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Abstract
We address the problem of transferring causal knowledge
learned in one environment to another, potentially differ-
ent environment, when only limited experiments may be
conducted at the source. This generalizes the treatment of
transportability introduced in [Pearl and Bareinboim, 2011;
Bareinboim and Pearl, 2012b], which deals with transfer-
ring causal information when any experiment can be con-
ducted at the source. Given that it is not always feasible to
conduct certain controlled experiments, we consider the de-
cision problem whether experiments on a selected subset Z
of variables together with qualitative assumptions encoded
in a diagram may render causal effects in the target envi-
ronment computable from the available data. This problem,
which we call z-transportability, reduces to ordinary trans-
portability whenZ is all-inclusive, and, like the latter, can be
given syntactic characterization using the do-calculus [Pearl,
1995; 2000]. This paper establishes a necessary and suffi-
cient condition for causal effects in the target domain to be
estimable from both the non-experimental information avail-
able and the limited experimental information transferred
from the source. We further provides a complete algorithm
for computing the transport formula, that is, a way of fusing
experimental and observational information to synthesize an
unbiased estimate of the desired causal relation.

Introduction
The challenge of transporting experimental knowledge
across heterogeneous settings is pervasive in science. Con-
clusions that are obtained in a laboratory setting are trans-
ported and applied elsewhere, in an environment that differs
in many aspects from that of the laboratory [Pearl, 2012].
Similarly, when a robot is trained in a simulated environ-
ment, the question arises whether it could put the acquired
knowledge into use in a new environment where relation-
ships among agents, objects and features are different.

AI is in a unique position to tackle this challenge formally.
First, the distinction between statistical and causal knowl-
edge has received syntactic representation through causal di-
agrams [Pearl, 1995; Spirtes, Glymour, and Scheines, 2000;
Pearl, 2000]. Second, graphical models provide a language
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for representing differences and commonalities among do-
mains, environments, and populations [Pearl and Barein-
boim, 2011] (henceforth, PB). Finally, the inferential ma-
chinery provided by the do-calculus [Pearl, 1995; 2000;
Koller and Friedman, 2009] is particularly suitable for com-
bining these two features into a coherent framework and de-
veloping effective algorithms for knowledge transfer.

In this line of research, the transportability problem [PB,
2011] deals with transferring causal knowledge between two
environments Π and Π∗. In environment Π, (randomized)
experiments can be performed and causal knowledge gath-
ered. In Π∗, potentially different from Π, only passive ob-
servations can be collected but no experiments conducted.
The problem is to infer a causal relationship R in Π∗ using
the gathered knowledge. Clearly, if nothing is known about
the relationship between Π and Π∗, the problem is unsolv-
able. 1 Using a graphical representation called selection di-
agrams to encode commonalities and differences between
environments [PB, 2011], a complete graphical and algo-
rithmic characterization was provided in [Bareinboim and
Pearl, 2012b] (henceforth, BP), which decides if and how
transportability is feasible.

In real world applications, however, it may happen that
certain controlled experiments cannot be conducted in the
source environment (for financial, ethical, or technical rea-
sons), so only a limited amount of experimental information
can be gathered. A natural question arises whether the inves-
tigator in possession of a limited set of experiments would
still be able to estimate the desired effects at the target.

This problem is called here “z-transportability” and gen-
eralizes ordinary transportability. Whenever any experiment
may be conducted in the source, the two problems coincide.
More formally, the z-transportability problem concerns the
transfer of causal knowledge from a source domain Π to a
target domain Π∗. In Π, experiments over the elements of
a set Z ⊂ V may be conducted (where V represent all
variables in the system), so the set Iz contains the causal
knowledge derived from the experiments P (v|do(z′)) 2, for
all Z ′ ⊆ Z. In Π∗, potentially different from Π, only passive

1Unsolvable in the sense that for any estimation strategy, exam-
ples can be presented where the estimated value and the true effect
are divergent even when sample size goes to infinity.

2We use Px(y) interchangeably with P (y|do(x)).
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observations can be collected but no experiments conducted.
The goal of this paper is to provide a systematic analysis

of the z-transportability problem, taking as input any arbi-
trary selection diagram together with an arbitrary set of ex-
periments Z. Our contributions are summarized below:

• We provide a necessary and sufficient graphical condition
for solving the z-transportability problem when Z is a set
of variables under experimental control. We show that z-
transportability is feasible if and only if the selection dia-
gram does not contain a subgraph with certain properties.

• We then construct a complete algorithm for deciding z-
transportability of causal effects, which returns a transport
formula whenever those effects are z-transportable.

• We further show that the do-calculus is complete for the
task of deciding z-transportability.

Motivating Examples
Consider Fig. 1(a) in which the node S represents factors
that produce differences between source and target popula-
tions. Assume that we conduct a randomized trial in Los
Angeles (LA) and estimate the causal effect of treatment
X on outcome Y for every age group Z = z, denoted
P (y|do(x), z). We now wish to generalize the results to the
population of New York City (NYC), but we find the distri-
bution P (x, y, z) in LA to be different from the one in the
NYC (call the latter P ∗(x, y, z)). In particular, the average
age in NYC is significantly higher than that in LA. How are
we to estimate the causal effect of X on Y in NYC, denoted
R = P ∗(y|do(x))? 3 4

The selection diagram for this example (Fig. 1(a)) con-
veys the assumption that the only difference between the two
populations are factors determining age distributions, shown
as S → Z, while age-specific effects P ∗(y|do(x), Z = z)
are invariant across cities. Difference-generating factors are
represented by a special set of variables called selection
variables S (or simply S-variables), which are graphically
depicted as square nodes (�). From this assumption, the
overall causal effect in NYC can be derived as follows:

R =
∑

z

P ∗(y|do(x), z)P ∗(z)

=
∑

z

P (y|do(x), z)P ∗(z) (1)

The last line is the transport formula for R. It combines
experimental results obtained in LA, P (y|do(x), z), with
observational aspects of NYC population, P ∗(z), to obtain
an experimental claim P ∗(y|do(x)) about NYC. In this triv-
ial example, the transport formula amounts to a simple re-
calibration (or re-weighting) of the age-specific effects to
account for the new age distribution. In general, however,
a more involved mixture of experimental and observational
findings would be necessary to obtain a bias-free estimate
of the target relation R, a full characterization of which is

3We use the structural interpretation of causal diagrams as de-
scribed in [Pearl, 2000, pp. 205–208]; see also Appendix 1.

4Following standard notation [Pearl, 2000], the dashed bidi-
rected arrows in a graph stands for latent variables.
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Figure 1: (a) Selection diagram illustrating when transporta-
bility among two domains is trivially solved through a sim-
ple recalibration. (b) Smallest selection diagram in which a
causal relation is not transportable.

given in [BP, 2012b]. Interestingly, Fig. 1(b) is an example
where bias-free transport of P ∗(y|do(x)) is not feasible.

To illustrate a z-transportability problem, consider Fig.
2(a) and assume we wish, again, to estimate P ∗(y|do(x))
but, now, X cannot be randomized. Instead, variable Z can
be randomized, and we ask whether we can still estimate
P ∗(y|do(x)) despite this constraint and despite the fact that
the two populations differ in the prior probabilities of Z (as
shown by the variable S). 5

Fortunately, in this case, the problem has a positive solu-
tion as can be seen from the following derivation. First apply
Rule 3 of the do-calculus to add do(z) to the expression,

P ∗(y|do(x)) = P ∗(y|do(x), do(z)) since (Y ⊥⊥ Z|X)GXZ

Then apply Rule 2 to exchange do(x) with x:

P ∗(y|do(x), do(z)) = P ∗(y|x, do(z)) since (Y ⊥⊥ X|Z)GXZ

This last expression can be rewritten as,

P ∗(y|x, do(z)) = P (y|x, do(z), s) =
P (y, x|do(z))
P (x|do(z))

, (2)

where the first equality follows from the definition of selec-
tion diagram and the second using the separation of S from
{X,Y } after intervening onZ. Therefore, performing an ex-
periment on Z in Π suffices to estimate the causal effect of
X on Y in Π∗ (without resorting to experimentation on X .)

There are subtle features of this problem that are worth il-
lustrating. Whereas the graph in Fig. 2(a) permits the effect
to be z-transportable, the graph in Fig. 2(b) does not. One is
tempted to explain this difference by noting that in the muti-
lated graph from which the edges incoming to Z are cut (to
simulate intervention), the causal effect of X on Y is iden-
tifiable in Fig. 2(a) but not in (b). That this is not the case
is shown in the graph in Fig. 2(c). The resulting mutilated
graph in this case entails both the identifiability and trans-
portability of P ∗(y|do(x)), but this effect is neither identifi-
able, nor transportable, nor z-transportable (shown later).

In a more involved manner, one might surmise that the
solution for the z-identification problem [BP, 2012a] could
yield the solution for z-transportability – z-identification

5A typical example is whether we can estimate the effect of
cholesterol (X) on heart failure (Y ) by experiments on diet (Z)
given that cholesterol levels cannot be randomized [Pearl 2000, pp.
88–89].



asks for expressing the causal relation R = P (y|do(x)) in
terms of experiments on Z (in a fixed domain Π) – however,
this too turns out to not be the case. To witness, consider the
diagram G in Fig. 3(a), and note that even though R is z-
identifiable in Π, it is not the case that R is z-transportable.

Furthermore, consider the same task in regard to Fig. 3(b),
a simple analysis for z-identification in the source would
yield expression similar to the one in Fig. 2(a),

P (y|do(x)) =
P (y, x|do(z))
P (x|do(z))

, (3)

but in this case, the availability of the ratio in eq. (3)
is not sufficient for estimating the target quantity R =
P ∗(y|do(x)) in Π∗. Interestingly enough, the quantity R is
z-transportable through the transport formula

P ∗(y|do(x)) =
∑
w

P (y|x,w, do(z))P ∗(w|x, z), (4)

which combines experimental results over Z obtained in the
source Π, P (y|x,w, do(z)), with observational aspects of
the target domain, P ∗(w|x, z), to obtain an experimental
claim P ∗(y|do(x)) about the target. (The derivation of this
expression is shown more explicitly later on.)

We note that the z-transportability problem reduces nei-
ther to transportability nor to z-identifiability, which leaves
open the question of how to algorithmically characterize z-
transportability. Our goal next is to get a better understand-
ing of this problem and provide formal conditions for de-
ciding whether a given quantity is (or is not) z-transportable
from the available information at hand.

Preliminary Results
The basic semantical framework in our analysis rests on
probabilistic causal models as defined in [Pearl, 2000, pp.
205], which are also called structural causal models. In the
structural causal framework [Pearl, 2000, Ch. 7], actions are
modifications of functional relationships, and each atomic
action do(X = x) on a causal model M produces a new
model Mx = 〈U,V,Fx, P (U)〉, where Fx is obtained af-
ter replacing fX ∈ F for every X ∈ X with a new function
that outputs a constant value x given by do(X = x).

We follow the conventions given in [Pearl, 2000]. We de-
note variables by capital letters and their values by lower
case. Similarly, sets of variables are denoted by bold capi-
tal letters, sets of values by bold letters. We will use graph-
theoretic terminology with the typical kinship relationships
(e.g., parents, ancestors). We usually omit the graph sub-
script whenever the graph in question is unambiguous. A
graph GY will denote the induced subgraph G containing
nodes in Y and all arrows between such nodes. Finally,GXZ

stands for the edge subgraph ofGwhere all incoming arrows
into X and all outgoing arrows from Z are removed.

Key to the analysis of z-transportability is the notion of
“identifiability”, defined in [Pearl, 2000, pp. 77], which ex-
presses the requirement that causal effects be computable
from a combination of passive data P and the assumptions
embodied in a causal graph G (no experimental informa-
tion is invoked). In identifiability problems, causal mod-
els and their induced graphs are associated with one do-
main (also called setting, study, population, environment).
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Figure 2: Selection diagrams illustrating z-transportability
of the causal effect R = P ∗(y|x̂).R can be z-transported
with experiments on Z in model (a), but not in(b) and (c).

In transportability analysis, this representation was extended
to capture properties of two domains simultaneously, using
selection diagrams, to be defined next: 5

Definition 1 (Selection Diagram [BP, 2012b]). Let
〈M,M∗〉 be a pair of structural causal models [Pearl, 2000,
pp. 205] relative to domains 〈Π,Π∗〉, sharing a causal dia-
gram G. 〈M,M∗〉 is said to induce a selection diagram D
if D is constructed as follows:

1. Every edge in G is also an edge in D;
2. D contains an extra edge Si → Vi whenever there might

exist a discrepancy fi 6= f∗i or P (Ui) 6= P ∗(Ui) between
M and M∗.

In words, the S-variables locate the mechanisms where
structural discrepancies between the two domains are sus-
pected to take place.6 Alternatively, the absence of a selec-
tion node pointing to a variable represents the assumption
that the mechanism responsible for assigning value to that
variable is identical in both domains.

Armed with the concepts of identifiability and selection
diagrams, the problem of z-transportability of causal effects
can be defined as follows:

Definition 2 (z-Transportability). Let X,Y,Z be disjoint
sets of variables, and let D be a selection diagram rel-
ative to domains 〈Π,Π∗〉. Let 〈P, Iz〉 be the pair of ob-
servational and interventional distributions available in Π,
where Iz =

⋃
Z′⊆Z P (v|do(z′)), and P ∗ be the observa-

tional distribution of Π∗. The causal effect R = P ∗x (y) is
z-transportable from Π to Π∗ inD if P ∗x (y) is uniquely com-
putable from 〈P, Iz, P ∗〉 in any model that induces D. 7

The requirement that R be uniquely computable from
〈P, Iz, P ∗〉 has a syntactic image in do-calculus, which is
captured by the following Theorem.

5The assumption of no structural changes can be easily relaxed
[BP, 2012b].

6Transportability assumes that enough structural knowledge
about both domains is known in order to substantiate the pro-
duction of their respective causal diagrams. In the absence of
such knowledge, causal discovery algorithms might be used to in-
fer the diagrams from data [Pearl and Verma, 1991; Pearl, 2000;
Spirtes, Glymour, and Scheines, 2000].

7Henceforth, “z-transportability” will assume a specified set Z.



Theorem 1. Let D be the selection diagram characteriz-
ing Π and Π∗, and S a set of selection variables in D. The
relation R = P ∗(y|do(x), z) is z-transportable from Π to
Π∗ in D if the expression P (y|do(x), z, s) is reducible, us-
ing the rules of do-calculus, to an expression in which all
do-operators apply to subsets of Z, and the S-variables are
separated from these do-operators.
Proof. The result follows from the definition of z-
transportability and soundness of the do-calculus.

While it is not immediately obvious whether a sequence
of rules exist that achieves the reduction required by the the-
orem, two elementary cases exist which are easily recogniz-
able and can help in answering this question in general:

Definition 3. (Trivial Transportability)
A causal relation R is said to be trivially transportable from
Π to Π∗, if R(Π∗) is identifiable from the data in Π∗.

Definition 4. (Direct z-Transportability)
A causal relation R = P ∗(y|do(z),w) is said to be di-
rectly z-transportable from Π to Π∗ with do(Z), if experi-
ments do(Z) are available in Π and R(Π) = R(Π∗).

A graphical test for direct z-transportability of R =
P ∗(y|do(z),w) follows from the do-calculus and reads:
(S ⊥⊥ Y|Z,W)DZ

; in words, Z blocks all paths from S
to Y once we remove all arrows pointing to Z and condition
on {Z,W} in the selection diagram D. As an example, the
X-specific causal effects in Fig. 2(a), P ∗(y|x, do(z)), are
directly z-transportable from Π to Π∗. These two cases (i.e.,
trivial and direct) will act as a basis to decompose the prob-
lem of z-transportability into smaller and more manageable
subproblems.

We consider below conditions for when a quantity cannot
be z-transported even when reduced to one of the elementary
forms discussed above. The next lemma provides an auxil-
iary tool to prove that a quantity is not z-transportable based
on the refutation of the uniqueness property required by Def.
2, which will be instrumental for proving completeness.

Lemma 1. Let X,Y,Z be subsets of disjoint variables in
domains Π and Π∗, and let D be the respective selection
diagram. R = P ∗x (y) is not z-transportable from Π to Π∗
in D if there exist two structural causal models M1 and M2

compatible withD such that PM1(v) = PM2(v), P ∗M1
(v) =

P ∗M2
(v), PM1(v|do(z′)) = PM2(v|do(z′)), for all Z′ ⊆ Z,

and P ∗M1
(y|do(x)) 6= P ∗M2

(y|do(x)).

Proof. Let Iz =
⋃

Z′⊆Z P (v|do(z′)), the collection of all
interventional distributions in domain Π. The latter inequal-
ity of the Lemma rules out the existence of a function from
〈P, Iz, P

∗〉 to P ∗x (y).

While Lemma 1 might appear convoluted, it is nothing
more than a formalization of the statement “R cannot be
computed from information set IS alone.” Naturally, when
IS has three components, 〈P, Iz, P ∗〉, it becomes lengthy. In
turn, we use this lemma to show the non-z-transportability
of P ∗(y|do(x)) in the graphs in Fig. 2(b) and (c).

Theorem 2. P ∗(y|do(x)) is not z-transportable in the se-
lection diagrams in Fig. 2(b) and (c).
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Figure 3: Selection diagrams illustrating the non-trivial rela-
tionship among the problems of z-identifiability, transporta-
bility, and z-transportability.

Proof. Consider the diagram G in Fig. 2(b). The existence
of a hedge F ′,F for R = P ∗(y|do(x)) in GZ implies that
Z cannot help in the z-identifiability of R in Π [BP, 2012a].
Assume that R is z-transportable. Note that Z does not par-
ticipate in the hedge F ′,F since there is no bidirected edge
going towards any of its elements in GZ. Further, consider
a parametrization such that Z is a fair coin, so disconnected
from V\Z inG. We can use Lemma 1 and the witness F ′,F
for non-z-identifiability to show non-z-transportability inG.
The inequality of R between the two models is obvious, and
the agreement of the interventional distributions do(Z) fol-
lows since Z is disconnected from V \ Z by construction.
Contradiction. Since z-transportability has to be valid for
any parametrization compatible with G, our claim follows.

In the diagram G in Fig. 2(c), the result is direct. First
note that there exists a s-hedge F ′,F for R in G, and by
Theorem 5 in [BP, 2012b],R is not transportable. The equal-
ity of the interventional distributions do(Z) follows by con-
struction. Therefore, the same two models that witness non-
transportability based on the s-hedge F ′,F together with
Lemma 1 entail the result. �

Characterizing z-Transportable Relations
We have seen positive as well as negative special cases
of z-transportability. In the sequel, we build on the anal-
ysis of these cases to give a general characterization of
z-transportability for any arbitrary selection diagram. A
key concept in this characterization will be that of sC-
components [BP, 2012b], which is essentially Tian’s C-
components over selection diagrams [Tian and Pearl, 2002].

Definition 5 (sC-component). LetD be a selection diagram
such that a subset of its bidirected arcs forms a spanning tree
over all vertices inD. ThenD is an sC-component (selection
confounded component).

If D is not an sC-component itself, it can be uniquely
partitioned into a set C(D) of sC-components. For instance,
in Fig. 3(b), there are sC-components C1 = {Z,X, Y }
and C2 = {W}, since those are the two clusters of vari-
ables connected through bidirected edges. Each graph in-
duces a unique sC-component decomposition, which is im-
portant since it will provide a way to re-express the target
quantity into smaller pieces so as to allow the test of z-
transportability in each of these pieces independently.



A special subset of sC-components that embraces the an-
cestral set of Y turns out to play an important role in decid-
ing transportability (and first noted by Shpitser in the context
of the identifiability problem), which will also be useful to
z-transportability, as shown in turn.

Definition 6 (s∗-tree). Let D be a selection diagram where
Y is the maximal root set. ThenD is a Y-rooted s∗-tree ifD
is an sC-component and all observable nodes have at most
one child.

There exist two interesting structures that stem from s∗-
trees. When a pair of s∗-trees shares the same root set, and
one encompasses the nodes in X, and the other does not, this
structure witnesses non-identifiability and is called hedge
(i.e., identifiability is infeasible when a hedge is present as
an edge subgraph of the inputted causal diagram) [Shpitser
and Pearl, 2006]. If there exists a S-node pointing to the s∗-
tree that does not intersect with X, this structure witnesses
non-transportability and is called s-hedge (i.e., transporta-
bility is infeasible when a s-hedge is present as an edge sub-
graph of the inputted selection diagram) [BP, 2012b]. The
latter generalizes the former. 8

Unfortunately, it is not the case that the s-hedge struc-
ture characterizes the set of z-transportable relations. To wit-
ness, note that there is no s-hedge in Fig. 2(b) and 3(c), so
the effects R = P ∗(y|do(x)) are transportable, but they are
not z-transportable. For instance, in Fig. 2(b), there is no s-
hedge because, even though there are s∗-trees F ′ = {Y },
F = {X,Z} ∪F ′, there is not a selection node pointing F ′.

Clearly, if a quantity R is not transportable, R is also
not z-transportable, since z-transportability requires more
stringent conditions to hold than transportability. The con-
verse does not hold, and we have seen examples in which
R is transportable but not z-transportable. In other words,
when R is transportable, it is the case that R might be ei-
ther z-transportable (e.g., Fig. 3(b)), or not z-transportable
(e.g., Fig. 2(b) and 3(c)). Furthermore, the fact that any z-
transportable quantity is transportable also follows.

Based on these observations, there exists a structure that
generalizes s-hedges and will be shown to characterize z-
transportable relations, which is defined below.

Definition 7 (zs-hedge). Let X,Y,Z be subsets of variables
in the selection diagram D. Let F, F ′ be R-rooted s∗-trees
such that F∩X 6= ∅, F ′∩X = ∅, F ′ ⊂ F , R ⊂ An(Y)DX

.
Then F and F ′ form a zs-hedge for P ∗x (y) in Π and Π∗
relative to Z if one of the following conditions hold:

1. There exists a S-node pointing to some node in F ′, or
2. For any Z′ ⊆ Z∩F : if all directed paths from Z′ to Y in
D are blocked by X, F \ Z′ is also a zs-hedge for P ∗x (y)
in Π and Π∗ relative to Z \ Z′; otherwise, F is also a
zs-hedge for P ∗x (y) in Π and Π∗ relative to Z \ Z′, or

3. Z is an empty set.

We can see that zs-hedge captures the known cases of
z-transportability. For example, if there is no S-node in the
diagram, there must exist an experimentZ in the source such

8For a more detailed discussion on the relationship between
these two structures, refer to [BP, 2012b].

PROCEDURE TRz(y,x, PI ,Z, I, D)
INPUT: x,y value assignments, PI observational distribu-
tion in Π∗ (if I = ∅), and interventional distribution in Π (if
I 6= ∅), Z set of variables with interventional distributions
available in Π, I set of active variables in Z, D a selection
diagram, S set of selection nodes. [P ∗, PZ are globally
available, and PI represents the distribution given active Z,
removing the nodes after conditioning in the top. order.]
OUTPUT: P ∗x (y) in terms of P ∗, PZ or FAIL(D,C0).
1 if x = ∅, return

∑
V\Y PI(V)

2 if V \An(Y)D 6= ∅, return TRz(y,x ∩An(Y)D,∑
V\An(Y)D

PI ,Z, I, An(Y)D)
3 Set W = (V \X) \An(Y)DX

.
if W 6= ∅, return TRz(y,x ∪w, PI ,Z, I, D)

4 if C(D \X) = {C0, C1, ..., Ck},
return

∑
V\{Y,X}

∏
i TRz(ci,V \ ci, PI ,Z, I, D)

5 if C(D \X) = {C0},
6 if C(D) 6= {D},
7 if C0 ∈ C(D), return

∑
s\Y

∏
i|Vi∈C0

PI(vi|V (i−1)
D )

8 if (∃C ′)C0 ⊂ C ′ ∈ C(D), return TRz(y,x ∩ C ′,∏
i|Vi∈C′ PI(Vi|V (i−1)

D ∩ C ′, v(i−1)
D \ C ′),Z, I, C ′)

9 else,
10 if

(
(S ⊥⊥ Y | X)DX

∧ (Z ∩X 6= ∅)
)
,

return TRz(y,x \ z, PI ,Z \X,Z ∩X, D \ {Z ∩X})
11 else, FAIL(D,C0)
Figure 4: Modified version of transportability algorithm ca-
pable of recognizing z-transportable relations.

that the target quantity is rewritten so as to make use of this
experiment (i.e., the second condition should fail). If the set
Z is empty, the problem is unsolvable since there is no ex-
periment that might yield z-transportability. If there is a Z-
node that has a directed open path to Y (in the d-separation
sense), this implies that the expression cannot be rewritten
to make use of experimental data over Z.

Finally, we make the formal connection between the exis-
tence of a zs-hedge and the impossibility of z-transporting
a certain causal relation.
Theorem 3. Assume there exist s∗-trees F, F ′ that form a
zs-hedge for P ∗x (y) in Π and Π∗ relative to Z. Then R =
P ∗x (y) is not z-transportable from Π to Π∗ in D.

Proof sketch. Based on Lemma 1, we construct two mod-
els that agree on the observables 〈P, Iz, P ∗〉, but disagree
on the target relation R. These models extend the construc-
tion given in Thm. 3 [BP, 2012a] and Thm. 5 [BP, 2012b],
being more involved due to the additional requirements im-
posed by z-transportability. See the full technical report for
the explicit construction [Bareinboim and Pearl, 2013a]. �

While this result establishes the fact that zs-hedges pre-
cludes z-transportability, Theorem 3 shows neither how
to locate a zs-hedge given a specific selection diagram,
nor whether zs-hedges characterizes z-transportability (i.e.,
whether the converse holds). In the next section, we con-
struct an algorithm which z-transports any causal effects in
a diagram which does not contain a zs-hedge.



A Complete Algorithm for z-Transportability
Some of the previous analyses of identifiability, z-
identifiability, and transportability [Kuroki and Miyakawa,
1999; Tian and Pearl, 2002; Shpitser and Pearl, 2006; Huang
and Valtorta, 2006; BP, 2012b; 2012a] will be useful in
the algorithmization of z-transportability which generalizes
these problems. We construct an algorithm called TRz (see
Fig. 4) based on the algorithm sID algorithm introduced in
[BP, 2012b] (a variant of ID [Shpitser and Pearl, 2006]),
which explicitly employed the s-hedge structure that will
show to be instrumental to prove completeness.

In the sequel, we explain the general strategy undertaken
by TRz, which builds on two observations developed so far:

(i) z-transportability (sufficiency): Causal relations can
be z-transported if trivially transportable (def. 3) or directly
z-transportable (def. 4), which relies on the experiments
performed over Z. The current algorithms already operate
on the first part, proceeding through a sequence of equalities
in do-calculus based on the sC-component decomposition.
The idea is to apply a divide-and-conquer strategy breaking
the problem into smaller, more manageable pieces, and then
to assemble them back when this is possible. In each base
case, we have to evaluate these pieces, checking whether
they are z-transportable based on the definitions 3 or 4.

(ii) Non-z-transportability (necessity): The algorithm pro-
ceeds until it is not able to resolve a certain subproblem,
which implies the existence of a zs-hedge. It is not imme-
diately obvious that failure of the algorithm implies the ex-
istence of this zs-hedge. Assuming that this is the case, it
is not difficult to see that Theorem 3 can be used to gener-
ate a counterexample to non-z-transportability based on the
refutation of the uniqueness property using Lemma 1.

Before showing the more formal properties of TRz , we
demonstrate how TRz works through the z-transportability
of R = P ∗(y|do(x)) using {Z} in the graph D in Fig. 3(b).

The process starts with TRz(y,x, PI , {Z}, {}, D, 1), and
after failure in the tests in lines 1 and 2, TRz succeed in line
3, setting W = {Z} (sinceAn(Y)DX

= {X,Y,W}, which
does not include {Z}). Thus, the original problem is reduced
to the call TRz(y, {x} ∪ {z}, PI ,Z, {}, D).

After failure in the previous tests, TRz invokes line 4.
Since D = An(Y ) and C(D \ {X,Z}) = (C0, C1), where
C0 = D({W}) and C1 = D({Y }), the original problem is
reduced to z-transporting respectively Q0 = P ∗x,z,y(w) and
Q1 = P ∗x,w(y, z), which implies that R =

∑
w Q0 Q1.

Evaluating the first factor Q0 = P ∗x,z,y(w), TRz trig-
gers line 2, noting that nodes which are not ancestors of
W can be ignored. This implies that P ∗x,z,y(w) = P ∗x,z(w)
with induced subgraph C0 = {Z → X,X → W,Z ←
Uzx → X}, where Uzx stands for the hidden variable be-
tween Z and X . In the new call, TRz goes to line 5, where
locally C(D \ {X,Z}) = {C1}, for C1 = {W}. Given
that C0 6= C1, the test in line 6 succeed, and so the test in
line 7, noting that C1 is an sC-component itself (there is no
bidirected edge connecting {W} and {Z,X}). So, TRz can
trivially z-transport this factor and returns P ∗(w|z, x).

Evaluating the second factor Q1 = P ∗x,z,w(y), TRz fails

until the tests in lines 5 and 6, where the local induced sub-
graph is C0 = {Y }. TRz fails in line 7 since C0 is not an
sC-component itself (just a part of another sC-component).
In the sequel, the test in line 8 comes true, where C ′ =
{Z → X,X → Y,Z ← Uzx → X,Z ← Uzy → Y }, so the
original call is reduced through the removal of {W}, which
is not part of the sC-component (there are no bidirected
edges between {W} and C ′). In the new call, TRz succeed
in the test in line 5, but fails in line 6. In the sequel, both tests
in line 10 come true, and {X,Z} ∩ {Z} = {Z} = I, which
induces the graph C ′ \ {Z} = {X → Y } = C2. Finally,
TRz fails until line 6, and then triggers line 7 since {Y } is
a component itself in C2, so returning P (y|w, x, do(z)) (in
the source since I 6= ∅). This result coincides with Eq. (4).

We prove next soundness and completeness of TRz.
Theorem 4 (soundness). Whenever TRz returns an expres-
sion for P ∗x (y), it is correct.
Proof. The result partly follows from the soundness of sID
shown in Thm. 6 [BP, 2012b], which is inherited by TRz

by construction. Note that the process of identification of
the target relation without the Z-nodes, that were consid-
ered in line 10, is allowed since, by assumption, the interven-
tional distribution do(Z) can be used after testing for direct
z-transportability in the respective local call. �

Theorem 5. Assume TRz fails to z-transport P ∗x (y) (exe-
cutes line 11). Then, there exists X′ ⊆ X, Y′ ⊆ Y, Z′ ⊆ Z
such that the graph pair D,C0 returned by the fail condi-
tion of TRz contains as edge subgraphs s∗-trees F , F ′ that
form a zs-hedge for P ∗x′(y

′) in Π and Π∗ relative to Z′.
Proof sketch. We can use the specific topological relation
between the graphs D,C0, remove non-essential edges, and
show that the remaining structure matches the definition of
a zs-hedge. See [Bareinboim and Pearl, 2013a]. �

The following results are now immediate.
Corollary 1 (completeness). TRz is complete.
Corollary 2 (do-calculus characterization). The rules of do-
calculus, together with standard probability manipulations
are complete for determining z-transportability of P ∗x (y).
Corollary 3 (zs-hedge criterion). P ∗x (y) is z-transportable
from Π to Π∗ in D if and only if there does not exist a zs-
hedge for P ∗x′(y

′) in D, for any X′ ⊆ X, Y′ ⊆ Y, Z′ ⊆ Z.

Conclusions
This paper treats transportability problems in which experi-
ments can be conducted only over limited sets of variables
Z. We provide a necessary and sufficient graphical condition
under which causal effects in a target environment can be
estimated from experimental information transported from
the source environment, potentially different from the for-
mer. We further provide a complete algorithm for comput-
ing the resulting mapping, that is, a formula for fusing avail-
able observational and experimental data to synthesize an
estimate of the desired causal effects. We show that the do-
calculus is complete for characterizing the z-transportability
class. While practical applications of these results are pred-
icated on the availability of problem-specific selection di-
agrams, the general understanding of why some problems



permit information transfer and other do not has scientific
merit on its own. It informs investigators what kind of dis-
parities between environments would make transportability
theoretically impossible, and what disparities can be circum-
vented by clever information fusion strategies. Even though
the construction of a selection diagram might be a demand-
ing task, the completeness result makes such construction
unavoidable if one seeks theoretical guarantees for a given
method of information transfer. Fortunately, the knowledge
necessary to construct a diagram is not much different than
that required for ordinary causal diagrams as used, for exam-
ple, to establish internal validity (i.e., identifiability). This
paper complements a recent work on transportability called
meta-transportability [Bareinboim and Pearl, 2013b], which
deals with transferring causal information from multiple het-
erogeneous domains.

Acknowledgement
We thank the reviewers for their comments. This research
was supported in parts by grants from NSF #IIS-1249822,
and ONR #N00014-13-1-0153 and #N00014-10-1-0933.

Appendix 1
The do-calculus [Pearl, 1995] consists of three rules that
permit us to transform expressions involving do-operators
into other expressions of this type, whenever certain condi-
tions hold in the causal diagram G. We consider a DAG G
in which each child-parent family represents a deterministic
function xi = fi(pai, εi), i = 1, . . . , n, where pai are the
parents of variables Xi in G; and εi, i = 1, . . . , n are arbi-
trarily distributed random disturbances, representing back-
ground factors that the investigator chooses not to include in
the analysis.

LetX , Y , and Z be disjoint sets of nodes in a causal DAG
G. We denote by GXZ . the graph obtained by deleting from
G all arrows pointing to nodes in X and all edges emerg-
ing from nodes in Z. The following three rules are valid for
every interventional distribution compatible with G.
Rule 1: Px(y|z,w) = Px(y|w) if (Y ⊥⊥ Z|X,W)GX

.
Rule 2: Px,z(y|w) = Px(y|z,w) if (Y ⊥⊥ Z|X,W)GXZ

.
Rule 3: Px,z(y|w) = Px(y|w) if (Y ⊥⊥ Z|X,W)G

X,Z∗
,

where Z∗ = Z \Anc(W)GX
.

In words, rule 1 affirms that the d-separation criterion
holds when the system is under an intervention do(X = x);
rule 2 gives a condition to exchange the action do(Z = z)
with passive observation (Z = z); rule 3 gives a condition
under which the action do(Z = z) is irrelevant and can be
deleted (similarly to conditional independences when an ob-
servation is irrelevant). The do-calculus was proven to be
complete for the task of identification of causal effects [Sh-
pitser and Pearl, 2006; Huang and Valtorta, 2006].

Appendix 2
To exemplify the use of do-calculus, we apply it to derive
the transport formula for the model of Fig. 3(b) (Eq. 4),

P ∗(y|do(x)) = P (y|do(x), S) = P (y|do(x), do(z), S)(
3rd rule of do-calculus, (Z ⊥⊥ Y |X,S)GX

)
=
∑

wP (y|do(x), do(z), w, S)P (w|do(x), do(z), S)

=
∑

wP (y|do(x), do(z), w)P (w|do(x), do(z), S)(
1st rule of do-calculus, (S ⊥⊥ Y |X,Z)GX,Z

)
=
∑

wP (y|x, do(z), w)P (w|do(x), do(z), S)(
2nd rule of do-calculus, (X ⊥⊥ Y |Z)GXZ

)
=
∑

wP (y|x, do(z), w)P (w|x, z, S)(
2nd rule of do-calculus, (X,Z ⊥⊥W )GX,Z

)
=
∑

wP (y|x, do(z), w)P ∗(w|x, z)
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