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Modern causal inference owes much of its progress to a strict and crisp distinction
between probabilistic and causal information. This distinction recognizes that prob-
ability theory is insufficient for posing causal questions, let alone answering them,
and dictates that every exercise in causal inference must commence with some extra
knowledge that cannot be expressed in probability alone.1 The paper by Baker at-
tempts to overturn this distinction and argues that “probability theory is a desirable
and sufficient basis for many topics in causal inference.” My comments will disprove
Baker’s claim, in the hope of convincing readers of the importance of keeping the
boundaries between probabilistic and causal concepts crisp and visible.

Baker’s argument begins with: “...besides explaining such causal graph topics
as M -bias (adjusting for a collider) and bias amplification and attenuation (when
adjusting for instrumental variable), probability theory is also the foundation of the
paired availability design for historical control” (abstract). While I am not versed in
the intricacies of “paired availability design” (Google Scholar lists only a handful of
entries in this category), I doubt it can be based solely on probabilities. Indeed, Baker
himself resorts to counterfactuals and other non-probabilistic notions2 in explaining
the research questions a “paired availability design” attempts to answer. I am quite
familiar however with the concepts of “M -bias,” “bias,” “Simpson’s paradox,” and
“instrumental variable” which I will show to have no interpretation in probability
theory alone.

I will start with the concept of “instrumental variable” which should be familiar to
most readers, and which is often mistaken to have probabilistic definition (see [2, pp.

1Cartwright [1] summarized this limitation in a well-known slogan: “no causes in, no causes out.”
2By “non-probabilistic notions” I mean relations or parameters that cannot be defined in terms

of joint distributions of observed variables. The restriction to observed variable is important for,
otherwise, everything would become probabilistic, including Cinderella’s age, horoscopic predictions,
counterfactuals, latent variables, the answers to our research questions, and so on; we need merely
hypothesize a distribution over such variables and turn every problem probabilistic. The distinction
between causal in probability information would then lose its meaning and usefulness.
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387–389]). Assume we have a joint distribution P (x, y, z) defined on three variables
X, Y , and Z. We ask: What condition should P satisfy in order for Z to qualify as
an instrumental variable relative to the pair (X, Y ). It is well known that, if X is
continuous, no such condition exists. That is, for any causal model in which Z is an
instrument there exists another model, indistinguishable from the first, in which Z
is not an instrument.3 Baker’s Fig. 1(d), for example, where Z is in an instrument,
cannot be distinguished (by measuring X, Y , and Z) from one to which an arrow
Z → Y is added, thus rendering Z no longer an instrument. This demonstrates that
an instrument, Z, cannot be defined probabilistically in terms of P (X, Y, Z).

One may attempt to escape this demonstration by defining an instrument relative
to a triplet (X, Y, U) rather than a pair, where U is a “confounder” (as in Baker’s
Fig. 1(d)). This, too, must fail. First, the concept of “confounder” is causal, and
defies all definitions in probabilistic terms [2, Ch. 6; 3]. Second, consider Fig. 1(e) to
which we add an arrow Z → Y . The newly formed graph is “complete” (i.e., all pairs
are adjacent) and, therefore, can generate any probability distribution P (x, y, z, u)
whatsoever. In other words, this complete graph, in which Z is not an instrument,
can emulate any model that characterizes Z as an instrumental , such as the one in
Fig. 1(d). We conclude, again, that an instrument cannot be defined in probabilistic
terms, regardless of whether it is defined relative to a pair or a triplet.

Similar demonstrations can be used to show that “M -bias,” and in fact any con-
cept invoking the notion of “bias” cannot admit a definition in probability theory.4

This raises the question why Baker’s analysis may give one the impression that prob-
ability theory in itself can explain M -bias and bias amplification. The answer is,
Baker’s analysis merely re-validates (not “explains”) known algebraically probabilis-
tic aspects of these phenomena, while the conclusions rely crucially on causal infor-
mation that is kept out of the analysis. Appendix A, for example, merely shows that,
given a probability function compatible with the graph X ← Q → U ← R → Y ,
conditioning on U would create dependency between otherwise two independent vari-
ables, X and Y . This follows directly from d-separation, a probabilistic tool that has
nothing to do with causation or with “bias.” To show that conditioning on M creates
bias one must give causal interpretation to the M -graph, and invoke the truncated
product interpretation of interventions [2, pp. 22-24]; probabilistic interpretations in
themselves remain insufficient.

The litmus test for classifying M -bias as “probabilistic” or “causal” is clear and
crisp; given a joint distribution P (X, Y, U,W,Q,R) can we determine (from P alone)
whether adjustment for U produces bias on not? If the answer is yes, we have a
probabilistic question on our hand; if the answer is no, and we find ourselves needing
the causal graph to decide, we conclude that the question is not probabilistic but
causal. In our case, the latter holds – we must examine the causal graph before
deciding whether adjustment for M would introduce bias.

The same applies to Baker’s treatment of Simpson’s paradox; Appendix A does

3Weak inequality constraints may bound P when X is discrete [2, pp. 274–275] but, otherwise,
the fact that Z is an instrument cannot be recognized in P .

4“Bias” is defined as the difference between the desired quantity, say the causal effect, and a
quantity that is estimated from observed data. Since the former is causal, so is “bias.”
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not provide a proof that adjustment on U is not appropriate; no proof based solely
on probability theory can deal with the question of “appropriateness” or decide that
adjusting for U in Fig. 1(a) is appropriate while in Fig. 1(c) it is not appropriate.
Such distinction comes from the causal information conveyed by the arrows, not the
conditional independencies conveyed by those arrows; all attempts to explain the
paradox without invoking causation have failed (see [2, Ch. 6; 4]).

Lastly, I am surprised by Baker’s claim that the “paired availability design does
not fit into a causal graph framework” (Baker, Section 5). The description of the
“paired availability design” given in this paper, is formulated in terms of “prin-
cipal strata” – a counterfactual framework that fit perfectly and, in fact, is sub-
sumed by the causal graph framework (see [2, Ch. 8; 5–7]). A structural causal
model represents all counterfactuals that may possibly be defined among the vari-
ables in the model [8] and, therefore, subsumes any design based on these coun-
terfactuals.5 The symbiosis between graphs and counterfactuals is much tighter
than what Baker’s paper presents, and has led to major advances in problem ar-
eas such as mediation analysis, external validity, heterogeneity and missing data (see
http://bayes.cs.ucla.edu/csl papers.html).
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