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Abstract

This comment clarifies how Structural Causal Models (SCM) unify the graphical
and potential outcome approaches to mediation, and why the resulting mediation for-
mulas are identical in both frameworks. It further explains under what conditions
ignorability based assumptions are over-restrictive and why such assumptions require
graphical interpretations before they can be judged for plausibility. Finally, the com-
ment explains the key difference between traditional and modern methods of causal me-
diation, and demonstrates why the notion of mediation requires counterfactual rather
than Bayes conditionals to be properly defined.
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I am happy to join Imai, Keele, Tingley, and Yammamoto (henceforth Imai-et al.) in
celebrating the full convergence of our respective analyses towards a unified understanding
of causal mediation. I am referring to the analysis presented in (Pearl, 2001) (reproduced
in (Pearl, 2014a)) on the one hand, and the analyses and implementations of (Imai et al.,
2010a,b,c), on the other. In fact, when I first read (Imai et al., 2010c), I had no doubt that,
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despite some dissimilarities in the presentation of the assumptions, the two works would co-
incide on all fronts: Definitions, basic assumptions, identification and estimation algorithms.
The reasons for my confidence was that, in 2001, I approached the mediation problem from
the symbiotic mathematical framework of Structural Causal Models (SCM) (Pearl, 2000,
Chapter 7; Pearl, 2009a) which unifies the graphical, potential outcome and structural equa-
tion frameworks, and permits researchers to combine the merits of each representation;
structural equations and graphical models best represent what a researcher believes, while
potential outcomes represent what a researcher seeks to estimate.

A logical analysis of SCM theory further revealed that structural equations and potential
outcomes are logically equivalent; a theorem in one is a theorem in the other. They differ only
in the language in which assumptions are cast; structural equations cast assumptions in the
language in which scientific knowledge is stored, while potential outcomes cast those same
assumptions in terms of quantities that one wishes to estimate (e.g., counterfactuals). This
means that any researcher who accepts the potential outcome framework can use the power of
graphs and structural equations for advantage and be assured the validity of the result. This
also means that the power of graphs lies not merely in their clarity of visualizing assumptions,
but also in “computing” complex implications of those assumptions. Typical implications
are: conditional independencies among variables and counterfactuals, what covariates need
be controlled to remove confounding or selection bias, whether effects can be identified, and
more. (Praising their transparency while ignoring their inferential power misses the main
role that graphs play in modern causal analysis.)

Armed with these symbiotic tools, I derived identification conditions in the algebra of
counterfactuals and presented them in two languages, potential outcomes and graphical.
Not surprisingly, the mediation formulas derived in Imai et al. (2010c) coincide precisely
with those derived in Pearl (2001, Eqs. (8), (17), (26), (27)). This is to be expected, since
the two are but variants of the same mathematical umbrella, differing merely in the type of
assumptions one is willing to posit and defend, and the language one chooses to communicate
the assumptions.

The assumptions posited in Imai et al. (2010c) added two restrictions to those articulated
in (Pearl, 2001):

1. Commence the analysis with two ignorability assumptions (B-1 and B-2 in the main
paper). (The latter is automatically satisfied in randomized studies.)

2. Satisfy these two assumptions with the same set (W ) of observed covariates.

Clearly, all identification results produced under these restrictions will be valid in the sym-
biotic system of SCM (Pearl, 2001), in which these restrictions were not imposed.

In (Pearl, 2014a) I identify the set of circumstances where these two added restrictions
lead to missed opportunities, and the current commentary by Imai-et al. identify conditions
under which the added restrictions will cause no practical loss of opportunities. The two
studies complement each other and provide valuable information; they tell us when the
inference systems of (Imai et al., 2010a,b,c) operate in perfect harmony with the methodology
presented in (Pearl, 2001).

Specifically, Imai-et al. show that the restrictions imposed by sequential ignorability play
a role only in observational studies, but not in studies where treatment is randomized.
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Additionally, the extra-restriction of conditioning on the same set of covariates may not be
too severe in certain observational studies. I concur with most of these observations, and
commend Imai-et al. for bringing them to readers attention.

I cannot accept, however, their conclusions that: “Including irrelevant covariates may
complicate the modeling but does not compromise the identification of causal mediation
effects under the as-if randomization assumption” (Imai et al., 2014, this issue) Whether co-
variates are relevant or irrelevant depends on whether the “as-if randomization assumption”
holds after their inclusion, which makes the sentence above circular, if not contradictory.
The “as if randomized” assumption can easily be violated by including what may appear to
be “irrelevant” pre-treatment covariates.1 Moreover, the validity of the “as-if randomization
assumption” may depend on many other assumptions encoded in the model, hence no mortal
can judge its plausibility without the aid of graphs.2 Fortunately, the graphical procedure
presented in my paper (Pearl, 2014a) allow us to mechanize the choice of the “relevant co-
variates,” and I hope Imai-et al. can implement this procedure in their flexible software.
A prerequisite for accomplishing this function is to let users articulate assumptions in the
language of scientific understanding, namely graphs, and let estimation procedures and co-
variate selection be derived (mechanically) from those assumptions, rather than chosen a
priori.

In the remaining of this note, I concentrate on an issue that is common to all players in
the causal mediation analysis. It concerns ways of improving the understanding of causal
mediation among the uninitiated.

Impediments to such understanding come from several research communities.

1. Potential outcomes enthusiasts reject mediation when the mediator is non-manipulable.

2. Traditional statisticians fear that, without extensive reading of Aristotle, Kant and
Hume, they are not well equipped to tackle the subject of causation, especially when
it involves claims based on untested assumptions.

3. Traditional mediation analysts do not understand the sudden intrusion of counterfac-
tuals into their field, which thus far has been dominated by regression analysis.

4. Economists, who adore counterfactuals (though find difficulties defining them (Pearl,
2009b, p. 379)) are not convinced that mediation analysis could help policy makers.

I will address the third group, namely, the traditional mediation analysts usually con-
nected with the school of Baron and Kenny (BK) (1986), since the difficulties faced by this
school are endemic of other groups as well, and constitute the key impediment to a wider
acceptance of causal mediation. As traditionalists examine modern definitions of direct and

1For a lively discussion concerning the harm of including seemingly “irrelevant covariates” see (Pearl,
2009c; Rubin, 2009; Shrier, 2009; Sjölander, 2009). The collider X in Figure 9 of the main paper (Pearl, 2014a)
is an example of a covariate that would compromise identificationd if included in the analysis (assuming a
randomized treatment).

2Skeptics are invited to guess whether Mt⊥⊥T |Y holds in the model of Figure 1A, namely, whether the
effect of T on M is ignorable conditional on Y . Graphs replace such formidable mental tasks with transparent
scientific judgements on whether the graph structure is plausible, followed by a simple test for the backdoor
criterion (see Pearl 2014a, Appendix A).
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indirect effects, even those based on structural equations (e.g., Eqs. (7)–(10) in the main
paper), the thing that strikes them odd is the absence of a conditioning operator in any of
these definitions. Whereas in the linear SEM tradition “effects” are associated with con-
ditional expectations or regression slopes conditioned on holding some variables constant,
here, we plug the value of the variables we wish to keep constant (or “control for”) directly
into the equation (or into the subscript of a counterfactual), but we never place that variable
behind a conditioning bar. In other words, we write E{fY [1,M = m]} or E[Y1,m] but not
E(Y |T = 1,M = m).

Readers versed in the distinction between “seeing” vs. “doing” (Lindley, 2002; Pearl,
1993; Pearl, 2009b, pp. 421–428; Spirtes et al., 1993) or “controlling for” vs. “setting” will
recognize immediately that, in mediation, the proper operator is “doing,” not “seeing” and
that it is this difference that gives causal mediation analysis a claim to the title “causal.”
Most traditionalists, however, are not attuned to this distinction and, when presented with
the modern definitions of direct and indirect effect tend to voice skepticism: “Do we really
need those counterfactuals?” or “Do we really need to treat a structural equation in this
manner? Why not condition on M = m?”

The urge to condition on variables held constant is in fact so intense that I hold it ac-
countable for a century of blunders and confusions; from “probabilistic causality” (Suppes,
1970; [Pearl, 2011b]) to “evidential decision theory (Jeffrey, 1965; [Pearl, 2009b, pp. 108–
109]) and Simpson’s paradox (Simpson, 1951; [Pearl, 2009b, pp. 173–180; Pearl, 2014b]);
from Fisher’s error in handling mediation (Fisher, 1935; [Rubin, 2005]) to “Principal Strat-
ification” mishandling of mediation (Rubin, 2004; [Pearl, 2011a]) from misinterpretations of
structural equations (Freedman, 1987; Hendry, 1995; Holland, 1995; Sobel, 2008; Wermuth,
1992; [Bollen and Pearl, 2013; Pearl, 2009b, pp. 135–138]) to the structural-regressional
confusion in econometric textbooks today ([Chen and Pearl, 2013]).3

What caused this confusion, and how did it enter the world of mediation? The urge
to condition stems from the absence of probabilistic notation for the notion of “holding M
constant,” which has forced generations of statisticians to use a surrogate in the form of
“conditioning on M ’’; the only surrogate licensed to them by probability theory.

The history of mediation analysis offers a compelling narrative on why the conditioning
habit took roots, and why it should be uprooted.

Examine the basic mediation model (Figure 1A) with M (partially) mediating between
T and Y . Why are we tempted to “control” for M when we wish to estimate the direct
effect of T on Y ? The reason is that, if we succeed in preventing M from changing then
whatever changes we measure in Y would be attributable solely to variations in T and we
would be justified then in proclaiming the response observed as “direct effect of T on Y .”
Unfortunately, the language of probability theory does not possess the notation to express
the idea of “preventing M from changing” or “physically holding M constant.” The only
operator probability allows us to use is “conditioning” which is what we do when we “control
for M” in the conventional way. In other words, instead of physically holding M constant
(say at M = m) and comparing Y for units under T = 1 to those under T = 0, we allow M
to vary but ignore all units except those in which M achieves the value M = m. Students of

3In this paragraph, the unbracketed citations refer to articles where confusions are present, while bracketed
citations refer to articles where confusions are unveiled or resolved.
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Figure 1: Demonstrating the difference between “controlling for M” and “fixing M .” 1A:
the classical mediation model. 1B: A model where the direct effect of T on Y is zero and,
yet, “controlling for” M would yield a non-zero difference between units under T = 0 and
those under T = 1. 1C: “Fixing” M amounts to overruling the influences of T and L on M ,
leading to correct estimate of the direct effect (= 0).

causality know that these two operations are profoundly different, and give totally different
results, except in the case of no omitted variables. Yet to most traditionalists, this would
come as a total surprise, and would elicit requests for explicit demonstration. Stunned by the
cultural divide between the two camps, and having not found a convincing demonstration in
the literature,4 I believe it is appropriate to provide one at this commentary; it is absolutely
pivotal to the understanding of causal mediation.

Assume that there is a latent variable L causing both M and Y as shown in Figure 1B. To
simplify the discussion, assume further that the structural equations are Y = 0 ·T +0 ·M +L
and M = T+L. Obviously, the direct effect of T on Y in this case is zero, but this is not what
we would get if we “control for M” and compare subjects under T = 1 to those under T = 0
at the same level of M = 0. In the former group we would find Y = L = M−T = 0−1 = −1
whereas in the latter group we would find Y = L = M − T = 0− 0 = 0. In other words, in
order to keep the same score of M = 0 for the two groups, L had to change from L = −1
to L = 0. Thus, we are unwittingly comparing apples and oranges (i.e., subjects for which
L = −1 to those with L = 0) and, not surprisingly, we obtain an erroneous estimate of (−1)
for a direct effect that, in reality is zero.

Now let us examine what we obtain from the counterfactual expression

CDE(M) = E[Y (1,M)]− E[Y (0,M)]

for M = 0 (same for M = 1). Substituting the structural equation for the counterfactuals,
we get

CDE(M = 0) = E[Y (1, 0)]− E[Y (0, 0)]

= E[0 · 1 + 0 · 0 + L]− E[0 · 0 + 0 · 0 + L]

= E[L− L] = 0

as expected. The reason we obtained the correct result is that we simulated correctly what
we set out to do, namely, to physically hold M constant, rather than condition on M . In

4The inappropriateness of conditioning on a mediator is demonstrated in (Pearl, 1998; Robins and Green-
land, 1992) and by many authors since. The demonstration provided below, however, is algebraic and may
be more convincing to researchers new to graphical modeling.
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the former case L remains unchanged, because the physical operation of holding M constant
and changing T does not affect L. In the latter, when we “condition” on a constant M,L
must compensate for varying T to satisfy the equation M = T +L. In short, counterfactual
conditioning reflects a physical intervention while statistical conditioning reflects filtered
observation. To avoid confusion between the two, I used the notation E[Y |do(T = t)] as
distinguished from ordinary conditional expectation, E[Y |T = t] (Pearl, 2009b, Chapter 3).

The habit of translating “hold M constant” into “condition on M” became deeply en-
trenched in the statistical culture (see Lindley, 2002; Pearl, 1993; Spirtes et al., 1993), not
by deliberate negligence but due to the coarseness of its language (probability theory) which
fails to provide an appropriate operator for “holding M constant.” Absent such operator,
statisticians (including Fisher (1935)) were pressed to use the only operator available to
them: conditioning, and a century of confusion came into being.

Traditional mediation analysts of the BK school were not unaware of the dangers lurking
from conditioning (Judd and Kenny, 1981, 2010). However, lacking an appropriate operator
for “fixing M ,” they settled on a compromise; they defined the direct effect as

c′ = E[Y |T = 1,M = 0)]− E[Y |T = 0,M = 0)]

and accompanied this definition with a warning that it is valid only under the assumption
of “no omitted variables.”

Causal analysis circumvents this compromise upon realizing that the operator needed for
“fixing M ,” while undefinable in probability theory, is well defined in SEM, both parametric
and nonparametric, through the do(M = m) operator. It calls for modifying the model
by replacing the equation that determines M with a constant M = m, and keeping all
other equations unaltered (Balke and Pearl, 1995; Pearl, 1993). This “surgical” operator
permits researchers to state their intent using expressions such as E(Y |do(M = m)) or
Y (1,M), yielding CDE(M) = E[Y (1,M)] − E[Y (0,M)]. Modern treatment of direct and
indirect effects owes its development to this notational provision and to the SEM semantics
of interventions (Haavelmo, 1943; Spirtes et al., 1993) and counterfactuals (Balke and Pearl,
1995).

I believe that, with this narrative in mind, traditional SEM analysts should not have
any difficulties accepting the premises of causal mediation. First, these analysts already
accept structural equations as the basis for modeling (most statisticians do not). Second,
counterfactuals in this narrative emerge naturally, as abbreviated structural equations (see
Eq. (4) in the main paper). Third, traditional SEM analysts can easily appreciate the benefits
of causal mediation analysis, since it endows them with two new capabilities: 1. Extending
mediation analysis to nonlinear functions and highly interactive variables, continuous as well
as discrete. 2. Distinguishing between the necessary and sufficient notions of mediation.

I hope this exchange helps clarify the logic and scope of causal mediation analysis as well
as the unifying power of the SCM methodology. I thank Imai-et al. for commenting on my
paper and contributing to this clarification.
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