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Abstract

This is an expository paper, aimed to provide a gentle introduction to miss-
ing data problems as viewed from graphical modeling perspective. Aside from
producing new theoretical results, the graphical perspective offers researchers
a transparent language in which to understand, articulate and analyze miss-
ing data problems. Users can specify graphical features of their problems be-
fore choosing software or algorithms, and methodological researchers can use
graph-based tools to develop software and algorithms that either exploit mod-
eling assumptions or stand robust to such assumptions. The text of this paper
is written around as set of 11 slides (marked 59-69) presented at the JSM-13
meeting, on August 6, 3013.
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MISSING  DATA:   

A CAUSAL INFERENCE PERSPECTIVE 
(Mohan, Pearl & Tian 2013) 

•  Pervasive in every experimental science. 
   

•  Huge literature, powerful software industry, 

deeply entrenched culture. 
 

•  Current practices are based on statistical 

characterization (Rubin, 1976) of a problem 

that is inherently causal. 
 

•  Needed:  (1) theoretical guidance,                 

(2) performance guarantees and (3) tests of 

assumptions. 

Figure 1: Slide-59

Managing missing data is a problem in every experimental science. Sensors do not
always work reliably, respondents do not fill out every question in the questionnaire,
and medical patients are often unable to recall episodes, treatments or outcomes. The
literature on this problem is huge and has resulted in a powerful software industry that
makes missing data packages available through computer programs such as LISREL,
M-plus and EQS. The availability of such software has engendered a culture that
shares vocabulary, beliefs and expectations and uses common theoretical framework
and default assumptions. Most practices are based on the seminal theoretical work
of Rubin (Rubin, 1976; Little & Rubin, 2002) who have formulated procedures and
conditions under which the damage of missingness can be minimized. This theory
has also resulted in a number of performance guarantees when data obey certain
statistical conditions. However, the theoretical guarantees provided by this theory
are rather coarse, as will be shown in the discussion that follows.
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WHAT  CAN  CAUSAL  THEORY 

DO  FOR  MISSING  DATA? 

 
Q-1. What should the world be like, for a given 

statistical procedure to produce the expected result? 
  

Q-2. Can we tell from the postulated world whether any 
method can produce a bias-free result?  How? 
  

Q-3. Can we tell from data if the world does not 

work as postulated? 
 

•  To answer these questions, we need models of the 

world,  i.e., process models. 

•  Statistical characterization of the problem is too 
crude, e.g., MCAR, MAR, MNAR. 

recoverable non-recoverable 

p
 MNAR. MNAR.. .

oblem i
testable 

untestable 

Figure 2: Slide-60

Figure 2 explicates the kind of guidance and guarantees that are needed in missing
data research(Pearl (2013)). Question Q1 refers to a researcher who has acquired a
statistical package that handles missing data and would like to ask what the structure
of his/her problem should be like for the procedure to produce an estimate that is
consistent. (In this note we will be dealing only with the question of bias(consistency),
and will assume therefore that infinitely large sample is available and that the user
is concerned primarily with convergence to the right answer, rather than speed of
convergence.)

Another question (Q2) that a user might ask is whether the problem at hand
lends itself to solution by any method whatsoever. This is important because, if the
answer is negative, then a biased result should definitely be expected with finite data
and no software, however smart, can overcome this theoretical impediment. On the
other hand, if the answer is affirmative, the user might next wish to ask whether
another software can exploit the specific features of the problem so as to produce
a consistent estimate. The third question (Q3) relates to testability, namely, once
the user postulates a structure for the problem can the data tell us if the postulated
structure is incorrect?

The first two questions address a problem we call “recoverability” and the third,
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a problem called “testability.” To answer these questions reliably the user must
articulate features of the problem in some formal language, preferably in a model
that captures both the inter-relationships among the variables of interest as well as
the missingness process, i.e., explaining why some values are missing. While the theory
of Rubin and Little (Little & Rubin, 2002) captures some of these relationships, the
language they used is not sufficiently refined to capture details of the missingness
process and to specify, for example, which variable is responsible for values missing
in another. The characterization that emerged from this theory is likewise rather
crude. Specifically, it divides problems into three categories: Missing Completely
At Random (MCAR), Missing At Random (MAR) and Missing Not At Random
(MNAR). In MAR for instance, missingness can only be explained by variables that
are fully observed whereas those that are partially observed cannot be responsible
for missingness in others; an unrealistic assumption in many cases.1 Performance
guarantees and some testability results are available for MCAR and MAR, while the
vast space of MNAR problems has remained relatively unexplored.

The purpose of this note is to partition the space of MNAR problems along two
orthogonal dimensions: (1) Recoverable vs non-recoverable and (2) Testable vs non-
testable. Moreover, the partition will be query dependent. For example, in some
problems we can obtain the consistent estimate of queries such as P (Y |X) and P (Y )
but not of P (X, Y ). With the tools that we will develop, the user will be able to
examine the features of his/her problem, determine whether a given query is recov-
erable (i.e., estimated bias-free from any given dataset (with missing values), that
the model is capable of generating) and whether the assumptions that lead to such
recoverability have testable implications.

1We are using a variable-based interpretation of MAR (Potthoff et al. (2006),Mohan et al. (2013))
which differs slightly from the event-based definition of Rubin (1976).
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Estimate E(X) from partially observed data: 
 
  

True data: 

 
  

•  The reasons for missingness can make a difference: 

•  Missingness mechanism:  R
x
 =  

Model 1:  
 
  

Model 2: 

 
 

Proof:  Version (a):  X is missing only if X = 1!

!

! 8369:;<!=>?@ X :9!A:99:<B!;<7C!:D!X = 0 

BASIC  NOTIONS  OF  MISSING  DATA:   

MISSINGNESS AND  RECOVERABILITY 

(MCAR)     X ⊥⊥ Rx

1  if  X* = m,  0  otherwise

X
*
= [0,1,m,m,1,1,m, 0,m]     X̂ = 3 / 5→ E(X)
(MNAR) X ⊥⊥ Rx

E(X)

X! R
x!

XX R

X! R
x!

XXXX RR

coin 

X*  =! [0, 1,! m,! m,! 1,! 1,! m,! 0,! m…]! E(X)=?!

X =! [0, 1,! 0,! 0,! 1,! 1,! 0,! 0,! 1…]! E(X) = 0.4!

X
b
  =! [0, 1,! 0,! 0,! 0,! 1,! 0,! 0,! 0]! X = 2/9!

X
a
  =! [0, 1,! 1,! 1,! 1,! 1,! 1,! 0,! 1]! X = 7/9!

is non-recoverable 

Figure 3: Slide-61

Figure 3 demonstrates the problem of determining recoverability and how missing-
ness mechanisms affect that determination. Assume we observed the string X∗ where
each m stands for absence of a value and our task is to estimate E(X) where X is
a random variable whose actual values are shown in string X, below X∗. We will
first demonstrate that different assumptions about the missingness process lead to
different conclusions about E(X). To articulate such assumptions we define a notion
called “missingness mechanism” which stands for a binary variable Rx that acts like
a switch. When the switch is activated (Rx = 1) we do not observe the value of X
but rather the value X∗ = m. When the switch is not activated (Rx = 0) we observe
the correct value of X i.e. X∗ = X. Each variable of interest will be assumed to have
a missingness mechanism that, in general, may be activated by X itself, as well as by
other variables in the model.

The simplest such mechanism is shown in Model-1 in which Rx is activated by
a random coin and is shown to be unrelated to X. Formally, this independence is
written: X⊥⊥Rx and is implied by the absence of an arrow or any other graphical
connection between Xand Rx. Under this assumption, which falls under the category
of MCAR, one can easily estimate the expected value of X. One need only examine
the observed (unmasked) values of X∗ and take their expectation. In our finite
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example the answer will be X̂ = 3
5

but when the number of samples increases the
sample estimate will converge to E(X). Let us now examine Model-2, in which a
direct arrow is drawn from X to Rx. In other words, whether or not missingness
is activated depends on the value of X. Such dependence, written X 6⊥⊥Rx, may
represent for example, a salary survey in which people with high (or low) income are
reluctant to reveal their income. Naturally this model falls under the MNAR category.
In this model, since we do not know the exact dependence of Rx on X, and since
the arrow X → Rx permits any imaginable dependency to exist, we cannot estimate
E(X) without bias, and we say that E(X) is non-recoverable. We can actually prove
this assertion by showing two kinds of dependence between X and Rx each yielding
a different answer. In version-a of the model we assume an extreme case where X
is missing only if its value is 1, and in version-b we assume that X is missing only
if its value is 0. As we see, substituting 1 for m in version-a results in X̂ = 7

9

while substituting 0 for m (in version-b) results in X̂ = 2
9
. If two different versions,

both permitted by the model, yield conflicting results, it must be that the query
E(X) is non-recoverable; no algorithm in the world, however smart, can produce the
correct answer E(X) = 0.4 without further assumptions, even assuming the model
is correct. We can further see why recoverability is achievable in Model-1 and not
in Model-2. Model-1 is more constrained than Model-2. While Model-2 permits any
dependency between X and Rx to be realized, Model-1 insists on total independence,
X⊥⊥Rx, which severely constrains the values that we can substitute for m as we try
to reconstruct the distribution of X.
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FROM  RECOVERY  TO  TESTABILITY 

 
Model 1:  

 
  

Model 2: 
 

 

In model 1 E(X) and P(X, Rx) are recoverable. 

In model 2 E(X) and P(X, Rx) are not recoverable. 

 
Can we test the model? 

NO.  Model 1 and 2 are indistinguishable. 

Any data generated by Model 2 can also be generated by 

Model 1. 
 

 
(MCAR)     X ⊥⊥ Rx

(MNAR)     X ⊥⊥ Rx

X! Rx!
XX R

X! Rx!
XXXX RR

coin 

Figure 4: Slide-62

Figure 4 addresses the question that naturally surfaces in the mind of every reader;
if we have two models, one permitting recoverability and the other not, why can’t we
test, from data itself, which model is more likely to be true? It turns out that, to
the disappointment of many, Model-1 and Model-2 are indistinguishable. This might
come as a surprise to readers familiar with graphical models because, after all, Model-
1 has a missing arrow which stands for the independence X⊥⊥Rx, and independence
is a property of the distribution that can be tested in data. Unfortunately, we are
dealing with missing data; although Rx is observed unambiguously in the data, X is
not, since it is contaminated with m’s.

To show explicitly that Model-1 can emulate any data produced by the less con-
strained Model-2, let us go back to Figure-3 and examine X∗. It is always possible to
replace the m’s with one’s and zero’s stochastically, using the same distribution with
which they appear in the non-missing values of X∗. The result would be a string
that satisfies the independence claim advertised by the missing arrow in Model-1.
This demonstrates our claim that Model-1, despite being constrained by the missing
arrow, is not falsifiable by any data in which some values of X are missing. Any such
data can be construed as coming from Model-1.
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Recoverability 
Given a missingness model G and data D, when is a 

quantity Q estimable from D without bias?   

 

Non-recoverability 
Theoretical impediment to any estimation strategy     

 

Testability 

Given a model G, when does it have testable implications 
(refutable by some partially-observed data D' )?   

   

What is known about Recoverability and Testability? 

 RECOVERABILITY  AND  TESTABILITY 

MCAR! 63E;F364>73! G39G4>73!=-:H73!IJKK?!

MAR! 63E;F364>73! G39G4>73!=5;HL;M!!"#$%!NOOP?!

MNAR! 1<EL46G32! 1<EL46G32!

Figure 5: Slide-63

Figure 5 summarizes our discussion formally and emphasizes the fact that non-
recoverability, if established in a given problem, constitutes an insurmountable im-
pediment to any estimation strategy. Such finding should alert the user either to
resign to the perils of biased results or to attempt to augment the model with auxil-
iary variables whose presence would alter the model structure and render the problem
recoverable. Such strategy has indeed been proposed by many researchers (Collins
et al. (2001); Graham (2003); Allison (2003); Enders (2010)). However, the ques-
tion of which auxiliary variables are likely to increase or decrease bias is not well
understood (Thoemmes & Rose, 2013) and is begging graphical analysis.

The last three lines of Figure 5 tabulate what is currently known in the missing
data literature about recoverability and testability. We know that MAR and MCAR
are recoverable for all probabilistic queries. Little (1988); Lin & Bentler (2012)(2012)
has devised tests for refuting MCAR while Potthoff et al. (2006) devised one for
MAR.2 The latter can be strengthened by methods based on graphical methods (Mo-

2The test devised by Potthoff et al. (2006) applies to a subset of MAR which they call MAR+,
defined by conditional independencies among variables. We adopt Potthoff et al. (2006) in our anal-
ysis as do most authors of modern books on missing data because of the simplicity of characterizing
this class. All but an exceptionally small fraction of data labeled MAR by Rubin are in MAR+
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han & Pearl (2013) (in preparation)). Remarkably, the vast territory of MNAR
problems remains largely uncharted along both the recoverability and testability di-
mensions.

Figure 6: Slide-64

The following slide illustrates what we mean by charted territories. It contains
nine missingness models and a query P (X, Y ) and the task is to determine, from each
given structures whether P (X, Y ) is recoverable. (Here, solid circles represent fully
observed variables and hollow circles represent partially observed variables, which are
always accompanied by their respective R variables in the graph).

The technique that we have developed (Mohan et al., 2013), permits one to in-
spect the graphs and decide whether recoverability holds or not, for any given query.
According to our criteria, one can categorically state that P (X, Y ) is recoverable in
models (b), (c), (e), (f), (h) and (i), and non-recoverable in models (a),(d) and (g).
A heuristic explanation follows:

In model (a), we see an arrow between Y and Ry which presents the same ambi-
guity we encountered in Figure 3 Model-2, hence it is non-recoverable.

In model (i) the connection between Y and Ry is intercepted by a fully observed
variable Z. The pair X, Y becomes independent of the pair Rx, Ry which essentially
turns the problem into MAR. Specifically, in every stratum of Z = z, the missingness
of X, Y occurs completely at random.

category. The vast majority of probabilities generated by a model which we classify as MNAR would
also be classified as MNAR according to Rubin(1976).
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Model (b) has similar features except that no fully observed variable is present.
Instead, the missingness in Y occurs totally at random and, conditional on Y , X is
independent of its missingness mechanism Rx. This combination allows us to first
recover P (Y ) from tuples in which Y is observed and then recover P (X|Y ) from
tuples in which both X and Y are observed.

Almost identical behavior is exhibited by model (c) since the bi directed arrow
Rx <−−−> Ry does not interfere with the recovery scheme just outlined. All
independencies needed for this recovery scheme are authorized by the graph.

In model (e) we do not have a variable that is totally independent of its miss-
ingness mechanism. Instead, conditioning on Y will render X and Rx independent,
while conditioning on X will render Y and Ry independent. Since both X and Y are
partially unobserved it is not clear whether this structure will lend itself to recover-
ability. The theory nevertheless confirms recoverability of P (X, Y ) in this case and
in many other so called “entangled” cases (Mohan et al., 2013).

Model (d) prohibits recoverability because to recover P (X, Y ) amounts to re-
covering both P (X) and P (X|Y ). However, conditioning on Y renders X and Rx

dependent which prohibits recoverability. Note that, in this example, P (X) and P (Y )
are recoverable.

Model (h) permits recovery. The graph informs us that X and Y are jointly
independent of Rx and Ry. Indeed, if we marginalize over Z and Rz, the remaining
problem becomes MCAR.

Model (f) can be shown to permit recoverability by going through a sequence
of conditionalizations as we did in (b). First we notice that Y is MCAR. Next we
notice that conditioning on Y renders X and Rx independent. This makes P(X,Y)
recoverable. (We can continue and condition on X and Y , thus rendering Z and Rz

independent which leads to the recovery of P (X, Y, Z).)
Next examine model (g). Attempting the same scheme as in (f) we find the

following obstacle. Recovering P (Y, Z) is trivial but, now, we observe an inducing
path between X and Rx. Thus, conditioning on either Y or Z (or both) renders X
and Rx dependent. The result is that there is no sequence of nodes that separate X
from Rx. Hence P (X, Y, Z) is non recoverable in (g).
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THE  RECOVERABILITY  PIE 
(and what’s in it for the user) 

•  Recoverability in MAR and MCAR models can be achieved by 

model-blind estimators (e.g., MI or EM) 

•  In areas (M) and (S), recoverability requires model-smart 

estimation 

•  Conjecture:  ML on missing model recover areas (S) and (M) 

•  ML users receive no warning entering area (N) – They should! 

•  MI (Multiple Imputation) users navigating in areas (S) and (M) 

are likely to obtain biased results. Not to mention area (N) 

•  Testability – charted over the entire terrain 

(N)!MAR!

MCAR!

Markovian* 

Sequential-MAR!

Non-recoverable 
(by graphs) 

Others      { }  ?
=

(S)!

MAR

N
(

M

MAR

(N(( )(SS)

RR

(

(M)!

Figure 7: Slide-65

This slide shows MCAR and MAR as nested subsets of a class of problem in-
stances which we call “Sequential-MAR” and which permit the recoverability of the
joint distribution. Problems in this class are characterized by the following feature:
There exists an ordering X1, X2, . . . , Xn of the variables such that for every i we have:
Xi⊥⊥(RXi

, RYi
)|Yi where Yi ⊆ {Xi+1, .., Xn}. Such sequences yield the following esti-

mand: P (X) =
∏

i P (Xi|Yi, Rxi
= 0, Ryi = 0) and as we can see, every term in this

product is estimable from the data.
The pie chart also represents a set of problems labeled as Markov∗ which permits

recoverability. These problems are characterized by graphs with no hidden variables
in which no variable X is a parent of its missingness mechanism Rx.

The area labeled N consists of models which are recognizable as non-recoverable.
Examples are models in which X and Rx are connected by an edge or by an induced
path (Verma & Pearl, 1991).

The area labeled “others” (which we conjecture to be empty) consists of problem
structures that are non-Markovian and are devoid of features that enable us to prove
non-recoverability with our current methods.

We now address the implications of this partition for a typical user. Most users
prefer of course to ignore the structure of the problem and use a “model-blind”
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estimator, namely, a universal estimator that is driven by data alone and does not
change its strategy as we move from structure to structure. If data are MAR or
MCAR, this requirement is satisfied, which explains the popular use of model-blind
estimators such as MI or EM under the assumption of MAR; the specific features
of the problem at hand need not be attended to and the user is spared the effort of
choosing and defending a specific graph structure. In areas (M) and (S) however,
such effort is unavoidable; recoverability requires model smart estimators. We will
actually prove this requirement in a following slide.

The popular estimator known as ML suffers from the same deficiency unless it
is applied to the full model, namely, the substantive part and the missingness part.
We conjecture that ML would recover the joint probability in areas (S) and (M) if
conducted on the full missingness model. This is rarely done in practice. Users are
rarely requested to specify the missingness part of the model. Consequently, ML users
receive no warning when facing a problem in area N. Given our criterion for N, such
a warning can easily be produced by mere inspection of the model structure. A more
stringent warning should await MI users, since the danger may also be present in the
minefield of areas (M) and (S). Even problems that are recoverable require knowledge
of the model structure, without which biased results are likely to be produced.

The final result we report in this summary is that testability has been charted over
the entire terrain of missing data problems. In other words, given a model structure,
one can discern whether the model yields testable implications. Some of these tests
are powerful enough to rule out MAR data and placing the problem in the MNAR
category.
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Figure 8: Slide-66

Speaking about testability, it is important to note a peculiar phenomenon that
takes place in missing data analysis. Consider the example illustrated in Figure 8.
It is easily shown that the problem is MAR, hence P (X, Y, Z,RZ) is recoverable.
This is so because the fully observed variables X and Y “explain” the missingness
in the third variable Z. Moreover, the recovered probability distribution embeds the
conditional independence claim Z⊥⊥Rz|(X, Y ), which would be testable had Z been
fully observed. Unfortunately, the fact that Z is only partially observed prevents this
independence claim from being testable in the available data. In other words, any
data whatsoever with Z partially observed is compatible with the model above and,
so, no such data can falsify the conditional independence Z⊥⊥Rz|(X, Y ).

We shall now give a very simple syntactic criteria to determine if a conditional
independence A⊥⊥B|C is testable with |A| = |B| = 1 where A,B and C are allowed
to include not only variables but also missingness mechanisms. The syntactic rule
states that a conditional independence is testable if it has one of the following forms:

1. X⊥⊥Y |Z,Rx, Ry, Rz

2. X⊥⊥Ry|Z,Rx, Rz

3. Rx⊥⊥Ry|Z,Rz

(It is understood that, if X or Y or Z are fully observed, the corresponding missing-
ness mechanism may be removed from the conditioning set. Clearly, any conditional
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independence comprised exclusively of fully observed variables is testable.) This rule,
combined with the fact that all conditional independencies claimed by a graph can
be reduced to pair-wise independencies permits us to determine whether the model,
as a whole, is testable.

To illustrate the power of this criterion note that if we remove the X → Rz

edge from the diagram in Figure 8, the model becomes testable, because X⊥⊥Rz|Y
complies with (2) above.

• Two statistically indistinguishable models, yet 
P(X,Y) is recoverable in (a) and not in (b).       

   

• No universal algorithm exists that decides 
recoverability (or guarantees unbiased 
results) without looking at the model. 

AN  IMPOSSIBILITY  THEOREM 
FOR  MISSING  DATA 

Rx X Y 

(a) (b) 

Rx Y X 

Accident Injury Injury Treatment 

Missing (X) 

Education 
       (latent) 

Missing (X) 

Figure 9: Slide-67

The indistinguishability of the two models presented in Figure 9 can be verified
by our testability rules showing that none has testable implications. The fact that
one of these models permits recoverability while the other does not, establishes the
need for model specific algorithms in the MNAR domain.
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• Two statistically indistinguishable models, P(X) is 
recoverable in both, but through two different methods, 
which yield different results: 
 
 
 

• No universal algorithm exists that produces an unbiased 
estimate whenever such exists. 

A  STRONGER  IMPOSSIBILITY  
THEOREM 

Rx X Y 

(a) (b) 

Rx Y X 

Problem: Find P(X) 

𝑃 𝑋 =   𝑃 𝑋∗ 𝑌, 𝑅𝑥 = 0 𝑃(𝑌)

𝑦

 

𝑃 𝑋 = 𝑃(𝑋∗|𝑅𝑥 = 0) 

in (a): 

in (b): 

Figure 10: Slide-68

This necessity is further strengthened in Figure 10, showing that, even if one settles
on receiving a consistent estimate only when such exists, no universal algorithm exists
that can offer such guarantee. Figure 10 shows a query that is recoverable by two
indistinguishable models, yet each dictates a different procedure for recoverability, and
a different estimand resulting from each procedure. If we run a procedure informed
by M1 on M2 (or vice-versa), a biased estimate will ensue. This is precisely the case
in region (S) of the pie-chart; models in this region permit recoverability but, at the
same time, the estimates produced are sensitive to model structure.
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MATHEMATICAL  RESULT  #4: 
(Recoverability from missing data is (almost) solved) 

•  The feasibility of recovering relations from missing data 
can be determined by graphical methods, provided the 

missingness mechanism is encoded (correctly) in a 

causal diagram. 

•  The same applies to testability of conditional 
independence claims. 

•  The results are complete with a possible exception of 

the uncharted area outside (M), (S), and (N). 

Figure 11: Slide-69
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