which the notion of data-generating model is
given precise characterization, and the qualitative assump-
tions regarding how the variables affect selection can be en-
coded explicitly. The advent of causal diagrams (Pearl 1995;
Spirtes, Glymour, and Scheines 2000; Pearl 2000; Koller
and Friedman 2009) provides such a language and renders
the formalization of the selection problem possible.

Using this language, (Bareinboim and Pearl 2012) pro-
vided a complete treatment for selection relative to the OR4.
We generalize their treatment considering the estimability of
conditional distributions and address three problems:
1. Selection without external data: The dataset is col-
lected under selection bias, P (v|S = 1); under which
conditions is P (y|x) recoverable?

2. Selection with external data: The dataset is collected
under selection bias, P (v|S = 1), but there are unbiased
samples from P (t), for T ⊆ V; under which conditions
is P (y|x) recoverable?

3. Selection in causal inferences: The data is collected un-
der selection bias, P (v|S = 1), but there are unbiased
samples from P (t), for T ⊆ V; under which conditions
is the interventional distribution P (y|do(x)) estimable?

We provide graphical and algorithmic conditions for these
problems without resorting to parametric assumptions nor
selection probabilities. Furthermore, the solution for selec-
tion without external data is complete, in the sense that
whenever a quantity is said not to be recoverable by our con-
ditions, there exists no procedure that are able to recover it
(without adding assumptions). In estimating the effects of
interventions, we generalize the backdoor criterion for when
data is collected under selection.

5A trivial instance of this necessity is Fig. 1(c,d) where the odds
ratio is recoverable, yet P (y|x) is recoverable in 1(c) but not in (d).
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Recoverability without External Data
We first introduce the formal notion of recoverability for
conditional distributions when data is under selection. 6

Definition 1 (s-Recoverability). Given a causal graph Gs

augmented with a node S encoding the selection mechanism
(Bareinboim and Pearl 2012), the distributionQ = P (y | x)
is said to be s-recoverable from selection biased data in Gs

if the assumptions embedded in the causal model renders Q
expressible in terms of the distribution under selection bias
P (v | S = 1). Formally, for every two probability distri-
butions P1 and P2 compatible with Gs, P1(v | S = 1) =
P2(v | S = 1) > 0 implies P1(y | x) = P2(y | x). 7

Consider the graph Gs in Fig. 1(c) and assume that our
goal is to establish s-recoverability of Q = P (y|x). Note
that by d-separation (Pearl 1988),X separates Y from S, (or
(Y ⊥⊥ S|X)), so we can write P (y|x) = P (y|x, S = 1).
This is a very special situation since these two distributions
can be arbitrarily distant from each other, but in this specific
case Gs constrains Q in such a way that despite the fact
that data was collected under selection and our goal is to
answer a query about the overall population, there is no need
to resort to additional data external to the biased study.

Now we want to establish whether Q is s-recoverable in
the graph Gs in Fig. 1(d). In this case, S is not d-separated
from Y if we condition on X , so (S ⊥⊥ Y |X) does not
hold in at least one distribution compatible with Gs, and the
identity P (y|x) = P (y|x, S = 1) is not true in general. One
may wonder if there is another way to s-recover Q in Gs,
but this is not the case as formally shown next. That is, the
assumptions encoded in Gs imply a universal impossibility;
no matter how many samples of P (x, y|S = 1) are accumu-
lated or how sophisticated the estimation technique is, the
estimator of P (y|x) will never converge to its true value.

Lemma 1. P (y|x) is not s-recoverable in Fig. 1(d).

Proof. We construct two causal models such that P1 is com-
patible with the graph Gs in Fig. 1(d) and P2 with the sub-
graph G2 = Gs \ {Y → S}. We will set the parameters
of P1 through its factors and then computing the parameters
of P2 by enforcing P2(V | S = 1) = P1(V | S = 1).
Since P2(V|S = 1) = P2(V), we will be enforcing
P1(V|S = 1) = P2(V). Recoverability should hold for any
parametrization, so we assume that all variables are binary.
Given a Markovian causal model (Pearl 2000), P1 can be
parametrized through its factors in the decomposition over
observables, P1(X), P1(Y |X), P1(S = 1|Y ), for all X,Y .

We can write the conditional distribution in the second
causal model as follows:

P2(y|x) = P1(y|x, S = 1) =
P1(y, x, S = 1)

P1(x, S = 1)
(1)

6This definition generalizes G-admissibility given in (Barein-
boim and Pearl 2012).

7We follow the conventions given in (Pearl 2000). We use typi-
cal graph notation with families (e.g., children, parents, ancestors).
We denote variables by capital letters and their realized values by
small letters. We use bold to denote sets of variables. We denote
the set of all variables by V, except for the selection mechanism S.

=
P1(S = 1|y)P1(y|x)

P1(S = 1|y)P1(y|x) + P1(S = 1|y)P1(y|x)
, (2)

where the first equality, by construction, should be enforced,
and the second and third by probability axioms. The other
parameters of P2 are free and can be chosen to match P1.

Finally, set the distribution of every family in P1 but se-
lection variable equal to 1/2, and set the distribution P1(S =
1|y) = α, P1(S = 1|y) = β, for 0 < α, β < 1 and α 6= β.
This parametrization reduces eq. (2) toP2(y|x) = α/(α+β)
and P1(y|x) = 1/2, the result follows.

Corollary 1. P (y|x) is not s-recoverable in Fig. 1(a).
The corollary follows immediately noting that lack of

s-recoverability with a subgraph (Fig. 1(d)) precludes s-
recoverability with the graph itself since the extra edge can
be inactive in a compatible parametrization (Pearl 1988) (the
converse is obviously not true). Lemma 1 is significant be-
cause Fig. 1(d) can represent a study design that is typically
used in empirical fields known as case-control studies. The
result is also theoretically instructive since Fig. 1(d) repre-
sents the smallest graph structure that is not s-recoverable,
and its proof will set the tone for more general and arbitrary
structures that we will be interested in (see Theorem 1).

Furthermore, consider the graph in Fig. 1(e) in which the
independence (S ⊥⊥ Y |X) holds, so we can also recover Q
from selection (P (y|x, S = 1) = P (y|x)). However, (S ⊥⊥
Y |X) does not hold in Fig. 1(f) – there is an open path pass-
ing throughX’s ancestorW (i.e. S ← Z → X ←W → Y )
– and the natural question that arises is whether Q is recov-
erable in this case. It does not look obvious whether the ab-
sence of an independence precludes s-recoverability since
there are other possible operators in probability theory that
could be used leading to the s-recoverability of Q. To illus-
trate this point, note that it is not the case in causal inference
that the inapplicability of the backdoor criterion (Pearl 2000,
Ch. 3), which is also an independence constraint, implies the
impossibility of recovering certain effects.

Remarkably, the next result states that the lack of this in-
dependence indeed precludes s-recoverability, i.e., the probe
of one separation test in the graph is sufficient to evaluate
whether a distribution is or is not s-recoverable.
Theorem 1. The distribution P (y|x) is s-recoverable from
Gs if and only if (S ⊥⊥ Y |X). 8

In words, Theorem 1 provides a powerful test for s-
recoverability without external data, which means that when
it disavows s-recoverability, there exists no procedure that
would be capable of recovering the distribution from selec-
tion bias (without adding assumptions). Its sufficiency part
is immediate, but the proof of necessity is somewhat in-
volved since we need to show that for all graphical struc-
tures in which the given d-separation test fails, each of these
structures does not allow for s-recoverability (i.e., a counter-
example can always be produced showing agreement on
P (v|S = 1) and disagreement on P (y|x)).

The next corollary provides a test for s-recoverability of
broader joint distributions (including Y alone):

8Please refer to the Appendix 2 in the full report for the proofs
(Bareinboim, Tian, and Pearl 2014).
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Corollary 2. Let Z = An(S) \ An(Y ) including S, and
A = Pa(Z)∩(An(Y )\{Y }). P (Y,An(Y )\(A\{Y })|A)
is s-recoverable if and only if Y is not an ancestor of S.

This result can be embedded as a step reduction in an al-
gorithm to s-recover a collection of distributions in the form
of the corollary. We show such algorithm in (Bareinboim,
Tian, and Pearl 2014) 9. The main idea is to traverse the
graph in a certain order s-recovering all joint distributions
with the form given in the corollary (updating S along the
way). If the algorithm exits with failure, it means that the
distributions of its predecessors are not s-recoverable.

Recoverability with External Data
A natural question that arises is whether additional measure-
ments in the population level over certain variables can help
recovering a given distribution. For example, P (age) can be
estimated from census data which is not under selection bias.

To illustrate how this problem may arise in practice, con-
sider Fig. 2 and assume that our goal is to s-recover Q =
P (y|x). It follows immediately from Thm. 1 that Q cannot
be s-recovered without additional assumptions. Note, how-
ever, that the parents of the selection node Pas = {W1,W2}
separates S from all other nodes in the graph, which indi-
cates that it would be sufficient for recoverability to measure
T = {W1,W2} ∪ {X} from external sources. To witness,
note that after conditioning Q on W1 and W2, we obtain:

P (y|x) =
∑

w1,w2

P (y|x,w1, w2)P (w1, w2|x)

=
∑

w1,w2

P (y|x,w1, w2, S = 1)P (w1, w2|x), (3)

where the last equality follows from (Y ⊥⊥ S |
X,W1,W2). That is, Q can be s-recovered and is a com-
bination of two different types of data; the first factor comes
from biased data under selection, and the second factor is
available from external data collected over the whole popu-
lation.

Our goal is to understand the interplay between measure-
ments taken over two types of variables, M,T ⊆ V , where
M are variables collected under selection bias, P (M|S =
1), and T are variables collected in the population-level,
P (T). In other words, we want to understand when (and
how) can this new piece of evidence P (T) together with the
data under selection (P (M|S = 1)) help in extending the
treatment of the previous section for recovering the true un-
derlying distribution Q = P (y|x).10

Formally, we need to redefine s-recoverability for accom-
modating the availability of data from external sources.
Definition 2 (s-Recoverability). Given a causal graph Gs

augmented with a node S, the distribution Q = P (y | x)
9This listing is useful when one needs to examine properties of

the collection of distributions, analogously to the list of all back-
door admissible sets by (Textor and Liskiewicz 2011)).

10This problem subsumes the one given in the previous section
since when T = ∅, the two problems coincide. We separate them
since they come in different shades in the literature and also just
after solving the version without external data we can aim to solve
its more general version; we discuss more about this later on.
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Figure 2: Causal model in which Q = P (y|x) is not recov-
erable without external data (Thm. 1), but it is recoverable if
measurements on the set Pas = {W1,W2} are taken (Thm.
2). Alternatively, even if not all parents of S are measured,
any set including {W2, Z3} would yield recoverability ofQ.

is said to be s-recoverable from selection bias in Gs with
external information over T ⊆ V and selection biased data
over M ⊆ V (for short, s-recoverable) if the assumptions
embedded in the causal model renderQ expressible in terms
of P (m | S = 1) and P (t), both positive. Formally, for
every two probability distributions P1 and P2 compatible
with Gs, if they agree on the available distributions, P1(m |
S = 1) = P2(m | S = 1) > 0, P1(t) = P2(t) > 0, they
must agree on the query distribution, P1(y | x) = P2(y | x).

The observation leading to eq. (3) provides a simple con-
dition for s-recoverability when we can choose the variables
to be collected. Let Pas be the parent set of S. If measure-
ments on the set T = Pas ∪ {X} can be taken without
selection, we can write P (y|x) =

∑
pas

P (y|x,pas, S =

1)P (pas|x), since S is separated from all nodes in the graph
given its parent set. This implies s-recoverability where we
have a mixture in which the first factor is obtainable from
the biased data and the second from external sources.

This solution is predicated on the assumption that Pas can
be measured in the overall population, which can be a strong
requirement, and begs a generalization to when part of Pas
is not measured. For instance, what if in Fig. 2W1 cannot be
measured? Would other measurements over a different set of
variables also entail s-recoverability?

This can be expressed as a requirement that subsets of T
and M can be found satisfying the following criterion:

Theorem 2. If there is a set C that is measured in the biased
study with {X, Y } and in the population level with X such
that (Y ⊥⊥ S|{C,X}), then P (y|x) is s-recoverable as

P (y|x) =
∑
c

P (y|x, c, S = 1)P (c|x). (4)

In the example in Fig. 2, it is trivial to confirm that any
(pre-treatment) set C containing W2 and Z3 would satisfy
the conditions of the theorem. In particular, {W2, Z3} is
such a set, and it allows us to s-recoverQwithout measuring
W1 (W1 ∈ Pas) through eq. (4). Note, however, that the set
C = {W2, Z1, Z2} is not sufficient for s-recoverability. It
fails to satisfy the separability condition of the theorem since
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conditioning on {X,W2, Z1, Z2} leaves an unblocked path
between S and Y (i.e., S ←W1 → T1 → X ← Z3 → Y ).

It can be computationally difficult to find a set satisfying
the conditions of the theorem since this could imply a search
over a potentially exponential number of subsets. Remark-
ably, the next result shows that the existence of such a set
can be determined by a single d-separation test.
Theorem 3. There exists some set C ⊆ T ∩M such that
Y ⊥⊥ S|{C,X} if and only if the set (C′∪X) d-separates S
from Y where C′ = [(T∩M)∩An(Y ∪S∪X)]\(Y ∪S∪X).

In practice, we can restrict ourselves to minimal separa-
tors, that is, looking only for minimal set C ⊆ T ∩M such
that (Y ⊥⊥ S|{C,X}). The algorithm for finding minimal
separators has been given in (Acid and de Campos 1996;
Tian, Paz, and Pearl 1998).

Despite the computational advantages given by Thm. 3,
Thm. 2 still requires the existence of a separator C measured
in both the biased study (M) and in the overall population
(T), and it is natural to ask whether this condition can be
relaxed. Assume that all we have is a separator C ⊆M, but
C (or some of its elements) is not measured in population T,
and therefore P (c|x) in eq. (4) still needs to be s-recovered.
We could s-recover P (c|x) in the spirit of Thm. 2 as

P (c|x) =
∑
c1

P (c|x, c1, S = 1)P (c1|x), (5)

if there exists a set C1 ⊆M∩T such that (S ⊥⊥ C|X,C1).
Now if this fails in that we can only find a separator C1 ⊆
M not measured in T, we can then attempt to recover
P (c1|x) in the spirit of Thm. 2 by looking for another sepa-
rator C2, and so on. At this point, it appears that Thm. 2 can
be extended.

We further extend this idea by considering other possible
probabilistic manipulations and embed them in a recursive
procedure. For W,Z ⊆M, consider the problem of recov-
ering P (w|z) from P (t) and P (m|S = 1), and define pro-
cedure RC(w, z) as follows:

1. If W ∪ Z ⊆ T, then P (w|z) is s-recoverable.
2. If (S ⊥⊥W|Z), then P (w | z) is s-recoverable as P (w |

z) = P (w | z, S = 1).
3. For minimal C ⊆ M such that (S ⊥⊥ W|(Z ∪ C)),
P (w|z) =

∑
c P (w|z, c, S = 1)P (c|z). If C ∪ Z ⊆ T,

then P (w|z) is s-recoverable. Otherwise, call RC(c, z).
4. For some W′ ⊂W, P (w|z) = P (w′|w \w′, z)P (w \

w′|z). Call RC(w′, {w \w′} ∪ z) and RC(w \w′, z)).
5. Exit with FAIL (to s-recover P (w|z)) if for a singleton

W, none of the above operations are applicable.
Now, we define recoverability based on this procedure:
Definition 3. We say that P (w|z) is C-recoverable if and
only if it is recovered by the procedure RC(w, z).

Remarkably, the manipulations considered in RC() are
not actually more powerful than Thm. 2, as shown next.
Theorem 4. For X ⊆ T, Y /∈ T, Q = P (y|x) is C-
recoverable if and only if it is recoverable by Theorem 2, that
is, if and only if there exists a set C ⊆ T∩M such that (Y ⊥

⊥ S|{C,X}) (where C could be empty). If s-recoverable,
P (y|x) is given by P (y|x) =

∑
c P (y|x, c, S = 1)P (c|x).

This result suggests that the constraint between measure-
ment sets cannot be relaxed through ordinary decomposition
and Thm. 2 captures the bulk of s-recoverable relations. (See
proof in (Bareinboim, Tian, and Pearl 2014).) Importantly,
this does not constitute a proof of necessity of Thm. 2.

Now we turn our attention to some special cases that ap-
pear in practice. Note that, so far, we assumedX being mea-
sured in the overall population, but in some scenarios Y ’s
prevalence might be available instead. So, assume Y ∈ T
but some variables in X are not measured in the population-
level. Let X0 = X ∩T and Xm = X \X0, we have

P (y|x) = P (xm|y,x0)p(y|x0)∑
y P (x

m|y,x0)p(y|x0)
(6)

Therefore, P (y|x) is recoverable if P (xm|y,x0) is re-
coverable. We could use the previous results to recover
P (xm|y,x0). In particular, Theorems 2 and 3 lead to:

Corollary 3. P (y|x) is recoverable if there exists a set C ⊆
T ∩M (C could be empty) such that (Xm ⊥⊥ S|{C ∪Y ∪
X0}). If recoverable, P (y|x) is given by Eq. (6) where

P (xm|y,x0) =
∑
c

P (xm|y,x0, c, S = 1)P (c|y,x0) (7)

Corollary 4. P (y|x) is recoverable via Corollary 3 if and
only if the set (C′ ∪Y ∪X0) d-separates S from Xm where
C ′ = [(T ∩M) ∩An(Y ∪ S ∪X)] \ (Y ∪ S ∪X).

For example, in Fig. 2, assuming M =
{X,Y,W1,W3, Z3} and T = {Y,W1,W3, Z3}, we
have S ⊥⊥ X|{Y,W1,W3, Z3}, therefore we can s-recover

P (x|y) =
∑

w1,w3,z3

P (x|y, w1, w3, z3, S = 1)P (w1, w3, z3|y), (8)

as well as P (y|x) by substituting back eq. (8) in eq. (6).
Furthermore, it is worth examining when no data is gath-

ered over X or Y in the population level. In this case,P (y|x)
may be recoverable through P (x, y), as shown in the sequel.

Corollary 5. P (y|x) is recoverable if there exists a set C ⊆
T∩M such that ({Y }∪X ⊥⊥ S|C). If recoverable, P (y,x)
is given by P (y,x) =

∑
c P (y,x|c, S = 1)P (c).

For instance, P (x, y) is s-recoverable in Fig. 2 if T ∩M
contains {W2, T1, Z3} or {W2, T1, Z1} (without {X,Y }) .

Recoverability of Causal Effects
We now turn our attention to the problem of estimating
causal effects from selection biased data. 11

Our goal is to recover the effect of X on Y , P (y|do(x))
given the structure of Gs. Consider the graph Gs in
Fig. 3(a), in which X and Y are not confounded, hence,
P (y|do(x)) = P (y|x) and, based on Theorem 1, we con-
clude that P (y|do(x)) is not recoverable in Gs. Fig. 3(b)
and 3(c), on the other hand, contains covariates W1 and
W2 that may satisfy conditions similar to those in Theorem

11We assume the graph Gs represents a causal model, as defined
in (Pearl 2000; Spirtes, Glymour, and Scheines 2000).
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1 that would render P (y|do(x)) recoverable. These condi-
tions, however, need to be strengthened significantly, to ac-
count for possible confounding between X and Y which,
even in the absence of selection bias, might require ad-
justment for admissible covariates, namely, covariates that
satisfy the backdoor condition (Pearl 1993). For example,
{W2} satisfies the backdoor condition in both Fig. 3(b) and
(c), while {W1} satisfies this condition in (b) but not in (c).

Definition 4 below extends the backdoor condition to se-
lection bias problems by identifying a set of covariates Z
that accomplishes two functions. Conditions (i) and (ii) as-
sure us that Z is backdoor admissible (Pearl and Paz 2013)
12, while conditions (iii) and (iv) act to separate S from Y ,
so as to permit recoverability from selection bias.
Definition 4 (Selection-backdoor criterion). Let a set Z of
variables be partitioned into Z+∪Z− such that Z+ contains
all non-descendants ofX and Z− the descendants ofX . Z is
said to satisfy the selection backdoor criterion (s-backdoor,
for short) relative to an ordered pairs of variables (X,Y )
and an ordered pair of sets (M,T) in a graph Gs if Z+ and
Z− satisfy the following conditions:
(i) Z+ blocks all back door paths from X to Y ;
(ii) X and Z+ block all paths between Z− and Y , namely,
(Z− ⊥⊥ Y |X,Z+);

(iii) X and Z block all paths between S and Y , namely,
(Y ⊥⊥ S|X,Z);

(iv) Z ∪ {X,Y } ⊆M, and Z ⊆ T.
Consider Fig. 3(a) where Z− = {W},Z+ = {} and Z−

is not separated from Y given {X}∪Z+ inGs, which means
that condition (ii) of the s-backdoor is violated. So, despite
the fact that the relationship between X and Y is uncon-
founded and (Y ⊥⊥ S|{W,X}), it is improper to adjust for
{W} when computing the target effect.

For the admissible cases, we are ready to state a sufficient
condition that guarantees proper identifiability and recover-
ability of causal effects under selection bias:
Theorem 5 (Selection-backdoor adjustment). If a set Z
satisfies the s-backdoor criterion relative to the pairs (X,Y )
and (M,T) (as given in def. 2), then the effect of X on Y is
identifiable and s-recoverable and is given by the formula

P (y|do(x)) =
∑
z

P (y|x, z, S = 1)P (z) (9)

Interestingly,X does not need to be measured in the over-
all population when the s-backdoor adjustment is applica-
ble, which contrasts with the expression given in Theorem 2
where both X and Z (equivalently C) are needed.

Consider Fig. 3(b) and assume our goal is to establish
Q = P (y|do(x)) when external data over {W2} is avail-
able in both studies. Then, Z = {W2} is s-backdoor ad-
missible and the s-backdoor adjustment is applicable in this
case. However, if T = {W1}, Z = {W1} is backdoor
admissible, but it is not s-backdoor admissible since con-
dition (iii) is violated (i.e., (S ⊥⊥ Y |{W1, X}) does not
hold in Gs). This is interesting since the two sets {W1}
and {W2} are c-equivalent (Pearl and Paz 2013), having

12These two conditions extend the usual backdoor criterion
(Pearl 1993) to allow descendants of X to be part of Z.
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Figure 3: (a) Causal diagram in which (S ⊥⊥ Y |{X,W})
but P (y|do(x)) is not s-backdoor admissible. (b)
P (y|do(x)) is s-recoverable through T = {W2} but
not {W1}. (c) {W2} does not satisfy the s-backdoor
criterion but P (y|do(x)) is still recoverable.

the same potential for bias reduction in the general popu-
lation. To understand why c-equivalence is not sufficient for
s-recoverability, note that despite the equivalence for adjust-
ment,

∑
w1
P (y|x,w1)P (w1) =

∑
w2
P (y|x,w2)P (w2),

the r.h.s. is obtainable from the data, while the l.h.s. is not.
Now we want to recover Q = P (y|do(x)) in Fig. 3(c)

(U is a latent variable) with T = {W2}. Condition (iii)
of the s-backdoor fails since (S ⊥⊥ Y |{X,W2}) does not
hold. Alternatively, if we discard W2 and consider the null
set for adjustment (Z = {}), condition (i) fails since there
is an open backdoor path from X to Y (X ← W2 ←
U → Y ). Despite the inapplicability of the s-backdoor,
P (y|do(x)) is still s-recoverable since, using do-calculus,
we can show that Q = P (y|do(x), S = 1), which reduces
to

∑
w2
P (y|x,w2, S = 1)P (w2|S = 1), both factors s-

recoverable without the need for external information.
The reliance on the do-calculus in recovering causal ef-

fects is expected since even when selection bias is absent,
there exist identifiability results beyond the backdoor. Still,
this criterion, which is generalized by the s-backdoor crite-
rion, is arguably the most used method for identifiability of
causal effects currently available in the literature.

Conclusions

We provide conditions for recoverability from selection bias
in statistical and causal inferences applicable for arbitrary
structures in non-parametric settings. Theorem 1 provides a
complete characterization of recoverability when no exter-
nal information is available. Theorem 2 provides a sufficient
condition for recoverability based on external information;
it is optimized by Theorem 3 and strengthened by Theo-
rem 4. Verifying these conditions takes polynomial time and
could be used to decide what measurements are needed for
recoverability. Theorem 5 further gives a graphical condition
for recovering causal effects, which generalizes the back-
door adjustment. Since selection bias is a common problem
across many disciplines, the methods developed in this paper
should help to understand, formalize, and alleviate this prob-
lem in a broad range of data-intensive applications. This pa-
per complements another aspect of the generalization prob-
lem in which causal effects are transported among differing
environments (Bareinboim and Pearl 2013a; 2013b).
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