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Abstract

Graphical models that depict the process by
which data are lost are helpful in recover-
ing information from missing data. We ad-
dress the question of whether any such model
can be submitted to a statistical test given
that the data available are corrupted by miss-
ingness. We present sufficient conditions for
testability in missing data applications and
note the impediments for testability when
data are contaminated by missing entries.
Our results strengthen the available tests for
MCAR and MAR and further provide tests
in the category of MNAR. Furthermore, we
provide sufficient conditions to detect the ex-
istence of dependence between a variable and
its missingness mechanism. We use our re-
sults to show that model sensitivity persists
in almost all models typically categorized as
MNAR.

1 Introduction

Missing data has been traditionally formulated in sta-
tistical terms to determine under what conditions an
unbiased estimate of parameters of interest can be ob-
tained despite missingness. Recently, several proposals
have been made to use graphical models as carriers of
both conditional independence (CI) relations and the
causal mechanism responsible for the missingness pro-
cess. These proposals have successfully identified con-
ditions under which consistent inferences can be drawn
in the presence of missing data (Daniel et al., 2012;
Garcia, 2013; Thoemmes & Rose, 2013; Mohan et al.,
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2013). In this paper, we ask whether it is possible to
detect misspecifications of the missingness model, we
demonstrate this possibility, and identify conditions
that permit such detection.

Mohan et al. (2013) encoded missingness process us-
ing graphical models called m-graphs and derived con-
ditions under which a joint distribution or a property
thereof can be estimated consistently given two inputs:
an m-graph GG and a dataset D with partially observed
variables. Not surprisingly, the results of this investi-
gation reveal substantial sensitivity to the structure of
the m-graph. In other words, some properties of P (
called “queries”) that are recoverable in one graph are
not recoverable in another. Moreover, this sensitiv-
ity persists even when the two graphs are statistically
indistinguishable and the natural question to ask is
whether the structure of the m-graph lends itself to
statistical tests, given that we are not in possession
of the underlying distribution but a distortion thereof
in the form of a dataset with missing values. We will
show that such tests are indeed available albeit weaker
than misspecification tests under complete data.

Z (Treatment)

(Discomfort) Y (Outcome)

R, (Cause for missingness in Z)

Z* (Observed proxy for Z)

Figure 1: Example of an m-graph. Solid circles and
hollow circles represent fully observed and partially
observed variables respectively.
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V,={Y} Let W = {Z,Y, Ry}
Vi ={X,2} | W, ={Y}
R={R, R.} | W, ={Z}
V*={X*, 2"} | W, = {R,}

R, = {R.}

Table 1: Notation relative to variables in Figure 1

In this paper we will limit our discussion to testable
implications in the form of conditional independence
claims entailed by the model. In Figure 1 for exam-
ple, the model claims X 1Y |Z, ZUR,|(X,Y) and
(X,Y,Z R,)ILR,. Such claims constitute the total-
ity of testable implications if the underlying model is
Markovian i.e. recursive and with independent error
terms (Pearl, 2009). For constraints induced by la-
tent variables, see Tian & Pearl (2002) and Shpitser
& Pearl (2008).

This paper is organized as follows. In Section 2 we dis-
cuss the notion of m-graphs and recoverability. Section
3 defines testability of Cls portrayed by the m-graph
and develops sufficient conditions under which a spe-
cific CI is testable given missing data. In Section 4 we
call attention to an impediment which prevents testa-
bility of certain conditional independencies even when
the distribution that carries these Cls is fully recov-
erable. We then present sufficient conditions for non-
testability of CIs. Section 5 deals with testability of
CIs comprising of substantive variables and presents
sufficient conditions for such dependence to exist. In
Section 6 we apply these theoretical results to classes of
models which have been analysed in traditional miss-
ing data literature and show that (extending the re-
sults of Potthoff et al. (2006)) a large class of mod-
els traditionally thought of as non-testable are in fact
testable. Finally, we use the results developed so far to
show that model sensitivity persists in many models
typically categorized as MNAR.

2 Preliminaries: m-graphs and
Recoverability

We adopt the notations used in Mohan et al. (2013).
Let G(V, E) be the causal DAG where V=V UU U
V*UR. V is the set of observable nodes. Nodes in the
graph correspond to variables in the data set. U is the
set of unobserved nodes (also called latent variables).
E is the set of edges in the DAG. Oftentimes we use
bi-directed edges as a shorthand notation to denote
the existence of a U variable as common parent of two
variables in V, UV, UR. V is partitioned into V, and
Vi such that V, C V is the set of variables that are
observed in all records in the population and V,,, CV
is the set of variables that are missing in at least one

record. Variable X is termed as fully observed if X €
Vo, partially observed if X € V,, and substantive if
X € V,UV,,. Associated with every partially observed
variable V; € V;,, are two other variables R,, and V;*,
where V,* is a proxy variable that is actually observed,
and R,, represents the status of the causal mechanism
responsible for the missingness of V;*; formally,

V; ifr,, =0
m ifr,, =1

it = flrn) = { 1)

V* is the set of all proxy variables and R is the set
of all causal mechanisms that are responsible for miss-
ingness. R variables may not be parents of variables
in VUU. We call this graphical representation Miss-
ingness Graph or m-graph for short. An example of
a m-graph is given in Figure 1 and the notations with
respect to Figure 1 are explained in Table 1.

A manifest distribution P(V,, V*,R) is the distribu-
tion that governs the available dataset. An underlying
distribution P(V,, Vi, R) is said to be compatible with
a given manifest distribution P(V,, V*, R) if the latter
can be obtained from the former using equation 1. In
this paper we assume that all manifest distributions
are strictly positive. ! We use the following short-
hand. For any variable X, let X’ be a shorthand for
X =0. For any set W C V,,, UV,UR, let W,., W, and
W, be the shorthand for WNR, WNV, and WNV,
respectively. Let R, be a shorthand for Ry, ~w i.e.
R,, is the set containing missingness mechanisms of all
partially observed variables in W. Note that R,, and
W, are not the same. Table 1 offers an example.

2.1 Recoverability

Definition 1 (Recoverability (Mohan et al., 2013)).
Given a m-graph G, and a query @ defined on the
variables in V, Q is said to be recoverable in G if
there exists an algorithm that produces a consistent
estimate of Q for every dataset D such that P(D)
is (1) compatible with G and (2) strictly positive i.e.
P(V,,V*;R=0) > 0.

In layman terms, a given query @ is termed recoverable
if in the limit of large samples a consistent estimate of
Q@ can be computed from P(D) and G, as if no data
were missing.

The following example will demonstrate the sensitivity
of recoverability to the structure of the graph.

Example 1. Let Gy (Figure 2(a)) and Go (Figure
2(b)) be the graphs hypothesized by the researcher for

!The requirement of strict positivity is needed to make
our claims general. However many of our results do not
need this strong requirement.
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Figure 2: m-graphs that yield different estimands for
the query P(X|Y)

a given manifest distribution P(X*,Y* Ry, R,). Let
P(X|Y) be the query to be recovered.

(1) G1 embeds the CI: X L R, R,|Y).

Hence, P(X|Y) = P(X|Y,R, =0,R, = 0)

On applying Equation-(1) we get:
P(X|Y)=P(X*|Y*,R, =0,R, = 0).

(2) G2 embeds the CI: X 1LY . Therefore,
P(X|Y)=P(X)

Go also embeds the CI: X 1L R,. Therefore,

P(X) = P(X|R, = 0)

On applying Equation-(1) we get:
P(X|Y)=P(X*|R, =0)

We observe that G1 and G4 dictate different estimands
which yield different results depending on the missing-
ness process that each portrays. Therefore it is im-

perative to test whether the manifest distribution and
hypothesized model are compatible.

3 Testability of CI (d-separations) in
m-graphs

Definition 2 (Testable d-separation). Let X UY U
Z CV,UVpaUR and XNYNZ =0. XUY|Z
is testable if there exists a dataset D governed by a
distribution P(V,, V*, R) such that X LY |Z is refuted
in all underlying distributions P(V,, V,,, R) compatible
with the distribution P(V,, V*, R).

If X and Y are singletons, X Il Y'|Z is termed as sin-
gleton d-separation and if not, X Il Y|Z is termed
as compound d-separation. Let us look at exam-
ples of singleton and compound d-separations that are
testable.

Example 2. Let X € V, and Y € V,,. X1R,
is testable since X and R, are fully observed vari-
ables and we can always find a dataset that refutes
P(X|R, = 0) = P(X|R, = 1). Similarly when

{X,Y} CV,, R LR, and X UY|(R, = 0,R, = 0)
are testable. R, 1 R, is testable since R, and R, are
fully observed variables. X UY|(R, = 0,R, = 0)
is testable since given R, = 0 and Ry, = 0 we can
apply Equation 1 and equivalently write the CI as
X*UY*|(Ry = 0,R, = 0) i.e. CI can be expressed
equivalently in terms of observed variables and hence
it can be refuted.

Example 3. Following are two examples of compound
d-separations that are testable.

a. CI: (X,R;)1L(Y,Ry)|(Z,R.) implies
P(X*,R,|Z*,R,) = P(X*,R,|Y*,R,, Z*,R,)

b. CL: (X,R,;)1L(Ry, Ry)|Y implies
P(X*vR;;|Y*7R;/7R’w) = P(X*vR;;|Y*7R;/7R;u)

Since both Cls imply Cls that can be expressed in terms
of observed variables, the Cls can be refuted. Hence
they are testable.

We would like to remark that there exist non-testable
CI claims and they are discussed in Section 4, Example
5. From definition-2, we conclude that a d-separation
is termed testable when it has at least one implica-
tion that is testable. Example:4 demonstrates that, in
some cases, it might be necessary to examine all im-
plications of a compound d-separation before labeling
it as testable.

Example 4.  Consider the d-separation
S+ (X,Ry,R.1)WL(Y,Ry, R.2)|(Z1,Z2).  This d-

/

P(X,R,,R.,.Y=0,R,,R.,)
P(Y=0,R.,R.,,21,252)

separation translates to

’

P(X,R,,R.,,Y=1,R, R.,)

P(Y=1,R.,,R.,,Z1,Z2)

Observe that the denom-
z27

inators cannot be directly expressed in terms of
observed wvariables. To affirm testability of S, we
have to examine its implications until we find
an implication that 1is testable. For example,
S" + XAUY|(Zi,Z2, Ry, R:1, Ry, R22), obtained by
applying weak union graphoid axiom to S is testable

’

! ’ !
P(P(X,R,,R,, Y=0,R,,R.,))
P(R,,R.,,Y=0,R,,,R_,)

since it translates into

P(P(X,R,.R., Y=1,R,,R.,))
P(R,,R.,,Y=1,R,,R.,)
conclude that S is testable.

. Since S’ is testable we can

Clearly enumerating and testing the set of all implied
d-separations is hard since the number of implications
is exponential in the sizes of sets X and Y. The next
subsection provides a rule to circumvent this enumer-
ation for certain types of d-separations.

3.1 Directly testable d-separations

Testability of certain d-separations (such as the com-
pound d-separations in Example:3 ) can be affirmed
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in one shot i.e. without explicitly examining all their
implications. In other words, testability can be certi-
fied by looking at the placement of a mechanism Rx
relative to its partially observed variable X in the d-
separation statement. We call such d-separations di-
rectly testable. The following is a syntactic criterion
for determining direct testability of d-separations.

Theorem 1. Let XY, Z C V,UV,, UR and X NY N
Z = 0. The conditional independence statement S:
X WY|Z is directly testable if all the following condi-
tions hold:

1.Y¢ (RXm URZm)
In words, Y should contain at least one element
that is not in Rx,, URz, .

2. Rx, CXUYUZ
In words, the missingness mechanisms of all par-
tially observed wvariables in X are contained in
XUuYuZ.

3. Rzm U Rym CZUY
In words, the missingness mechanisms of all par-
tially observed variables in'Y and Z are contained

nY UZ.

Proof. Let Y7 € RUV,UV,, be an element in Y such
that condition (1) is satisfied. X 1l Y'|Z implies:
PXNM=0Y-¥1,2) _ P(X,Yi=1Y-Y1,2) (a)
P(Y1=0,Y —Y1,2) PYi=1,Y—Y1,2)

From conditions (2) and (3), we know that the terms
in the numerator of both fractions contain Rx,,, Ry,
and Rgz, . Similarly, from condition (3), we know
that the terms in the denominator of both fractions
contain Ry, and Rz, . When all R variables in
Rx, URy, URgz_ are set to zero we can apply Equa-
tion 1 and express the numerators and denominators
of equation-(a) in terms of observed variables, thereby
making the claim testable. O

Corollary 1. A given graphical model G is testable
if it has one of the following directly testable singleton
conditional independencies:

1. X1Y|Z Ry, Ry, R.
2. X1L.R,|Z, Ry, R.
3. Ry lLR,|Z,R.

It is understood that, if X or Y or Z are fully observed,
the corresponding missingness mechanism may be re-
moved from the conditioning set. Clearly, any con-
ditional independence comprised exclusively of fully
observed variables is testable.

So far we have discussed testable CI statements. In
the following section we shall discuss an impediment
to testability when data are afflicted by missingness.

4 Impediments to Testability in
Missing Data

Unlike testability under complete data, testability in
missing data has an impediment to overcome. When
data are complete we simply select a conditional inde-
pendence statement in the model and test it against
the data. Under missing data however, some condi-
tional independencies in the model may not be testable
even when the joint distribution is recoverable. An
example demonstrating this impediment is discussed
below.

Example 5. Consider the missingness process de-
scribed by the graph G in Figure 5 (a) that states the
CI: X1LR,|Y. Let Q : P(X,Y, R,) be the query to be
recovered. We will show that although @ is recoverable,
the CI statement X L R,|Y is not testable.

First we will prove that Q) is recoverable.
P(X,)Y,R,=1)=PX|Y,R, =1)P(Y,R, =1)

Since G embeds X 1L R,|Y we have,
P(X|Y,R, =1) = P(X|Y,R, =0). Therefore,

P(X,Y,R, =1) = P(X|Y,R, = 0)P(Y, R, = 1)

Using Equation 1,
P(X|Y,R, =0) = P(X*|Y, R, =0). Therefore,

P(X,Y,R, =1) = P(X*|Y,R, = 0)P(Y,R, = 1)

Hence P(X,Y, R, = 1) is recoverable.

Using Equation 1,
P(X,Y,R, =0) is also recoverable.

We will now show that X 1LR,|Y s not testable.
XU R,|Y translates into,

P(X|Y,R, =1) = P(X|Y,R, =0)
Hence, P(X,Y, R, = 1) = S50 PV, R, = 1)
In other words, for any manifest distribution
P*(X*)Y,Rx) in which P*(Y,Rx = 0) > 0, we
can always construct (as shown below) a compatible
distribution P(X,Y,Rx) in which the CI statement
X1LR,|Y holds.

= 0). Thus,

v,y

PX=2Y=yR,=0)=P(X"=2,Y=y,R, =0)
P*(X* =Y =y, Ry = 0)

PX=z2Y=yR,=1)=

* P*(Y =y,R, =1)

Thus, X 1L R, |Y is not refutable and hence we conclude
that it is not testable.
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This example showed that a probability distribution
P(v) can be perfectly recoverable from missingness,
(i.e., it can be estimated consistently, as if no missing-
ness occurred) and yet, P(v) may have testable impli-
cations (eg, conditional independence (CI) statements)
that are not testable for any data with the same mani-
fest structure (i.e. the same sets of partially and fully
observed variables).

The explanation of this impediment is as follows.
When we say P(V) has testable implications we re-
fer to refutation by some distribution taken from the
space of all distributions on V. In contrast, when we
say ‘testable under missingness’ we demand refutation
by a set of distributions with the same manifest struc-
ture. The refutation power of the latter set is weaker
than the former.

The next theorem characterizes a set of CI that are
not testable from missing data.

Theorem 2. Given that Y C V, U R, the singleton
d-separation X L R, |Y is not testable.

Proof. We can always compute P(X,R, = 1,Y) as
P(X,R, = 1,Y) = P(R, = 1,Y)P(X*|R, = 0,Y)
such that X 1L R,|Y is always true. Hence X 1l R,|Y
is not refutable given any manifest distribution that is
strictly positive over complete cases. Hence X 1L R, |Y
is not testable. O

Corollary 2. Given that'Y contains at least one par-
tially observed variable and R,,, C Y, singleton con-
ditional independence X 1L R,|Y, = 0,Y —Y, is not
testable.

Corollary 3. Direct Testability of a conditional inde-
pendence statement does not imply testability of all its
implications.

Proof. Consider the CI statement X 1L (Y, R,, R;). On
applying decomposition graphoid axiom, we get the
non-testable CI: X 1LR,. O

However, there exist directly testable d-separations
whose implications obtained by weak union and de-
composition graphoid axioms are always testable.

Example 6. Let X1LY|Z, R,,R;, R, be a compound
d-separation such that XUYUZ C V,UV,,. In this case
it can be easily seen that all implications obtained by
applying decomposition and weak union graphoid ax-
ioms comply with conditions for direct testability given
in Theorem-1. Hence they are all testable.

5 Testability of CIs comprising of only
substantive variables

Let us examine the testability of singleton CI: X LY.
Clearly, when X,Y € V,, X 1Y is testable. However,
testability of X 1LY when X € V, and Y € V,, is not
obvious. In the following theorem we prove that X 1LY
is testable when X € V, and Y € V,, and, X and Y
are binary. We further specify necessary conditions
that the manifest distribution must satisfy for X LY
to hold true in the underlying distribution.

Theorem 3. Given that X € V, and Y € V,,, the
conditional independence statement X 1LY is testable.
Moreover, a graph depicting X ILY should be summar-
ily rejected if none of the following conditions hold:

0< P_(i) < P(a/,1y) (2)
0 5 <P O
0< k + P(;c():/)(x’my) < P(a,r) (4)
o< TERLIZE < b))

where k = P(x)(P(z',y,r,)+P(x,y,1,)) — P(x,y,1).

Proof. We first show that violation of all conditions
from 2 to 5 is sufficient to rule out X 11Y. Then by
constructing an example that violates conditions 2 to
5, we confirm the testability of X 1LY

X 1Y may be equivalently written as,

P(z,y) = P(x)P(y)

The equation above is equivalent to,

P(z,y,ry) — P(x)(P(x’,y7ry) + P(z,y,1y)) =
P(x)(P(xlv Y, 'r/y) + P((E, Y, rjlg)) - P(xa Y, ’f’;)

Let the constant terms in RHS evaluate to k. Then
we can rewrite the equation as:

Pz —k
P\ in) = P Plar) + s (6)
Equation 6 is linear, the variables are P(z’,y,r,) and
P(z,y,ry,) and it resembles the general equation of a
line:y=max+c. Equation 6 should also satisfy:

(a) 0 < P(z,y,my) < P(z,7y)

(b) 0 < P(a,y,1y) < P(a',7y)

The constraints (a) and (b) above delineate a rectan-
gular region R in the first quadrant of the Cartesian
plane. Equation 6 can be solved subject to constraints
(a) and (b) only if the line described in Equation 6
intersects the boundary lines enclosing R (i.e. at least
one intersection point should satisfy (a) and (b)).
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Intersection of Eq 6 and left boundary of & yields:

0< 5y < P(e/,1y)

Intersection of Eq 6 and bottom boundary of R yields:

0< % < P(z,ry)
Intersection of Eq 6 and top boundary of R yields:
0 < HEEEF < Pla,r,)
Intersection of Eq 6 and right boundary of R yields:
0 < PRIk < P(a, )

We prove testability of X 1LY by presenting manifest
distribution P;5 in Table 2 that violates conditions 2 to

5 and thus refutes the claim: X 1Y O]
Ry, | X |Y"| P |P| P
ARRREE AEAE-

oL
T S
1 1 m | 5|3 | 8

Table 2: X 1Y can hold in manifest distributions P;
and P, but cannot hold in manifest distribution P

Example 7. Table 2 describes three distributions; Py
and Py in which X 1LY could possibly hold and Ps in
which X 1LY cannot hold. X 1LY can possibly hold in
Py and Py because both the distributions satisfy condi-
tion 3. P3 does not satisfy any of the conditions from
2 to 5; hence X 1LY cannot hold in Pj.

", °

Figure 3: m-graph in which recoverability of P(X|Y)
depends only on X 11 Y.

Ry

The following example demonstrates an application of
Theorem 3. It describes an instance where recoverabil-
ity of a given query hinges exclusively on the indepen-
dence between X and Y.

Example 8. Let G in Figure 8 be the hypothesized
graph and Q = P(X|Y) be the query to be recovered.
P(X,Y) is not recoverable from Gy since Y itself is
the cause of its missingness(R,). G1 embeds the CI
statement: X 1LY and if we assume Gy is the true
graph then P(X|Y') can be recovered as follows:

PX]Y) = P(X)

Recoverability however depends critically on the in-
dependence X 1LY embedded in G1. QOur question is

whether or not the CI statement X 1LY holds in any
underlying distribution compatible with the data avail-
able. Theorem 8 answers this question immediately by
providing us with four conditions, one of which ought
to be satisfied by the manifest distribution for X 1Y
to hold. For example, given Ps in Table 2 and Gi,
we can immediately conclude that G and Ps are not
compatible.

It is interesting to note that though recoverability is
generally facilitated by (usually non-testable) CI be-
tween a variable and its missingness mechanism such
as Y1 R, or Y1 R,|X, in Example 8 recoverability of
Q facilitated by the independence between substantive
variables X and Y.

M M
Ry Ry
o [
O Y O/' Y
X Ry X Ry
(a) (b)

Figure 4: (a) m-graph depicting MNAR (b) m-graph
depicting M ART

6 Testability of MCAR and MAR

Missingness mechanisms are traditionally classi-
fied into three categories (Rubin, 1976): Missing
Completely At Random(MCAR), Missing At Ran-
dom(MAR) and Missing Not At Random (MNAR). A
chi square based test for MCAR was proposed by Little
(1988) in which a higher value falsified MCAR(Rubin,
1976). MAR (Rubin, 1976) is not testable. Given be-
low is a quote from Allison (2002),pg:4.

“It is impossible to test whether the MAR condition
is satisfied, and the reason should be intuitively clear.
Because we do not know the values of the missing data,
we can not compare the values of those with and with-
out missing data to see if they differ systematically on
that variable.”

Potthoff et al. (2006) defined MAR at the variable-
level and named it M AR™ and showed that it can be
tested. A given dataset is MAR™ if V,, \LR|V, (Pot-
thoff et al., 2006). Theorem 4, given below presents
stronger conditions under which a given M AR™ model
is testable. Furthermore, it provides diagnostic insight
in case the test is violated.

Theorem 4. Giwen that |V,,| > 0, MAR"
(Vi ILR|V,) is testable if and only if |Vi,| > 1 i.e.
|Vin| is not a singleton set.
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Proof. Let |V, = k > 1 and X C V,, such that
|X| = k — 1. By applying decomposition graphoid
axiom to V,,, ILR|V,, we get (V,, — X)1LR|V, that is
directly testable by Theorem 1. Therefore, V,,, LLR|V,
is testable if V,, is not a singleton. On the other
hand if |V,,| = 1 then by Theorem-2, V,,, ILR|V, is
not testable. O

Example 9. In the graph in Figure 4(b), MAR™
holds because (Y, X)L (Ry,Ry,)|M. Therefore, the
tests are:

(i) X* L R,|M,R, =0

(i) Y* LR, |M,R, =0

(i) X* LR, =0/M,R, =0,Y

(w) Y*ILR, =0|M,R, =0, X

(i) and (ii) are tests obtained by applying weak
union and decomposition  graphoid axioms to
(Y, X)1L(Rs,Ry)|IM and (iii) and (iv) are tests
obtained by applying weak-union graphoid axiom
to (Y, X)W (R;, Ry)|M. Note that the graph has
more testable implications than those listed above.
For example, the graph advertises the CI statement
R, UL R,. However, the latter test is model specific,
whereas (i)-(iv) are model-independent, applicable to
any MARY model with the same manifest structure.

The following corollary shows that MCAR is testable.

Corollary 4. Given that |V,,| > 0, MCAR ( (V,, U
V,)ALR) is testable if and only if |V, U V| > 2.

If the dataset contains only one variable(X) and X €
Vin, then X Il R, is not testable (by Theorem 2), even
though the corresponding missingness mechanism is
MCAR. If the dataset additionally contained at least
another fully observed variable (V) then (X,Y)1 R,
is testable since its implication Y 1L R, is testable. On
the other hand, if the dataset additionally contained
at least another partially observed variable (Z) then
(X, Z) 1L (R, R,) is testable since its implications such
as Z1LR,.|R, =0and XU R,|R, =0 are testable.

6.1 Detecting MNAR missingness
mechanism

Consider the graph in Figure 4(a). The model is
clearly MNAR since there is an edge between Y and
R,. However, Theorem 4 will not be able to falsify
M AR™T. The following subsection will show that such
falsification is nevertheless possible.

6.1.1 Graph based tests for detecting the
edge between a variable an its
missingness mechanism (eg: X — R,)

Ordinarily an edge E between a variable and its miss-
ingness mechanism is not testable. However, if the

contentious edge is embedded in a structure that meets
certain conditions we will show that a test exists to as-
certain the existence of E. The following lemma gives
the condition under which an edge X — R, may be
detected in a Markovian Model.

Lemma 1. Given a Markovian model in which (1)
there exists Z which is a parent of X and not a par-
ent of R, and (2) no R variable is a parent of an-
other R wariable, an edge X — R, ezists whenever
Z LRyR,=0,(RUV)—{X,Z,R;,R.}.

Proof. Condition (2) prevents R, from being a par-
ent of any node in R and by definition of m-graph R,
cannot be a parent of variables in V, U V,,. Hence
no variable in V, UV,, U R is a child of any R vari-
able. Moreover, the model is Markovian. There-
fore the m-graph can only contain uni-directed edges
that enter R, and thus no parent of R, can be a
collider on any path that enters R,. In the test,
ZU R, R, =0,(RUV)—{X,Z,R;, R.} we condition
on all variables except X. Therefore, if the test does
not hold true then it is because there is an unblocked
path from Z to R, via X (by condition-1, Z — R,
does not exist). This is possible only if X is a parent
of R, i.e. there exists an edge between X and R,.

O

Example 10. Consider the m-graph G1 in Figure 1
that implies X 1L R,. Let it be the case that Z does
not cause the missingness in X. Then, we can con-
firm dependence i.e. the existence of X — R, if
Z U R.|Y,R, =0 does not hold.

7 Model Sensitivity of Estimation
Procedures

An important consequence of identifying the testable
implications of a given model is the ability to demon-
strate the limits of model-blind algorithms, i.e. algo-
rithms that attempt to handle missing-data problems
on the basis of the data alone, without making any as-
sumptions about the structure of the missingness pro-
cess. A fundamental limitation of model-blind algo-
rithms is unveiled in Example 11, which presents two
statistically indistinguishable models such that a given
query is recoverable in one and non-recoverable in the
other.

Example 11. The two graphs in Fig. 5 (a) and (b)
cannot be distinguished by any statistical means, since
Fig. 5(a) has no testable implications and Fig. 5(b)
is a complete graph. However in Fig. 5 (a) P(X,Y)
is recoverable (refer Example 5 )while in Fig. 5 (b)
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Figure 5: Statistically indistinguishable graphs. (a)
P(X,Y) is recoverable (b) P(X,Y) is not recoverable
(¢) P(X) is recoverable

oRy Ry

P(X,Y) is not recoverable (by Theorem-2 in Mohan
et al. (2013)).

An even stronger limitation is demonstrated in Ex-
ample 12; it shows that no model-blind algorithm ex-
ists? even in those cases where recoverability is feasi-
ble. We construct two statistically indistinguishable
models, G; and Gs, dictating different estimation pro-
cedure 57 and S, respectively; yet @) is not recoverable
in Gl by SQ or in G2 by Sl.

Example 12. The graphs in Fig. 5 (a) and (c) are
statistically indistinguishable; neither has testable im-
plications. Let the target relation of interest be () =
P(X). In Fig. 5 (a), Q may be estimated as P(X) =
>, P(X|Y, Ry = 0)P(Y) since X 1LR,|Y and in Fig.
5 (b), Q can be derived as P(X) = P(X|R, = 0) since
XU R,.

8 Conclusions

Researchers are typically uncertain about the model
that accounts for loss of data while at the same time
many procedures for recovering information from miss-
ing data rely on such models. These two facts motivate
us to address the question of whether one can sub-
mit a given model to a test of compatibility with the
data available, which of course is corrupted by miss-
ingness. In this paper we illuminated the boundary be-
tween testable and non-testable models with emphasis
on models which are considered MNAR in the liter-
ature. We have provided syntactic rules for ensuring
testability of a given conditional independence claim
(CI) based on the type of variables (V,, V,,, R) that
appear in the CI. We further presented conditions for
non-testability of a CI and discussed a general imped-
iment to testability in missing data.

We have shown that there are singleton CI among sub-
stantive variables - not all of them fully observed -
that can be tested, and we provided conditions on the

2We leave open the unlikely possibility that there exists
an estimation scheme, different from ours that could re-
cover @ = P(X) in both models. We propose this example
as a litmus test for any such estimator.

dataset to falsify such CI claims. We refined the results
of Potthoff et al. (2006) and showed that the class of
models denominated as M AR™ are testable whenever
|Vin| > 2 and that the class of models denominated as
MCAR are testable whenever |V, UV,,| > 2. Addi-
tionally, we presented graphical and statistical condi-
tions that confirm dependence between a variable and
its missingness mechanism. Finally, we demonstrated
sensitivity of missing data recovery procedures to hy-
pothesized models and confirmed that this sensitivity
is inevitable in datasets classified as MNAR.
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